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Abstract 

After some research on the web, I was not able to find any study that answer some questions like: 

• Why do secondary masses orbit in the equatorial plane of the central mass? 

• Why do many galaxies have spiral shapes? 

• What is the real orbit of a secondary mass around the central mass? Even when Keppler 

laws are right, they only give geometrical relations. It can’t be serious to continue with the 

use of these laws in the present days. 

• How to better predict motion’s trajectories when some velocity component and/or mass 

change? 

• Why study the Coriolis force or the Euler force separately, as isolated motions? They 

appear naturally in the general equations of motion and should not be considered as 

isolated forces. They are just components of the main force. 

When we look at planets with their moons, our solar system, or distant galaxies, we see in 

general, that the secondary masses orbit around the central mass mostly at its equatorial plane. If 

the present analysis is correct, then it gives the answer by demonstrating why this happens. It also 

demonstrates the spiral nature of the motion, as well as the real orbit trajectories under diverse 

conditions. Moreover, it shows the motion modulation given by precession and/or nutation. 

Introduction 
The aim of this analysis is to provide a more efficient way to calculate and predict orbits and 

trajectories, not only for celestial bodies, but also for artificial satellites we send outside our 

atmosphere, and for ballistic. The equations presented here might also help improve weather 

forecasts and perhaps predict atmospheric behavior more precisely. 

Nowadays, we know that gravity is an electromagnetic (EM) wave of atomic origin caused by a 

kind of dipole oscillation inside the atom [1]. This EM wave is always present in the universe as 

long as atoms exist and travels at the speed of light. When the originating mass of the EM gravity 

wave explodes or collapses, then a high amplitude EM gravity pulse is produced, which modulates 

the tail or final part of the regular wave. This pulse is the last message that we get from that mass. 

We also know that the gravity field produced by a spinning central mass induces a motion on a 

secondary mass [2]. This induced motion has similar characteristics to that of the central mass. 

I don’t have the knowledge to express gravity as a wave. Therefore, the present analysis is made 

based on the law of gravity according to Newton (instant action-at-a-distance). Just a pure 

mechanical study of the related free motion of two centers of masses in space, by considering all 

nine components of the gravity acceleration. Even though gravity in this study is not considered as 

a wave (where time delay appears), the results are astonishing. However, the low velocities 
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(compared with the speed of light) involved in the interaction of the free motion of two masses, 

make this study very suitable, except when the masses suddenly change, explode or collapse. 

When I started the study, I did only analyze the motion in a single polar plane, without considering 

3D spatial coordinates. I soon realized that this was a poor approach, not matching the real world. 

Then I switched to a spherical coordinate system to analyze the free motion between two centers 

of masses under the effects of gravity. 

Motion in spherical coordinates 

𝑥 = 𝑟 sin 𝜃 cos ∅ 

𝑦 = 𝑟 sin 𝜃 sin ∅ 

𝑧 = 𝑟 cos 𝜃 

The unit vectors are: 

𝑟̂ =
𝑟

𝑟
=

𝑥𝑥̂ + 𝑦𝑦̂ + 𝑧𝑧̂

𝑟
=  𝑥̂ sin 𝜃 cos ∅ + 𝑦̂ sin 𝜃 sin ∅ + 𝑧̂ cos 𝜃 

𝜃 = ∅̂ x 𝑟̂ =  𝑥̂ cos 𝜃 cos ∅ + 𝑦̂ cos 𝜃 sin ∅ − 𝑧̂ sin 𝜃 

∅̂ =
𝑧̂ x 𝑟̂

sin 𝜃
= −𝑥̂ sin ∅ + 𝑦̂ cos ∅ 

 

Since the unit vectors are not attached to the coordinate system axes, they are functions of time 

and can point in any direction. Therefore, they are not constant, and their time derivatives are not 

zero. 

The time derivative of the unit vectors 

𝑟̇̂ =
∂𝑟̂

∂𝑟
𝑟̇ +

∂𝑟̂

∂θ
θ̇ +

∂𝑟̂

∂∅
∅̇ =  θθ̇̂ + ∅̇ sin θ ∅̂ 

θ̇̂ =
∂θ̂

∂𝑟
𝑟̇ +

∂θ̂

∂θ
θ̇ +

∂θ̂

∂∅
∅̇ =   − θ𝑟̇̂ + ∅̇ cos θ ∅̂ 

∅̇̂ =
∂∅̂

∂𝑟
𝑟̇ +

∂∅̂

∂θ
θ̇ +

∂∅̂

∂∅
∅̇ = −(𝑟̂ sin θ + θ̂ cos θ)∅̇ 

Velocity and Acceleration of a Point in Space (or a particle) 

The position vector is given by:   r⃗ = rr̂  (1) 

Assuming that r is not constant, the expression for the velocity of a point located at the tip of the 

position vector is: 

𝑣⃗ = 𝑟̇ = 𝑟̇̂r + 𝑟̂𝑟̇ 

By replacing 𝑟̇̂ we obtain the final expression for the velocity with the three components: 

𝑣⃗ = 𝑟̇𝑟̂ + rθ̇𝜃 + r∅̇ sin θ ∅̂  (2) 

Next, to obtain the expression for the acceleration, we differentiate the velocity with respect to 

time:  

𝑎⃗ = 𝑟̇𝑟̇̂ + 𝑟̈𝑟̂ + 𝑟𝜃̇𝜃̇ + 𝑟̇𝜃̇𝜃 + 𝑟𝜃̈𝜃 + 𝑟∅̇ sin 𝜃 ∅̇̂ + 𝑟̇∅̇ sin 𝜃 ∅̂ + 𝑟∅̈ sin 𝜃 ∅̂ + 𝑟∅̇𝜃̇ cos 𝜃 ∅̂ 

+θ when measured clockwise from +z 
+ϕ when measured counterclockwise from +x 
+r when measured outwards from the origin 

ϕ 

θ 
y 

x 

z 

𝑟 

𝑟̂ 

𝜃 

∅̂ 
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By simplifying and ordering terms, we obtain the final expression for the acceleration: 

𝑎⃗ = (𝑟̈ − 𝑟𝜃̇2 − 𝑟∅̇2𝑠𝑖𝑛2𝜃)𝑟̂ + (𝑟𝜃̈ + 2𝑟̇𝜃̇ − 𝑟∅̇2 sin 𝜃 cos 𝜃)𝜃 + (𝑟∅̈ sin 𝜃 + 2𝑟𝜃̇∅̇ cos 𝜃 + 2𝑟̇∅̇ sin 𝜃)∅̂ 

(3) 

Equation (3) shows the nine components of the acceleration, three for each direction. In general 

terms, we have: 

𝑎⃗ = 𝑎𝑟𝑟̂ + 𝑎θθ̂ + 𝑎∅∅̂ (4) 

 

Gravity as the Cause of the Acceleration 
To analyze the free motion due to gravity of a secondary mass with respect to a central mass, we 

must find the components of the gravitational acceleration in all three directions: 𝑟̂, θ̂, and ∅̂. 

Let’s suppose a mass M of any shape, whose 

center of mass is at the origin of the coordinate 

system, and a mass m of any shape, whose center 

of mass is at a distance r from M. The attraction 

forces on them due to gravity are: 

𝑭𝒎𝑴 = −𝑭𝑴𝒎 = 𝑮
𝒎∗𝑴

𝒓𝟐 𝒓̂               

Where G = 6.67408 ∗ 10−11 
𝑁𝑚2

𝐾𝑔2  is the universal 

gravitational constant. 

Both centers of masses M and m may represent 

single bodies or distribution of several bodies.  

The acceleration produced by M on m is given by:  𝑎𝑀𝑚 = −G
𝑀

𝑟2 𝑟̂, and the acceleration produced 

by m on M is given by:  𝑎𝑚𝑀 = G
𝑚

𝑟2 𝑟̂. 

We have two equal and opposite forces, but the accelerations are not equal. Working with two 

forces or two accelerations make things more complicated, and it is not helpful to analyze the 

interaction between the masses. How to find only one equation that describes the gravitational 

motion between the two bodies? 

Gravity Interaction Between Two Masses Expressed With One Equation 

We can make use of the second law of Newton, and express the force of gravity as: 

F = m𝑎⃗ = m
𝑑2𝑟

𝑑𝑡2
𝑟̂ = −G

𝑚 ∗ 𝑀

𝑟2
𝑟̂ 

For mass M and m we can write: 

M
𝑑2𝑟

𝑑𝑡2 𝑟̂ = −G
𝑚∗𝑀

𝑟2 𝑟̂   =>  
𝑑2𝑟

𝑑𝑡2 𝑟̂ = −G
𝑚

𝑟2 𝑟̂         (5) 

m
𝑑2𝑟

𝑑𝑡2
(−𝑟̂) = −G

𝑚∗𝑀

𝑟2
(−𝑟̂)  =>  

𝑑2𝑟

𝑑𝑡2
𝑟̂ = −G

𝑀

𝑟2
𝑟̂ (6) 

Equation (5) is the acceleration produced by mass m, and Eq. (6) is the acceleration produced by 

mass M. By adding equations (5) and (6), we obtain: 

2
𝑑2𝑟

𝑑𝑡2
𝑟̂ = −G

(𝑀+𝑚)

𝑟2
𝑟̂  =>  

𝒅𝟐𝒓

𝒅𝒕𝟐
= −𝑮

(𝑴+𝒎)

𝟐

𝒓̂

𝒓𝟐
= 𝒂𝑮𝒓𝒓̂  (7) 

x 

y 

z 

M 

m 

FMm 

FmM 

r 
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Equation (7) gives the interaction or relative motion between the two masses. It’s an average 

acceleration expressed by the average of the masses so that the relative acceleration produced by 

any one of the masses on the other has now the same value, which can be written as: 

𝑎𝑎𝑣𝑔 = −G
𝑚𝑎𝑣𝑔

𝑟2 𝑟̂  (8) 

This way we can reduce our system to only one acceleration expression which accounts for the 

interaction of both masses.    

For a big difference in masses (M>>m), as the mass of the Sun compared with the mass of the 

Earth (the mass of the Sun is 333.000 times greater), then the acceleration is mainly given by the 

bigger mass (Sun): 

𝑑2𝑟

𝑑𝑡2
= −G

𝑀

2

𝑟̂

𝑟2
 

Components of the Gravity Acceleration in Spherical Coordinates 

Equation (7) gives the acceleration of gravity in just one direction (𝑟̂). The general expression of 

the acceleration of gravity in spherical coordinates is: 

𝑎⃗𝐺 = 𝑎𝐺𝑟𝑟̂ + 𝑎𝐺𝜃𝜃 + 𝑎𝐺∅∅̂  (9) 

Let’s find the remaining components of 𝑎⃗𝐺. 

The centripetal acceleration 𝑎𝑐 is the 

horizontal component of 𝑎𝐺𝑟 parallel to 

the x-y plane and points to the z-axis, 

which will be rotating in counterclockwise 

direction. 

 𝑎𝑐 = 𝑎𝐺𝑟 sin θ 

The projection of 𝑎𝑐 in the direction of ∅̂ is 

the component 𝑎𝐺∅:  

𝑎𝐺∅ = 𝑎𝑐 cos ∅ 

By replacing 𝑎𝑐 we obtain the final 

expression for 𝑎𝐺∅: 

𝒂𝑮∅ = 𝒂𝑮𝒓 𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 ∅ (10) 

By replacing 𝑎𝐺𝑟 from Eq. (7) in (10), we obtain the gravitational acceleration in the ∅̂ direction: 

𝒂𝑮∅ = −𝑮
(𝑴+𝒎)

𝟐 𝒓𝟐 𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 ∅  (11) 

The polar acceleration 𝑎𝑝 is the vertical component of 𝑎𝐺𝑟 parallel to the z-axis and points 

downwards when the vector 𝑟 is above the x-y plane or points upwards when the vector 𝑟 is 

below the x-y plane. This component is responsible for the pendulum-like motion of the center of 

mass m around the equatorial plane of the central mass M.                

𝑎𝑝 = 𝑎𝐺𝑟 cos θ  

The projection of 𝑎𝑝 in the direction of 𝜃 is the component 𝑎𝐺𝜃:  

𝑎𝐺𝜃 = 𝑎𝑝 cos 𝛽  with 𝛽 =
𝜋

2
− 𝜃 => 𝑎𝐺𝜃 = 𝑎𝑝 cos (

𝜋

2
− 𝜃) = 𝑎𝑝 sin 𝜃 

𝑎𝑐 

ϕ 

ϕ 

θ 

θ 

β 

𝑎𝐺𝑟 

𝑎𝐺𝜃 

𝑎𝐺∅ 

𝑎𝑝 

y 

x 

z 
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By replacing 𝑎𝑝 we obtain the final expression for 𝑎𝐺𝜃: 

𝑎𝐺𝜃 = 𝑎𝐺𝑟 cos 𝜃 sin 𝜃   =>  𝒂𝑮𝜽 = 𝒂𝑮𝒓
𝐬𝐢𝐧(𝟐𝜽)

𝟐
  (12) 

By replacing 𝑎𝐺𝑟 from Eq. (7) in (12), we obtain the gravitational acceleration in the 𝜃 direction: 

𝒂𝑮𝜽 = −𝑮
(𝑴+𝒎)

𝟒 𝒓𝟐 𝐬𝐢𝐧(𝟐𝜽)  (13) 

 

Inserting the components of the gravitational acceleration in Eq. (9), we get: 

𝒂⃗⃗⃗𝑮 = −𝐺
(𝑀+𝑚)

2 𝑟2
𝒓̂ − 𝐺

(𝑀+𝑚)

4 𝑟2
sin(2𝜃) 𝜽̂ − 𝐺

(𝑀+𝑚)

2 𝑟2
sin 𝜃 cos ∅ ∅̂  (14) 

Relating The Motion With Its Cause 

Now we can equate the equation of motion (4) with its cause (9): 

𝑎⃗ = 𝑎⃗𝐺  => 𝑎𝑟𝑟̂ + 𝑎𝜃𝜃 + 𝑎∅∅̂  =  𝑎𝐺𝑟𝑟̂ + 𝑎𝐺𝜃𝜃 + 𝑎𝐺∅∅̂ 

We obtain a system of three differential equations that describe the full motion of the center of 

mass m relative to M: 

𝑎𝑟 =  𝑎𝐺𝑟 ; 𝑎𝜃 =  𝑎𝐺𝜃 ; 𝑎∅ = 𝑎𝐺∅ 

Replacing all components: 

𝑟̈ − 𝑟𝜃̇2 − 𝑟∅̇2𝑠𝑖𝑛2𝜃 = −𝐺
(𝑀+𝑚)

2 𝑟2   (15) 

𝑟𝜃̈ + 2𝑟̇𝜃̇ − 𝑟∅̇2 sin 𝜃 cos 𝜃 = −𝐺
(𝑀+𝑚)

4 𝑟2 sin(2𝜃)  (16) 

r∅̈ sin θ + 2rθ∅̇̇ cos θ + 2𝑟∅̇̇ sin θ = −G
(𝑀+𝑚)

2  2 sin θ cos ∅ (17) 

These equations describe the radial motion (15), the polar motion (16), and the azimuthal motion 

(17). 

Radial Motion Differential Equation 
We can write Eq. (15) as: 

r̈(t) − r(t)θ̇(t)
2 − r(t)∅̇(t)

2 sin2(θ(t)) + G
(M + m)

2 r2
= 0 

𝑟̈(𝑡) − [∅̇(𝑡)
2 𝑠𝑖𝑛2(𝜃(𝑡)) + 𝜃̇(𝑡)

2 ] 𝑟(𝑡) + 𝐺
(𝑀+𝑚)

2𝑟(𝑡)
2 = 0  (18) 

Polar Motion Differential Equation 
We can write Eq. (16) as: 

𝑟(𝑡)𝜃̈(𝑡) + 2𝑟̇(𝑡)𝜃̇(𝑡) − 𝑟(𝑡)∅̇(𝑡)
2 sin 𝜃(𝑡) cos 𝜃(𝑡) + 𝐺

(𝑀 + 𝑚)

4 𝑟(𝑡)
2 sin(2𝜃(𝑡)) = 0 

𝜃̈(𝑡) +
2𝑟̇(𝑡)𝜃̇(𝑡)

𝑟(𝑡)
− ∅̇(𝑡)

2
sin(2𝜃(𝑡))

2
+ 𝐺

(𝑀 + 𝑚)

4 𝑟(𝑡)
3 sin(2𝜃(𝑡)) = 0 

𝜃̈(𝑡) +
2𝑟̇(𝑡)𝜃̇(𝑡)

𝑟(𝑡)
+ [𝐺

(𝑀+𝑚)

4 𝑟(𝑡)
3 −

∅̇(𝑡)
2

2
] sin(2𝜃(𝑡)) = 0  (19) 
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Azimuthal Motion Differential Equation 
We can write Eq. (17) as: 

𝑟(𝑡)∅̈(𝑡) sin 𝜃(𝑡) + 2𝑟(𝑡)𝜃̇(𝑡)∅̇(𝑡) cos 𝜃(𝑡) + 2𝑟̇(𝑡)∅̇(𝑡) sin 𝜃(𝑡) + 𝐺
(𝑀 + 𝑚)

2 𝑟2
sin 𝜃(𝑡) cos ∅(𝑡) = 0 

∅̈(𝑡) +
2𝑟(𝑡)𝜃̇(𝑡)∅̇(𝑡) cos 𝜃(𝑡)

𝑟(𝑡) sin 𝜃(𝑡)
+

2𝑟̇(𝑡)∅̇(𝑡) sin 𝜃(𝑡)

𝑟(𝑡) sin 𝜃(𝑡)
+ 𝐺

(𝑀 + 𝑚)

2𝑟(𝑡)
2

sin 𝜃(𝑡) cos ∅(𝑡)

𝑟(𝑡) sin 𝜃(𝑡)
= 0 

∅̈(𝑡) +
2𝜃̇(𝑡)∅̇(𝑡) cos 𝜃(𝑡)

sin 𝜃(𝑡)
+

2𝑟̇(𝑡)∅̇(𝑡)

𝑟(𝑡)
+ 𝐺

(𝑀 + 𝑚)

2𝑟(𝑡)
3 cos ∅(𝑡) = 0 

∅̈(𝑡) + 2 [
𝜃̇(𝑡)

tan 𝜃(𝑡)
+

𝑟̇(𝑡)

𝑟(𝑡)
] ∅̇(𝑡) + 𝐺

(𝑀+𝑚)

2𝑟(𝑡)
3 cos ∅(𝑡) = 0  (20) 

The System Of Differential Equations Of The Free Motion 

Now we have a system of three differential equations that describe the free motion in space 

resulting from the interaction of two masses. 

𝒓̈(𝒕) − [∅̇(𝒕)
𝟐 𝒔𝒊𝒏𝟐(𝜽(𝒕)) + 𝜽̇(𝒕)

𝟐 ] 𝒓(𝒕) + 𝑮
(𝑴+𝒎)

𝟐𝒓(𝒕)
𝟐 = 𝟎  (21) => Radial motion 

𝜽̈(𝒕) +
𝟐𝒓̇(𝒕)𝜽̇(𝒕)

𝒓(𝒕)
+ [𝑮

(𝑴+𝒎)

𝟒 𝒓(𝒕)
𝟑 −

∅̇(𝒕)
𝟐

𝟐
] 𝐬𝐢𝐧(𝟐𝜽(𝒕)) = 𝟎  (22) => Polar motion 

∅̈(𝒕) + 𝟐 [
𝜽̇(𝒕)

𝐭𝐚𝐧 𝜽(𝒕)
+

𝒓̇(𝒕)

𝒓(𝒕)
] ∅̇(𝒕) + 𝑮

(𝑴+𝒎)

𝟐𝒓(𝒕)
𝟑 𝐜𝐨𝐬 ∅(𝒕) = 𝟎  (23) => Azimuthal motion 

Obs.: this is a system with three unknowns and must obviously be solved as such. Attempts to solve any equation as 

an isolated one, by just giving values to two unknown variables, is non-sense. 

 

The angular velocity of translation of the center of mass m is ∅̇(𝑡) = Ω. We’ll assume that m 

doesn’t spin, but only revolves around M. We’ll also assume that the center of mass M at the origin 

of the coordinate system is spinning at an angular velocity Ω𝜙, which means that our frame of 

reference is rotating at that speed as shown in the figure: 

In the primed reference frame, we have: 

𝑡′ = 𝑡 𝑟′ = 𝑟    𝜃′ = 𝜃  and    𝜙′ = 𝜙 − Ω𝜙𝑡 

Since the only difference is the relative angle, by 

differentiating we get the new relative angular 

velocity:  

𝜙̇′ = 𝜙̇ − Ω𝜙 = Ω − Ω𝜙 

The relative angular velocity could be zero, positive 

or negative. 

𝛟̇′ = 𝟎 could mean that the spin of M = translation 

velocity of m, or both angular velocities = 0. 

  

θ 
y 

x 

z 

𝑟′ = 𝑟 

x’ 

y’ 

ΩΦ𝑡 

Φ’ 

Φ 

ΩΦ 
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𝝓̇′ < 𝟎 is the case Sun-Earth or Earth-Moon. The spin of the Sun is faster than the translation’s 

angular speed of the Earth. The spin of the Earth is faster than the translation’s angular speed of 

the Moon. 

𝝓̇′ > 𝟎  another case for which I don't have an example. 

In the system of differential equations (where only 𝜙̇ appears), we have just to change the initial 

conditions by replacing it with the proper relative angular velocity for each case. The 

variable 𝜙̇ represents the same as 𝛟̇′. The only difference is the value to be used in its initial 

condition. 

If the mass M represents the mass of the Sun, we know that the period of one spin is ~ 25 days. 

Then its angular velocity is: 𝛺𝜙 = 2.9 10−6[
1

𝑠
]. The angular velocity of the Earth translation is: 

 Ω = 2 10−7[
1

𝑠
]. Then the relative angular velocity between both masses is: Ω − Ω𝜙 = −2.7 10−6[

1

𝑠
] 

Remarks About The Polar Motion 

The differential equation of the polar motion (Eq. 22), has a term in brackets that can have three 

different values: 

[𝑮
(𝑴+𝒎)

𝟒 𝒓(𝒕)
𝟑 −

∅̇(𝒕)
𝟐

𝟐
] = 𝟎  => 𝑮

(𝑴+𝒎)

𝟐 𝒓(𝒕)
𝟑 = ∅̇(𝒕)

𝟐  => 𝑮
(𝑴+𝒎)

𝟐 𝒓(𝒕)
𝟐 = 𝒓(𝒕)∅̇(𝒕)

𝟐  

[𝑮
(𝑴+𝒎)

𝟒 𝒓(𝒕)
𝟑 −

∅̇(𝒕)
𝟐

𝟐
] > 𝟎   => 𝑮

(𝑴+𝒎)

𝟐 𝒓(𝒕)
𝟑 > ∅̇(𝒕)

𝟐  => 𝑮
(𝑴+𝒎)

𝟐 𝒓(𝒕)
𝟐 > 𝒓(𝒕)∅̇(𝒕)

𝟐  

[𝑮
(𝑴+𝒎)

𝟒 𝒓(𝒕)
𝟑 −

∅̇(𝒕)
𝟐

𝟐
] < 𝟎  => 𝑮

(𝑴+𝒎)

𝟐 𝒓(𝒕)
𝟑 < ∅̇(𝒕)

𝟐  => 𝑮
(𝑴+𝒎)

𝟐 𝒓(𝒕)
𝟐 < 𝒓(𝒕)∅̇(𝒕)

𝟐  

We see that the cases above happen when the relative gravitational acceleration between the 

masses is equal to, greater than, or less than the centripetal acceleration of the center of mass m. 

For a given relative angular velocity (translation of m-rotation of M), the equations above will give 

the distance: 

𝒓(𝒕) = √𝑮
(𝑴+𝒎)

𝟐 ∅̇(𝒕)
𝟐

𝟑
  𝒓(𝒕) < √𝑮

(𝑴+𝒎)

𝟐 ∅̇(𝒕)
𝟐

𝟑
  𝒓(𝒕) > √𝑮

(𝑴+𝒎)

𝟐 ∅̇(𝒕)
𝟐

𝟑
  (24) 

 

The first term of the acceleration in the brackets gives a curious result when we substitute the 

values of the mass of the Sun in M, the mass of the Earth in m, and the distance Sun-Earth in r. 

𝐆
(𝐌 + 𝐦)

𝟒 𝐫(𝐭)
𝟑

=
6.67408 10−11(2 1030 + 5.9 1024)

4 (150 109)3
= 𝟗. 𝟖𝟖𝟕𝟓𝟓𝟓 𝟏𝟎−𝟏𝟓   [

1

s2
] 

This angular acceleration is a small fraction of the gravitational acceleration on the Earth’s surface.   

 

Solving The System of Three Differential Equations 

Finding the solutions of the system of differential equations (21), (22), and (23) is not an easy task, 

and requires the use of some software for Mathematics and Physics applications. Numerical 

solutions were obtained by using a Runge-Kutta method, as well as several plots that describe the  
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behavior of the free motion in space due to the gravitational interaction between two centers of 

masses under diverse initial conditions. The results are astonishing.  

However, as some calculations might take days in a regular PC, in order to confirm some 

conclusions, a much more powerful computer is needed to evaluate the motion under certain 

conditions, and for very long times. 

Nevertheless, in most of the cases, the calculations and the resolution of the graphics were 

satisfactory for the present analysis. 

The system of Differential equations (21), (22), and (23), describe the relative free motion of ANY 

two centers of masses M and m under the action of gravity acceleration. The centers of masses 

can represent single bodies or a group of bodies of any shape. 

To make calculations with real values, the masses of the Sun and Earth, as well as distances like 

Sun-Earth were used in the system of differential equations. It could also have been the interaction 

between Andromeda and the Milky Way, or a human artificial satellite and Earth, or whatever two 

(centers of) masses one may think about. 

Therefore, in the present study we have a central mass M which is much bigger than the 

secondary mass m, that is M >> m. 

Results show that in most of the cases the center of mass m reaches equilibrium around the 

equatorial plane of the central mass M, i.e., 𝜽 ≈ 𝟗𝟎°. 

There are only a few cases where m reaches equilibrium at 𝜃 ≈ 0° (+ z-axis), 𝜃 ≈ 180° (- z-axis), 

and other polar angular positions. 

Results 

First, general results were obtained with initial conditions for three different relative azimuthal 

angular velocities (𝜙̇), which give three different initial positions of the vector 𝑟(𝑡) as given by 

equations (24). Thus, we can check the behavior of the motion by giving the term in brackets of 

Eq. (22) three different values: zero, positive or negative. See Table 1. 

Next, a similar analysis was performed, but exclusively for polar initial positions different of zero. 

See Table 2. 

The final analysis shown in Table 3 was made to check the motion behavior at rather short and 

long distances between the two centers of masses. 

 

Parameters and Common Initial Conditions 

𝐺 = 6.67408 ∗ 10−11  
𝑁𝑚2

𝐾𝑔2   (the universal gravitational constant) 

𝑀 = 2 1030 𝐾𝑔  (the mass of the Sun) 

𝑚 = 5.9 1024 𝐾𝑔  (the mass of the Earth) 

𝑟̇(0) = 0 [𝑚/𝑠] (linear velocity of the center of mass m at t=0) 

∅(0) = 0 [𝑟𝑎𝑑] (azimuthal position of the center of mass m at t=0) 

Since there is a singularity for 𝜃 = 0, the “zero” initial condition of the polar angle was taken close 

to zero as 𝜃 =
𝜋

103
 [𝑟𝑎𝑑]. 
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∅̇(𝑡) = Ω   (is the relative angular velocity between the spin of the center of mass M and the 

translation of the center of mass m) 
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Scheme of Positions of Mass m in Function of the Distance to Mass M, according to results 

An approximate scheme (not in scale) based on the results of Table 1, Table 2, and Table 3, which illustrates most of the positions that mass m 

can adopt with respect to the distance (r) to mass M located at the origin of coordinates. 

Comments About The Results 

Even when the results of the present study were 

obtained with a limited set of initial conditions, they 

are in close agreement with observations of the 

universe, and what mother nature shows us. 

Recall that the polar component of the gravity 

acceleration on mass m points downwards in the 

upper hemisphere, and points upwards in the lower 

hemisphere. 

Then, it is somewhat logical to expect a pendulum-

like motion in the polar direction, that may “force” 

mass m to stay approximately in the equatorial 

plane, or x-y plane. The universe shows that this is 

the general case. 

However, if the distance is short between the 

masses, then the secondary mass (m), depending on 

its initial angular position, may adopt any position 

around mass M. In this region 𝜽𝒇 = 𝜽(𝟎). The 

universe also shows that this is the general case. 

According to what the universe shows us, one may classify some positions as “less frequent” and “less probable”. In these cases, the initial 

conditions that gave such results could also be “less frequent” and “less probable” to happen in the universe. 

In general, the center of mass m can reach its equilibrium or stable final position, in two ways: by approaching the final position asymptotically, or 

by oscillating. When oscillations are present, they are mostly modulated in amplitude by a lower frequency motion, which I believe could be due 

to the precession of mass M. This lower frequency motion modulation is, in general, also of variable frequency. So, we have both: amplitude 

and frequency modulation of the motion. 

  

x 

y 

z 

150 109 m 109 m 
1015 m 

θ 

(less probable) 

𝜽𝒇~ 𝟏𝟖𝟎°  when 𝜔𝜃(0) > 4 10−7 [
1

𝑠
]  and  

𝜃(0)~
𝜋

2
 [𝑟𝑎𝑑] 

(less frequent) 

𝜽𝒇~ 𝟎°  when 𝜔𝜃(0) ≪  10−7 [
1

𝑠
]  and  

𝜃(0)~0 [𝑟𝑎𝑑] 

Any position (less probable) 

𝜽𝒇 = 𝜽(𝟎) +  𝟗𝟎°  for high initial polar angular 

speeds 4 10−2 ≤ 𝜔𝜃(0) ≤ 100 [
1

𝑠
]  and 

𝜃(0) ≠ 0 [𝑟𝑎𝑑] 
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There are also some unstable solutions of the motion (resonance), or because of some singularity, where amplitude increases steadily. There is 

no real equilibrium or stable final position in these cases. 

Precession and Nutation – Not Always Present 

Before the present study, I thought that Precession and Nutation were 

characteristic motions of any spinning body.  

Surprisingly, some results show that the center of mass m not always 

reaches the equilibrium position with an oscillatory motion, but 

asymptotically. Precession and Nutation are absent in such cases. 

For simplicity, Precession and Nutation motions are not shown in the 

scheme of the positions of mass m, but they might be present in spinning 

bodies under certain conditions. In such cases, the center of mass m at 

equilibrium will follow those motions.  

The z-axis will describe an oscillatory cone-like trajectory. In the x-y plane, 

the motion will be like a wobbling dish or coin on a table. Since 

gravitational acceleration is an EM wave [1], the motion will be subject to a 

delay in function of the distance between both centers of masses. 
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Conclusions 

The present study demonstrates that in most of the cases, the secondary mass orbits in the equatorial plane of the main central mass. It is also 

shown the real orbit trajectories and the spiral nature of the motion. Additionally, it is also demonstrated that the motion modulation caused by 

precession and/or nutation is not always present. I don’t have access to high computation capacity clusters to validate some conclusions. The 

use of powerful computation machines is advisable for this study. However, the performed calculations and plots in this analysis are more than 

satisfactory to make conclusions.  



13 
 

Table 1 – General Results 

The calculations were made for three initial positions of the vector r(t): 

𝑟(0) = 1.186071579 1011 [𝑚];     𝑟(0) = 100 109 [𝑚];    𝑟(0) = 150 109 [𝑚] (distance Sun-Earth) 

 

 

See APPENDIX I for all the plots and the details of the results summarized in the table above.  
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Table 2 – Results only for initial polar positions θ(0) ≠ 0 of the center of mass m 

The calculations were made for three initial positions of the vector r(t): 

𝑟(0) = 1.186071579 1011 [𝑚];     𝑟(0) = 100 109 [𝑚];    𝑟(0) = 150 109 [𝑚] (distance Sun-Earth) 

 

 

See APPENDIX II for all the plots and the details of the results summarized in the table above. 
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Table 3 – Results for a short and long-distance (r) between the two centers of masses 

The calculations were made for two initial positions of the vector r(t): 

𝑟1(0) = 109 [𝑚] and  𝑟2(0) = 1015 [𝑚] 

 

See APPENDIX III for all the plots and the details of the results summarized in the table above. 
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APPENDIX I 

All plots and details of the results for r(0) = 1.186071579 1011 [m] 

Analysis and plots of the motion for an initial distance of 𝑟(0) = 1.186071579 1011  [𝑚], and the following initial conditions and parameters: 

𝐺 = 6.67408 ∗ 10−11  
𝑁𝑚2

𝐾𝑔2
  (the universal gravitational constant) 

𝑀 = 2 1030 𝐾𝑔  (the mass of the Sun) 

𝑚 = 5.9 1024 𝐾𝑔  (the mass of the Earth) 

𝑟̇(0) = 0 [𝑚/𝑠] (linear velocity of the center of mass m at t=0) 

∅(0) = 0 [𝑟𝑎𝑑] (azimuthal position of the center of mass m at t=0) 

Since there is a singularity for 𝜃 = 0, the “zero” initial condition of the polar angle was taken close to zero as 𝜃 =
𝜋

103
 [𝑟𝑎𝑑]. 

∅̇(𝑡) = Ω   (is the relative angular velocity between the spin of the center of mass M and the translation of the center of mass m) 

The polar angle of equilibrium (𝜃𝑓) is found for several values of the initial conditions of 𝜃(0), 𝜔(0), and Ω. The three vertical values of 𝜃𝑓 on each 

table cell, from top to bottom, are the results for each of the three values of Ω from left to right. For example: 

 

 

 

 

 

 

 

 

Obs.: the table is very long and continues over several pages. 

 

See Table 1 for a summary of the results obtained here. 
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APPENDIX II 

All plots and details of the results for r(0) = 100 109 [m] 

Analysis and plots of the motion for an initial distance of 𝑟(0) = 100 109  [𝑚], and the following initial conditions and parameters: 

𝐺 = 6.67408 ∗ 10−11  
𝑁𝑚2

𝐾𝑔2   (the universal gravitational constant) 

𝑀 = 2 1030 𝐾𝑔  (the mass of the Sun) 

𝑚 = 5.9 1024 𝐾𝑔  (the mass of the Earth) 

𝑟̇(0) = 0 [𝑚/𝑠] (linear velocity of the center of mass m at t=0) 

∅(0) = 0 [𝑟𝑎𝑑] (azimuthal position of the center of mass m at t=0) 

Since there is a singularity for 𝜃 = 0, the “zero” initial condition of the polar angle was taken close to zero as 𝜃 =
𝜋

103
 [𝑟𝑎𝑑]. 

∅̇(𝑡) = Ω   (is the relative angular velocity between the spin of the center of mass M and the translation of the center of mass m) 

The polar angle of equilibrium (𝜃𝑓) is found for several values of the initial conditions of 𝜃(0), 𝜔(0), and Ω. The three vertical values of 𝜃𝑓 on each 

corresponding table cell, from top to bottom, are the results for each one of the three values of Ω from left to right.  For example: 

 

 

 

 

 

 

 

 

Obs.: the table is very long and continues over several pages. 

 

See Table 2 for a summary of the results obtained here. 
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APPENDIX III 

All plots and details of the results for r(0) = 150 109 [m] 

Analysis and plots of the motion for an initial distance of 𝑟(0) = 150 109  [𝑚], and the following initial conditions and parameters: 

𝐺 = 6.67408 ∗ 10−11  
𝑁𝑚2

𝐾𝑔2   (the universal gravitational constant) 

𝑀 = 2 1030 𝐾𝑔  (the mass of the Sun) 

𝑚 = 5.9 1024 𝐾𝑔  (the mass of the Earth) 

𝑟̇(0) = 0 [𝑚/𝑠] (linear velocity of the center of mass m at t=0) 

∅(0) = 0 [𝑟𝑎𝑑] (azimuthal position of the center of mass m at t=0) 

Since there is a singularity for 𝜃 = 0, the “zero” initial condition of the polar angle was taken close to zero as 𝜃 =
𝜋

103
 [𝑟𝑎𝑑]. 

∅̇(𝑡) = Ω   (is the relative angular velocity between the spin of the center of mass M and the translation of the center of mass m) 

The polar angle of equilibrium (𝜃𝑓) is found for several values of the initial conditions of 𝜃(0), 𝜔(0), and Ω. The three vertical values of 𝜃𝑓 on each 

corresponding table cell, from top to bottom, are the results for each one of the three values of Ω from left to right. For example: 

 

 

 

 

 

 

 

 

Obs.: the table is very long and continues over several pages. 

 

See Table 3 for a summary of the results obtained here. 
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