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Abstract:

In real Einstein-Lifts above resp. in  radial gravitational-fields over planetary surfaces there appear
tidal forces, which causes  small deviations from  real inertial systems because the Ricci-Tensor in
the Lift is not equal to zero, caused by the non-parallelity of the gravity  field lines. For these quasi-
inertial-systems (defined now  as QUIS) there can be calculated a  relative minimal-seize, which
only depends from heigth over  and radius of the  planetary mass.

Key-words:  local inertial-system; QUIS; quasi inertial-system;minimal reference frames;planck-
length; bending of Einstein-Lift.

1. Introduction:

In the previous paper [1.] there was marginally noted, that real QUIS has to have a minimal seize
because of measuring the movement of a real particle like an electron, proton, neutrino etc. In real
universe, even in flat Minkoswksi-space there can‘t be an „infinitesimal IS or  QUIS“, because this
concept is only a mathematical construction without any sense for  physical reality. If an Einstein-
Lift falls  in a real  radial gravitational-field, there can be calculated this minimal seize  of the QUIS
in an explicite way. This minimal QUIS can be interpreted as the „ fundamental quantum“ of other,
greater QUIS in radial gravitational-fields involving Einstein-lifts in the same heigth over same
surface of the same planetary mass. This definition  doesn‘t mean a real quantization because there
are no  gravity forces quantized but only local  geometrical coordinate-systems. In addition, a real
Einstein-lift in radial fields  is not a cube or a cuboid  with plane planes above and below but
possesses  a  form of  bending in  ground  and upper  plane of  the lift  (further  discussion  of  this
problem see Appendix B and picture 1.).The equivalence principle is only involved in the usual
manner ([2.]-[8.]).

2.Calculation:

From elementary geometrical laws  (with proportional lengths by equal angles) there can be derived
following equation  for  minimal   size of  Einstein-Lifts,  which is  here  also defined as  minimal,
relative size of the local used QUIS. The size of this  QUIS  x depends only from heigth over
planet  radial  gravitational  field and from planetary mass  radius.  Therefore a  QUIS is  never  an
absolute  system  but  exists  without  changes  only  for  equipotential  „surfaces“   of  the  local
gravitational radius-field of the causing mass. Nevertheless there can be defined a minimal QUIS
for every of  this  equipotential  surface.  The size of  the QUIS changes with heigth over planet,
because of the existence of  radial field-lines.

The equation for this QUIS  is given by:

mailto:haw-doering@t-online.de


x=b+√b ²+2⋅b⋅(h+r )                                                                                                 (1.)

concept-data for minimal QUISes:

b  - Planck-length
r – radius of planetary or stellar  mass (body)
h – heigth over  defined  body-surface
x – heigth, width and length of a  relative, minimal, cubic Einstein-Lift (QUIS).

3. Some remarks on  the measuring process:

Agreed was in this process (see paper [1]) that there are  two  or more downwards pointing lasers
resp. light-beams  in the edges of the middle-line of the upper plane of the Einstein-Lift or in the
middle-line itself.  In the middle-line of the lower ground plane there are photometres installed,
which measure the deviation from parallelity. If technical laser-problems of focusing  are primarily
first of all  ignored, there can be determined the difference of the lift-systems QUIS  relative to a
real  IS of special relativity theory with measuring the deviations of the real gravity field over
planetary surface  relative to parallel field lines of a homogenious, ideal field, which doesn‘t occur
in  reality of nature. If the possible  minimal deviations  b are defined as planck-length r Pl ,
then there can be derived the minimal seize of the QUIS in the condition of the  given equipotential
„surface“ over planetary  distance r+h .In this way all the local  weak radial field of gravitation
can be plastered with QUIS of minimal seize. There  ergo is  existing  a form of „quantizing“ local
space-time through its local minimal coordinate-systems, but this process isn‘t a real quantizing of
forces. But the minimal QUIS can be interpreted as the „quantum“ of local geometrical space-time
and they can be summed over to get  greater QUISes because of b=rPL .

Example given:

For conditions of

r=6,378⋅10⁶m , h=1⋅10⁵m ,  b=1,616255⋅10⁻ ³⁵m=rPl there  is  a  minimal  seize  of  the
QUIS of: x=1,4470729⋅10⁻ ¹⁴m

For more  exact information on the variation  of minimal  QUIS with height, see tables 1.−4.
below.
Of course, with the existence of QUIS, there are no longer any  concepts of  „potential planes “ or
„potential  surfaces“  in  gravity  fields  of  planets  and  stars   but  there  is  to  speak  by QUIS  of
„minimal potential volume-shells“. Summing over all volume shells  with increasing radius then
leads to the whole  gravity-field of the cosmic body to the limiting distance to which should be
calculated. Disturbations from other cosmic bodies are  not included  yet  but must have to be
calculated to be  more exactly.(Eg.:Earth-Moon-system or Sun-Jupiter).

4. Data of QUIS , belonging to planet earth:

Heigth  h  in  m  over  planetary  radius  r
(earth):

Minimal seize of QUIS  x in 10 ¹  m:⁻ ⁴



0 1,435860327  surface-value  (defined  as
absolute  minimal  QUIS for  planet  earth  in  its
outer space, not inside the planet for planetary
equatorial radius of 6378 km.).

10.000 1,436985521

20.000 1,438109835

30.000 1,439233271

40.000 1,44035583

50.000 1,441477516

60.000 1,442598329

70.000 1,443718272

80.000 1,444837347

90.000 1,445955555

100.000 1,4470729

Table 1  : Listed are some sizes of minimal QUIS over earth-surface dependend from h between 0-
100 km in distances of 10 km.

Appendix A:

                  QUIS-data for Earth, Jupiter and Sun.

Shown is the minmal length of QUIS in dependence of heigth over planetary gravity field-lines with
increasing distance from planet in different  intervalls.

1.Earth:

distance from surface in  m Minimal size/heigth of QUIS  in 10 ¹  m⁻ ⁴

100.000 1,447070662

200.000 1,458197003

300.000 1,469239089

400.000 1,480198804

500.000 1,491077966

600.000 1,501878324

700.000 1,512601567

800.000 1,523249323

900.000 1,533823165



1000.000 1,54432461

Table 2: Shown is the minimal seize of QUIS over earth-surface in interval of 100km-1000km.

2.Jupiter:

distance from surface in m Minimal size/heigth of QUIS in 10 ¹  m⁻ ⁴

0 4,807264191  (minimal defined QUIS for 
Jupiter on hypothetical  surface of  71492 km 
equator-radius).

1.000.000 4,840768431

2.000.000 4,874042367

3.000.000 4,907090686

4.000.000 4,939917914

5.000.000 4,972528431

6.000.000 5,004926473

7.000.000 5,037116139

8.000.000 5,0691014

9.000.000 5,100886099

10.000.000 5,132473965

Table 3: Shown is the minimal seize of QUIS over jupiter-surface in interval of 1000 km – 
10.000km.

3.Sun:
 

distance from surface in m Minimal size/heigth of QUIS in 10 ¹³ m⁻

0 1,499942319  (minimal defined QUIS for Sun 
on hypothetical   photosphere-surface of  696000
km equator-radius).

10.000.000 1,510679337

20.000.000 1,52134058

30.000.000 1,531927629

40.000.000 1,542442012

50.000.000 1,552885205



60.000.000 1,563258635

70.000.000 1,573563682

80.000.000 1,58380168

90.000.000 1,593973921

100.000.000 1,604081656

Table  4: Shown  is  the  minimal  seize  of  QUIS  over  sun-surface  in  interval  of  10.000  km  –
100.000km.

Appendix B:   

Tidal-force caused material bending  through planetary  
gravity-fields in Einstein-Lift

1.The forces:

Because the gravity-field is weak, there can be calculated over Newton, Ricci-tensors aren‘t 
necessary.
In picture 2 is seen, that  there is bending in Einstein-Lift, because the middle-Force F1<F
,which works at the orthogonal middle-line center  of the lift, is shorter than the field-lines, which 
leads to the upper or lower corners of the lift. In the corners there works the force F .
So there are the following relations:

F1=
m⋅M⋅G

(r+h+x )²
=

m⋅M⋅G
R1 ²

                                                                                             (2a.)

F=
m⋅M⋅G

R ²
                                                                                                                  (2b.)

F2=
m⋅M⋅G
(r+h)²

                                                                                                                 (2c.)

R=√(r+h+x )²+(
x
2
)²                                                                                                    (3a.)

R1=r+h+x                                                                                                                    (3b.)

k=R−R1                                                                                                                       (3c.)



F1

F
=

R1

R
=

(R−k ) ²
R ²

                                                                                                       (3d.)

This leads to: k=1,92∗10⁻⁶m

This value of k is the length-difference between the gravitational field-lines in the  upper corners of 
the lift (see picture 2) and the field-line in the middle of the lift.In analogy there can be constructed  
a value of k for the lower plane of the lift in the  same clear  method, which isn‘t done here now but 
the bending in both planes of the lift  is calculated below. 
There follows for the force in the  middle-line of the  upper plane:

F1=
F

1+5,957400266∗10⁻ ¹³
                                                                                        (3e.)

2.Bending of lift planes:

The material volume of cubic supposed Einstein-lift is (numerical data below):

V=x1 ³− x2 ³                                                                                                                   (4.)

V=2,997001 m ³ .

The mass is with

m=V⋅ϱ ,  adding:                                                                                                          (5.)

 m2=100 kg
for the lift-passenger with space-suit and the material density for steel of the lift (iron):

ϱ=7,86⋅10³
kg
m ³

This leads to whole lift-mass of

m=2,365642786⋅10⁴ kg .

Therefore the gravity  force in the middle of the upper-deck of Einstein-lift is:

F1=223750,8375 N .

There follows the bending  of upper deck with:

Δu1=
F1⋅x1 ³

48⋅E⋅I y

                                                                                                                        (6.)

  where E is the modulus of elasticity (Young-modul)  for Iron/Steel (Fe)      and     I y   the area-
moment of inertia:

E=2,1⋅10¹¹
N
m ²

 ,   I y=
1
12

⋅(x1 ⁴−x2 ⁴)                                                                            (7.)



and the bending for the lower deck with:

Δu2=
F2⋅x1 ³

48⋅E⋅I y

                                                                                                                     (8.)

Therefore are the bendings in Einstein-Lift (calculated with whole lift-mass, not only with the upper
and lower plane)  of:

Δu1=6,669756012⋅10⁻ ⁶m      for the upper plane of lift  and 

Δu2=6,69744662⋅10⁻ ⁶m    for the lower one. 

The difference between  the two bendings in the middle of the lift from  upper and lower deck  is: 

Δ(Δu1−Δu2)=2,0678⋅10⁻ ¹¹ m ,

This value is, in principle, measurable by the passengers  two light beams along the field-lines of 
gravity field  between the edge and the middle of the lift by measuring the running-time of his laser-
beams because it occurs in the middle but not at the edges of the lift.   

For calculation used  numerical data:

M=M E=5,9742⋅10²⁴ kg    
r=rE=6,378⋅10⁶m
h=1⋅10⁵m    
x1=10m   
x2=9,99 m                                           

G=6,672041⋅10⁻ ¹¹
m³

kg⋅s ²



 picture 1: tidal-forced material bending in real Einstein-Lift meaning  bending of Einstein-lift 
planes  in real gravity-field. Drawed are only the bendings of the lower planes but the upper bends 
either..

 



 picture 2: effective gravity forces in real Einstein-Lift
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