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Abstract

When a sequence of real numbers is convergent to some finite number, we may

approximate the members of the sequence by its limit provided the subscript is

large. But we may want a higher accuracy. If we know the speed of convergence,

we define a derivative of the sequence at infinity. We also define the second

derivative which enables us even better approximations.

Motivation.

When a program has to use a sequence, it is sometimes more handy to use

an approximation than a table look-up the entries of which are members of a

sequence. Here the meaning of the word approximation is technical because,

typically, the approximation has to satisfy a pre-assigned accuracy.

Taylor expansions are polynomial functions students learn about in the be-

ginning course of calculus. But, actually, polynomial approximations are used

for fast computations. When we want to approximate a sequence we can hardly

use algorithms that calculate best approximations on intervals. Our option

would be the use of discrete aproximation algorithms.

First of all, we discuss the question of a speed of convergence. If this is

calculated, we can see how to use it for a linear approximation. The next step

is to investigate the notion of the second derivative. The second derivative at

some point may be defined if the function has the first derivative at each point

of some nonempty open interval containing that point. This is not the case

when we try to define it for a sequence.
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Once the question is resolved, we may use a Taylor like expansion to improve

our approximation.

We will repeatedly use the following Stolz theorem. Not only is it something

like the L’Hospital rule for sequences, it is also very convenient for series.

Theorem. (Stolz) Let aN and bN be two sequnces of real numbers. Assume

that both aN and bN converge to zero, bN is strictly decreasing. If

lim
N→0

aN+1 − aN
bN+1 − bN

= L

then

lim
N→0

aN
bN

= L.

The proof can be had at Wikipedia:

https : //en.wikipedia.org/wiki/Stolz− Cesaro− theorem

or just look for Stolz theorem. We will use only the case when L is finite.

Speed of convergence, example 1

We all know that (1 + 1/N)N converges to e as N goes to infinity, but

the question is how fast. To be able to compare the speed of convergence of

one sequence with another sequence we have to develop a method of such a

comparison. To do so, we recall the topic of acceleration of convergence of

series in which we compare the remainder of one series to another series.

We compare the sequence e − (1 + 1/N)N with the sequence C(N) = 1/N.

We can extend the domain of definition from natural numbers to real numbers

by simply using the same formula. We define the limit as D, if it exists.

D = lim
N→∞

e− (1 + 1/N)N

1/N
= lim
x→∞

e− (1 + x−1)x

x−1
=

lim
x→∞

e− exp(x ln(1 + x−1))

x−1
.

We know that both limx→∞(e− exp(x ln(1 + x−1))) is zero and limx→∞ x−1 is
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zero and apply the L’Hospital’s rule. Thus

D = lim
x→∞

− exp(x ln(1 + x−1))
(

ln(1 + x−1) + x
1+x−1 (−x−2)

)
−x−2

=

e lim
x→∞

ln(1 + x−1)− x
1+x−1 (x−2)

x−2
= e lim

x→∞

ln(1 + x−1)− 1
1+x

x−2
=

e lim
x→∞

ln(1 + x−1)− (1 + x)−1

x−2

Since limx→∞(ln(1 + x−1)− (1 + x)−1) = ln 1− 0 = 0 and so is the limit of the

denominator, we use the L’Hospital rule the second time.

e

2
lim
x→∞

−x−2

1+x−1 + (1 + x)−2

−x−3
=
e

2
lim
x→∞

−1
x(1+x) + 1

(1+x)2

−x−3
=

e

2
lim
x→∞

−(1+x)
x(1+x)2 + x

x(1+x)2

−x−3
=
e

2
lim
x→∞

−1
x(1+x)2

−x−3
=
e

2

It is important that our guess was right, this limit is finite and the sequence

e − (1 + 1/N)N converges to zero as fast as 1/N. Besides this fact, it is also

reasonable to use the expression e−D/N = e− e/(2N) as an approximation to

1 + 1/N)N for large N.

Series, example 2

Now we use the series
∑∞
i=0 1/i! = e. The function with respect to which

we want to calculate the derivative is C(N) = 1/(N + 1)!, thus using the Stolz

theorem we get

D = lim
N→∞

e−
∑N
i=1 1/i!

1/(N + 1)!
= lim
N→∞

−
∑N+1
i=1 1/i! +

∑N
i=1 1/i!

1
(N+2)! −

1
(N+1)!

=

lim
N→∞

− 1
(N+1)!

1−(N+2)
(N+2)!

= lim
N→∞

1
(N+1)!

(N+1)
(N+2)(N+1)!

= lim
N→∞

N + 2

N + 1
= 1

To compare the speed of convergence of
∑N
i=1 1/i!, and (1 + 1/N)N , it will
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suffice to form the ratio

1/(N + 1)!

1/N
=

N

(N + 1)!
.

Since this ratio goes to zero as N tends to infinity, the partial sums
∑N
i=1 1/i!

converge faster than (1 + 1/N)N . It is also more accurate to use the approxi-

mation e− 1/(N + 1)! to calculate partial sums for large N.

Second derivative

We can imagine that D in our calculation may be interpreted as a derivative.

To improve the accuracy of our approximations we would want to use the second

derivative. Unfortunately, in the case of a series expansion, the derivative is

defined at one point only while the definition of the second derivative requires

the definition of the derivative on a whole neighborhood of the point at which

we want to calculate it. We will show this is not an insurmountable obstacle.

We recall that C(N) is a comparison sequence if it is positive, decreasing, and

converges to zero. A comparison sequence could be any sequence the members

of which have the required properties but in practical examples we use those

that are easy to calculate. That is why we used 1/N or 1/(N + 1)! in our

examples.

The first attempt to redefine the second derivative when we look at it from

the angle of approximation, is this:

Definition. Let F (N) be a sequence convergent to L, let C(N) be a comparison

sequence for the definition of a derivative D, and let C ′(N) be a comparison

sequence for the definition of the second derivative. If the first derivative D =

limN→∞(L−F (N))/C(N) is nonzero and finite, we define the second derivative

as

S = 2 lim
N→∞

F (N)− (L+DC(N))

C ′(N)

if this limit exists and is finite.
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Theorem. Let f(x) be twice differentiable at a point x0 = 0. Let f ′(x) be

defined, nonzero, and finite on a neighborhood of x0 = 0. Let F (N) = f(1/N),

C(N) = 1/N, C ′(N) = 1/N2, L = limN→∞ F (N), and D = limN→∞(L −

F (N))/C(N). Then

2 lim
N→∞

f(N)− (L+DC(N))

C ′(N)
= f ′′(0).

Proof. We substitute h = 1/N and see that

D = lim
N→∞

F (N)− L
1/N

= lim
h→0

f(h)− f(0)

h
= f ′(0)

Since f(x) is continuous at 0, we have limh→0(f(h) − f(0)) = 0 and obviously

limh→0 f
′(0)h = 0. Thus the L’Hospital rule for type 0/0 may be applied to the

following

2 lim
N→∞

F (N)− (L+DC(N))

C ′(N)
= 2 lim

h→0

f(h)− (f(0) + f ′(0)h)

h2

yielding

2 lim
h→0

f ′(h)− f ′(0)

2h
= f ′′(0).

Note. We have only shown that our definition of the second derivative of a

sequence is nothing but a generalization of the usual definition of the second

derivative of a function. The proof also shows why a constant 2 was put in front

of the symbol of a limit.

Another way to define the second derivative is the use of interpolation. When

we know the limit L and derivative D, we can use the linear interpolation

F (N) ≈ L+D × C(N). But we want to use the quadratic interpolation ax2 +

bx+ c in which c = L, b = D and a is to be determined so that L+D×C(N) +
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a× C ′(N) = F (N). We solve the equation for a as

a =
F (N)− (L+D × C(N))

C ′(N)

But the second derivative of a quadratic polynomial ax2 + bx+ c is 2a and we

are ready to define the second derivative as

2 lim
N→∞

F (N)− (L+D × C(N))

C ′(N)
.

This is oviously the same expression as the one in our previous definition of the

second derivative.

We may try to calculate the second derivative in example 1 as:

2× lim
x→∞

e− (1 + 1/x)x − e/(2x)

x−2
= −11e/12

so the approximate formula is (1 + 1/N)N ≈ e− e/(2N) + 11e/(12N2). This is

only an exercise, the question of speed of exact calculations of exp(N ∗ ln(1 +

1/N)) is not that essential.

Now we calculate the second derivative in example 2:

2× lim
N→∞

e−
∑N
i=1 1/i!− 1/(N + 1)!

1/(N(N + 1)!)
=

We use the Stolz theorem and obtain

2× lim
N→∞

− 1
(N+1)! −

1
(N+2)! + 1

(N+1)!

1
(N+1)(N+2)! −

1
N(N+1)!

=

2× lim
N→∞

− 1
(N+2)!

1
(N+1)(N+2)! −

N+2
N(N+2)!

=

2× lim
N→∞

− 1
(N+2)!

1
(N+2)! (

1
(N+1) −

N+2
N )

= 2
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We can see that C ′(N) = 1/(N(N + 1)!) and that it is not a square of

C(N) = 1/(N + 1)!. It follows that, when we use the second derivative, the

approximating formula will be

N∑
i=1

1

i!
≈ e− 1

(N + 1)!
+

1

N(N + 1)!
.

Poisson distribution

The probability mass function of the Poisson distribution X, with parameter

λ > 0, is defined as P (X = i) = e−λλi/i! for i = 0, 1, 2, . . . , the distribution

function is e−λ
∑N
i=0 λ

i/i! To calculate the limit

D = lim
N→∞

eλ −
∑N
i=0

λi

i!
λN+1

(N+1)!

we use the Stolz theorem, so

D = lim
N→∞

− λN+1

(N+1)!

λN+2

(N+2)! −
λN+1

(N+1)!

= lim
N→∞

− 1
(N+1)!

λ
(N+2)! −

1
(N+1)!

= lim
N→∞

−1
λ

N+2 − 1
= 1

The second derivative is

D = lim
N→∞

eλ − λN+1

(N+1)! −
∑N
i=0

λi

i!

λN+1

N(N+1)!

D = lim
N→∞

− λN+2

(N+2)! + λN+1

(N+1)! −
λN+1

(N+1)!

λN+1

N(N+1)!

= lim
N→∞

− λN+2

(N+2)!

λN+1

N(N+1)!

= lim
N→∞

−Nλ
N + 2

= −λ

We have thus developed the approximation

N∑
i=0

λi

i!
≈ eλ − λN+1

(N + 1)!
+

λN+2

N(N + 1)!

Riemann zeta

We define ζ(s) =
∑∞
i=1

1
is for s > 1 It is well known that the series is
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convergent for such s and ζ(s) is well defined. We consider only natural s for

the sake of simplicity. Our aim is the study of the speed of convergence of partial

sums:

lim
N→∞

∑N
i=1

1
is − ζ(s)
1
Nt

We are going to use the Stolz theorem for type 0/0. We use an unknown pa-

rameter t, its value will be determined later.

lim
N→∞

1
(N+1)s

1
(N+1)t −

1
Nt

= lim
N→∞

1
(N+1)s

Nt−(N+1)t

Nt(N+1)t

= lim
N→∞

N t(N + 1)t−s

N t − (N + 1)t
=

lim
N→∞

N t(N + 1)t−s

N t −N t − tN t−1 . . .

We get a finite nonzero limit if 2t − s = t − 1. In this case when t = s − 1 the

limit is −(s− 1)−1. We can now write an approximation of the partial sum as

N∑
i=1

1

is
≈ ζ(s)− 1

(s− 1)Ns−1

Now we write down the second derivative and use the Stolz theorem 0/0.

lim
N→∞

∑N
i=1

1
is − (ζ(s)− 1

(s−1)Ns−1 )

1
Nt

= lim
N→∞

∑N
i=1

1
is − ζ(s) + 1

(s−1)Ns−1

1
Nt

=

lim
N→∞

1
(N+1)s + 1

(s−1)(N+1)s−1 − 1
(s−1)Ns−1

1
(N+1)t −

1
Nt

= lim
N→∞

(s−1)Ns−1+(N+1)Ns−1−(N+1)s

(s−1)Ns−1(N+1)s

Nt−(N+1)t

Nt(N+1)t

=

lim
N→∞

(s−1)Ns+(N+1)Ns−N(N+1)s

(s−1)Ns(N+1)s

Nt−(N+1)t

Nt(N+1)t

.

Binomial expansion yields

lim
N→∞

(s−1)Ns+Ns+1+Ns−N(Ns+sNs−1+(s(s−1)/2)Ns−2+...)
(s−1)Ns(N+1)s

Nt−Nt−tNt−1−...
Nt(N+1)t

=
1

2
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if we take t = s.

N∑
i=1

1

is
≈ ζ(s)− 1

(s− 1)Ns−1 +
1

2Ns

We take a look at a simple example when s = 2, N = 20, then the par-

tial sum is
∑20
i=1 1/i2 = 1.596163. The value of the zeta function is ζ(2) =

1.644934, the linear approximations is ζ(s)− 1
(s−1)Ns−1 = ζ(2)− 1

20 = 1.594934,

and the quadratic approximation is ζ(s) − 1
(s−1)Ns−1 + 1

2Ns = ζ(2) − 1
20 +

1
2×202 = 1.596184. Thus the error of the quadratic approximation is |1.596163−

1.596184| = 0.000021.

Derangement

A derangement is a permutation of the elements of a set such that no element

appears in its original position. A derangement is a permutation with no fixed

points. There are several ways to count the number of derangements leading to

the formula

N !

N∑
i=1

(−1)i

i!

where N is the number of elements in the set. When we ask for the proba-

bility that a permutation is a derangment, we divide by the number N ! of all

permutations of N elements and obtain

P (N) =

N∑
i=1

(−1)i

i!

We recall that the power series expansion for ex is

ex =

∞∑
i=1

xi

i!

and we get

lim
N→∞

P (N) = e−1 = 1/e.

The series for e−1 is an alternating series causing a little trouble but it can be

quickly handled by considering even number of terms in partial sums. It means
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we study the partial sums from one to 2N, such as

lim
N→∞

1
e −

∑2N
i=1

(−1)i
i!

1
N(2N)!

= lim
N→∞

1
e −

∑2N+2
i=1

(−1)i
i! −

1
e +

∑2N
i=1

(−1)i
i!

1
(N+1)(2N+2)! −

1
N(2N)!

=

lim
N→∞

−1
(2N+2)! + 1

(2N+1)!

1
(N+1)(2N+2)! −

1
N(2N)!

= lim
N→∞

−1+2N+2
(2N+2)!

N−(N+1)(2N+2)(2N+1)
N(N+1)(2N+2)!

=

lim
N→∞

2N+1
(2N+2)!

− 4N3+10N2+7N+2
N(N+1)(2N+2)!

= − lim
N→∞

(2N + 1)(N2 +N)

4N3 + 10N2 + 7N + 2
=

− lim
N→∞

2N3 + 3N2 +N

4N3 + 10N2 + 7N + 2
= −1

2

We can now use the formula

2N∑
i=1

(−1)i

i!
≈ 1

e
− 1

2N(2N)!

or, if M is even, then
M∑
i=1

(−1)i

i!
≈ 1

e
− 1

M ×M !

As a numerical example we try M = 2N = 10. We get the exact proba-

bility of a derangement P (10) = 0.3678792 from the first priciple. The linear

approximation is 1/e − 1/(M ×M !) = 1/e − 1/(10 × 10!) = 0.3678763 while

1/e = 0.3678794 and, clearly, the approximation of P (10) by 1/e provides a

sufficient accuracy. This happens because the number 1/(10 × 10!) = 2.8e − 8

is so small that its subtraction makes no practical difference.

Hilbert space.

We will not review the definition of a Hilbert space. We will only recall the

definition of the lp space.

Definition. The space of infinite sequences x = (x1, x2, . . .) for which
∑∞
i=1 x

2
i
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is convergent is called an l2 space.

We call a sequence C(N) a comparison sequence if it is positive, decreasing,

and converges to zero. In our examples those were 1/N or 1/(N + 1)!, but we

chose a comparison sequence in such a way that its members of which are easy

to calculate.

Definition. Let C(N) be a comparison sequence. A subset of l2 the elements

of which are those sequences x = (x1, x2, . . .) for which

lim
N→∞

(Sx −
N∑
i=1

x2i )/C(N) <∞, where Sx =

∞∑
i=1

x2i ,

is called a C (convergence) speed subset.

Note: It is obvious that Sx =
∑∞
i=1 x

2
i ≥

∑N
i=1 x

2
i and there is no need to use

the absolute value of the limit.

As an example we take the comparison sequence C(N) = 1/N. The 1/N

speed sequences are those, for which

lim
N→∞

N(Sx −
N∑
i=1

x2i ) <∞, where Sx =

∞∑
i=1

x2i .

Theorem.

Let C(N) be a comparison function. Then a C speed subset of the l2 space

is a linear subset of l2.

Proof. The element x = (0, 0, . . .) is obviously a zero element of l2. If a is a

constant and x = (x1, x2, . . .) is any element of the C-speed subset, then so is

ax = (ax1, ax2, . . .) because

lim
N→∞

(Sax −
N∑
i=1

a2x2i )/C(N) = a2 lim
N→∞

(Sx −
N∑
i=1

x2i )/C(N) <∞,
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where Sx =

∞∑
i=1

x2i and Sax =

∞∑
i=1

a2x2i , thus Sax = a2Sx.

We skip the proof of all the other properties of the linear subspace because they

are as easy as this one.

Theorem.

Let C(N) be any comparison function. Then a C speed subset of the l2

space is a dense linear subset of l2.

Proof. Let x = (x1, x2, . . .) be any element of the l2 space. Let us define the

sequence yK = (x1, x2, . . . , xK, 0, 0, . . .) of elements of l2. Obviously, if N > K,

we have, by definition, SyK =
∑K
i=1 x

2
i +

∑∞
i=K+1 0 =

∑K
i=1 x

2
i . Thus, for any

comparison function C(N), we have for some K > 0

lim
N→∞

(SyK −
N∑
i=1

x2i )/C(N) = 0.

Let N0 = K. Then for N > N0 we have

lim
N→∞

(SyK −
N∑
i=1

x2i )/C(N) = lim
N→∞

(SyK −
K∑
i=1

x2i )/C(N) = 0

because SyK −
∑K
i=1 x

2
i = 0 for N > N0.

Conclusion

So far, we could use only a numerical evidence both to check if the formulas

are correct and also to see if they are accurate enough for practical calculations

to replace the actual calculations of sums. Numerical evidence may be sufficient

for numerical calculation but it is not a rigorous proof of anything. We may

recall what we studied in the topic of Taylor expansion in the first semester of

calculus to see that the formula for a remainder is exactly what is missing in

our paper. This is one open question.

Another open question is the definition of higher derivatives of a sequence

at infinity. For example, if there are infinitely many of these derivatives, we
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can form something like an expansion for such a sequence that would obviously

characterize the behavior of a sequence at infinity. The question is what is the

meaning of such an expansion.
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