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Abstract
After some research on the web, | was not able to find any study that answer some questions like:

e Why do secondary masses orbit in the equatorial plane of the central mass?

e Why do many galaxies have spiral shapes?

e What is the real orbit of a secondary mass around the central mass? Even when Keppler
laws are right, they only give geometrical relations. It can’t be serious to continue with the
use of these laws in the present days.

e How to better predict motion’s trajectories when some velocity component and/or mass
change?

e Why study the Coriolis force or the Euler force separately, as isolated motions? They
appear naturally in the general equations of motion and should not be considered as
isolated forces. They are just components of the main force.

When we look at planets with their moons, our solar system, or distant galaxies, we see in
general, that the secondary masses orbit around the central mass mostly at its equatorial plane. If
the present analysis is correct, then it gives the answer by demonstrating why this happens. It also
demonstrates the spiral nature of the motion, as well as the real orbit trajectories under diverse
conditions. Moreover, it shows the motion modulation given by precession and/or nutation.

Introduction

The aim of this analysis is to provide a more efficient way to calculate and predict orbits and
trajectories, not only for celestial bodies, but also for artificial satellites we send outside our
atmosphere, and for ballistic. The equations presented here might also help improve weather
forecasts and perhaps predict atmospheric behavior more precisely.

Nowadays, we know that gravity is an electromagnetic (EM) wave of atomic origin caused by a
kind of dipole oscillation inside the atom [1]. This EM wave is always present in the universe as
long as atoms exist and travels at the speed of light. When the originating mass of the EM gravity
wave explodes or collapses, then a high amplitude EM gravity pulse is produced, which modulates
the tail or final part of the regular wave. This pulse is the last message that we get from that mass.

We also know that the gravity field produced by a spinning central mass induces a motion on a
secondary mass [2]. This induced motion has similar characteristics to that of the central mass.

| don’t have the knowledge to express gravity as a wave. Therefore, the present analysis is made
based on the law of gravity according to Newton (instant action-at-a-distance). Just a pure
mechanical study of the related free motion of two centers of masses in space, by considering all
nine components of the gravity acceleration. Even though gravity in this study is not considered as
a wave (where time delay appears), the results are astonishing. However, the low velocities
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(compared with the speed of light) involved in the interaction of the free motion of two masses,
make this study very suitable, except when the masses suddenly change, explode or collapse.

When | started the study, | did only analyze the motion in a single polar plane, without considering
3D spatial coordinates. | soon realized that this was a poor approach, not matching the real world.
Then | switched to a spherical coordinate system to analyze the free motion between two centers
of masses under the effects of gravity.

Motion in spherical coordinates
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Since the unit vectors are not attached to the coordinate system axes, they are functions of time
and can point in any direction. Therefore, they are not constant, and their time derivatives are not
zero.

The time derivative of the unit vectors
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Velocity and Acceleration of a Point in Space (or a particle)
The position vector is given by: r=rt (2)

Assuming that r is not constant, the expression for the velocity of a point located at the tip of the
position vector is:

By replacing # we obtain the final expression for the velocity with the three components:
=7 +r100 +rdsin0 @ (2)

Next, to obtain the expression for the acceleration, we differentiate the velocity with respect to
time:
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By simplifying and ordering terms, we obtain the final expression for the acceleration:

a= (r —r9? — r(bzsinze)f + (ré + 270 — r®? sin O cos 9)@ + (rQ) sin@ + 2r0® cos 6 + 27 sin 9)@
(3)

Equation (3) shows the nine components of the acceleration, three for each direction. In general
terms, we have:

d = a,* + agb + ay0 (4)

Gravity as the Cause of the Acceleration
To analyze the free motion due to gravity of a secondary mass with respect to a central mass, we
must find the components of the gravitational acceleration in all three directions: #, 8, and @.

4 Let’s suppose a mass M of any shape, whose
center of mass is at the origin of the coordinate
system, and a mass m of any shape, whose center
. of mass is at a distance r from M. The attraction

r Fiim forces on them due to gravity are:
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Where G = 6.67408 * 10~ 11 % is the universal

gravitational constant.

X Both centers of masses M and m may represent
single bodies or distribution of several bodies.

The acceleration produced by M on m is given by: ayy, = —Grﬂz?, and the acceleration produced
. . m .

by m on M is given by: a,,, = G 7.

We have two equal and opposite forces, but the accelerations are not equal. Working with two

forces or two accelerations make things more complicated, and it is not helpful to analyze the

interaction between the masses. How to find only one equation that describes the gravitational
motion between the two bodies?

Gravity Interaction Between Two Masses Expressed With One Equation
We can make use of the second law of Newton, and express the force of gravity as:

S d?r . mx*M R
F=ma=mmr=—G 2 T
For mass M and m we can write:
MELf = My => = —cZ¢  (5)
dt? r2 dt? r2
maT(—F) =~ () => Sr=—G2r  (6)

Equation (5) is the acceleration produced by mass m, and Eq. (6) is the acceleration produced by
mass M. By adding equations (5) and (6), we obtain:
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Equation (7) gives the interaction or relative motion between the two masses. It's an average
acceleration expressed by the average of the masses so that the relative acceleration produced by
any one of the masses on the other has now the same value, which can be written as:

Aarg = —G—22F 8)

This way we can reduce our system to only one acceleration expression which accounts for the
interaction of both masses.

For a big difference in masses (M>>m), as the mass of the Sun compared with the mass of the
Earth (the mass of the Sun is 333.000 times greater), then the acceleration is mainly given by the
bigger mass (Sun):

d?r M 7

dez 21?2

Components of the Gravity Acceleration in Spherical Coordinates

Equation (7) gives the acceleration of gravity in just one direction (7). The general expression of
the acceleration of gravity in spherical coordinates is:

C_iG = aGrf' + aGgé + ac@@ (9)
Let’s find the remaining components of d;.
z4 The centripetal acceleration a. is the
horizontal component of a, parallel to
the x-y plane and points to the z-axis,

which will be rotating in counterclockwise
direction.

a. = ag-SinB

The projection of a, in the direction of @ is
the component a;gy:

v<

agp = ac cos P

By replacing a. we obtain the final
X/ S expression for aggy:

gy = g, Sin O cos P (10)

By replacing a;, from Eq. (7) in (10), we obtain the gravitational acceleration in the @ direction:

(M+m)
2 r2

ags = —G sin 0 cos @ (11

The polar acceleration a,, is the vertical component of a;, parallel to the z-axis and points

downwards when the vector 7 is above the x-y plane or points upwards when the vector 7 is
below the x-y plane. This component is responsible for the pendulum-like motion of the center of
mass m around the equatorial plane of the central mass M.

ap = agrCcos 6
The projection of a, in the direction of 8 is the component ag:

agg = a, oS f Withﬁz%—@ => dgg = Ay COS (g—g)zapsine
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By replacing a,, we obtain the final expression for age:

sin(20)
2

Agg = Agr COS B sinf => Qg = Qgr (12)

By replacing ag, from Eq. (7) in (12), we obtain the gravitational acceleration in the 8 direction:

M +m)

T sin(26) (13)

Qg — -G

Inserting the components of the gravitational acceleration in EqQ. (9), we get:
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Relating The Motion With Its Cause
Now we can equate the equation of motion (4) with its cause (9):

d=dg =>  aF+agh+ayd = agF + aged + agyd

We obtain a system of three differential equations that describe the full motion of the center of
mass m relative to M:

ar = Agr ; ag = Qg ; ag = Agg

Replacing all components:

# — 162 —r@?sin?0 = —G % (15)
r6 + 276 — r$? sin 6 cos 6 = —G "3 sin(26) (16)
e

r sin 8 + 2r0¢ cos 8 + 2r@ sin 8 = —G L 5in @ cos @ (17)

These equations describe the radial motion (15), the polar motion (16), and the azimuthal motion
7).

Radial Motion Differential Equation
We can write EqQ. (15) as:

. . . i (M + m)
Ity — r(t)e%t) - r(t)(bgt)smz(e(t)) + (;T _
T, (M+ ) _

Polar Motion Differential Equation
We can write Eq. (16) as:

N o S (M+m)
r(t)G(t) + ZT(t)e(t) - T(t)Q)(t) Sin H(t) COS H(t) + G —4 rz 51n(29(t)) =0
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(o) @2 470
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Azimuthal Motion Differential Equation
We can write Eq. (17) as:
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The System Of Differential Equations Of The Free Motion
Now we have a system of three differential equations that describe the free motion in space
resulting from the interaction of two masses.

e — [05ysin®(0) + 0% Ty + 67— (M+m) =0 (21) =>  Radial motion
B2 .
O + er)e(t) + [G (IZ:;") —~ %] sin(26,) = 0 (22) =>  Polar motion
® ®
0 T . .
2 |2 “)] G =0 23) =>  Azimuthal motion
®(t) + [tano(t) o @( t) + (t) COS Q)(t) ( )

Obs.: this is a system with three unknowns and must obviously be solved as such. Attempts to solve any equation as

solated one, by just giving values to two unknown variables, is non-sense.

The angular velocity of translation of the center of mass m is ¢(t) = (. We'll assume that m

doesn’t spin, but only revolves around M. We'll also assume that the center of mass M at the origin
of the coordinate system is spinning at an angular velocity Q4, which means that our frame of
reference is rotating at that speed as shown in the figure:

In the primed reference frame, we have:
t'=t r'=r 6 =0 and ¢ =¢—Qut

Since the only difference is the relative angle, by
differentiating we get the new relative angular
velocity:

' =¢d—0p=0-0,

The relative angular velocity could be zero, positive
or negative.

<

¢’ = 0 could mean that the spin of M = translation
velocity of m, or both angular velocities = 0.




¢’ < 0is the case Sun-Earth or Earth-Moon. The spin of the Sun is faster than the translation’s
angular speed of the Earth. The spin of the Earth is faster than the translation’s angular speed of
the Moon.

¢ >0 another case for which | don't have an example.

In the system of differential equations (where only ¢ appears), we have just to change the initial
conditions by replacing it with the proper relative angular velocity for each case. The
variable ¢ represents the same as ¢'. The only difference is the value to be used in its initial
condition.

If the mass M represents the mass of the Sun, we know that the period of one spin is ~ 25 days.
Then its angular velocity is: 24 = 2.9 10‘6[%]. The angular velocity of the Earth translation is:

Q=2 10‘7[2]. Then the relative angular velocity between both masses is: Q — Q4 = —2.7 10‘6[3]

Remarks About The Polar Motion

The differential equation of the polar motion (Eq. 22), has a term in brackets that can have three
different values:

(M+m) O]

_ (M+m) -9 _ (M+m) ]
G =0 => G———=20 => G——=14H0
[ 47, 2 | 27}, ® 21, ®O¥@®
[ (M+m) 0% _ (M+m) _ ~2 B (M+m) .
6, ~ 2|0 = 520 T > Tely
[ (M+m)  9%] _ (M+m) _ -2 B (M+m) 5
6, — 2| <0 = G <% = 6o <Toly

We see that the cases above happen when the relative gravitational acceleration between the
masses is equal to, greater than, or less than the centripetal acceleration of the center of mass m.

For a given relative angular velocity (translation of m-rotation of M), the equations above will give
the distance:

_ 3| (M+m) 3|, (M+m) 3|, (M+m)
T = ’GT%Q T« < /GT%Q LGS > /GT%Q (24)

The first term of the acceleration in the brackets gives a curious result when we substitute the
values of the mass of the Sun in M, the mass of the Earth in m, and the distance Sun-Earth inr.

c (M+m) 6.67408 107*(2 10°° + 5.9 10%%)
4 r(?;) B 4 (150 109)3

1
=9.887555 1015 [5_2]

This angular acceleration is a small fraction of the gravitational acceleration on the Earth’s surface.

Solving The System of Three Differential Equations

Finding the solutions of the system of differential equations (21), (22), and (23) is not an easy task,
and requires the use of some software for Mathematics and Physics applications. Numerical
solutions were obtained by using a Runge-Kutta method, as well as several plots that describe the




behavior of the free motion in space due to the gravitational interaction between two centers of
masses under diverse initial conditions. The results are astonishing.

However, as some calculations might take days in a regular PC, in order to confirm some
conclusions, a much more powerful computer is needed to evaluate the motion under certain
conditions, and for very long times.

Nevertheless, in most of the cases, the calculations and the resolution of the graphics were
satisfactory for the present analysis.

The system of Differential equations (21), (22), and (23), describe the relative free motion of ANY
two centers of masses M and m under the action of gravity acceleration. The centers of masses
can represent single bodies or a group of bodies of any shape.

To make calculations with real values, the masses of the Sun and Earth, as well as distances like
Sun-Earth were used in the system of differential equations. It could also have been the interaction
between Andromeda and the Milky Way, or a human artificial satellite and Earth, or whatever two
(centers of) masses one may think about.

Therefore, in the present study we have a central mass M which is much bigger than the
secondary mass m, that is M >> m.

Results show that in most of the cases the center of mass m reaches equilibrium around the
equatorial plane of the central mass M, i.e., 8 = 90°.

There are only a few cases where m reaches equilibrium at 8 = 0° (+ z-axis), 8 = 180° (- z-axis),
and other polar angular positions.

Results
First, general results were obtained with initial conditions for three different relative azimuthal
angular velocities (¢), which give three different initial positions of the vector T a@s given by

equations (24). Thus, we can check the behavior of the motion by giving the term in brackets of
Eq. (22) three different values: zero, positive or negative. See Table 1.

Next, a similar analysis was performed, but exclusively for polar initial positions different of zero.
See Table 2.

The final analysis shown in Table 3 was made to check the motion behavior at rather short and
long distances between the two centers of masses.

Parameters and Common Initial Conditions

mZ

G = 6.67408 x 10~ X (the universal gravitational constant)
Kg?

M =2103%° Kg (the mass of the Sun)

m = 5.9 10%* Kg (the mass of the Earth)

70y = 0 [m/s] (linear velocity of the center of mass m at t=0)

Doy = 0 [rad] (azimuthal position of the center of mass m at t=0)

Since there is a singularity for 8 = 0, the “zero” initial condition of the polar angle was taken close

to zero as 6 = — [rad].
10




é)(t) = (is the relative angular velocity between the spin of the center of mass M and the
translation of the center of mass m)



Scheme of Positions of Mass m in Function of the Distance to Mass M, according to results
An approximate scheme (not in scale) based on the results of Table 1, Table 2, and Table 3, which illustrates most of the positions that mass m

can adopt with respect to the distance (r) to mass M located at the origin of coordinates.

(less frequent) Z

8~ 0° when wy(0) < 1077 [i] and
0(0y~0 [rad]

“y

10%5 m

X

Any position (less probable)

(less probable) /

8~ 180° when wg(0) > 41077 [3] and
T
Q(O)NE [rad]

Bf = 9(0) + 90° for high initial polar angular
speeds 4 107 < wp(0) < 100 [7] and
9(0) *0 [rad]

Comments About The Results

Even when the results of the present study were
obtained with a limited set of initial conditions, they
are in close agreement with observations of the
universe, and what mother nature shows us.

Recall that the polar component of the gravity
acceleration on mass m points downwards in the
upper hemisphere, and points upwards in the lower
hemisphere.

Then, it is somewhat logical to expect a pendulum-
like motion in the polar direction, that may “force”
mass m to stay approximately in the equatorial
plane, or x-y plane. The universe shows that this is
the general case.

However, if the distance is short between the
masses, then the secondary mass (m), depending on
its initial angular position, may adopt any position
around mass M. In this region 85 = 6 gy. The
universe also shows that this is the general case.

According to what the universe shows us, one may classify some positions as “less frequent” and “less probable”. In these cases, the initial
conditions that gave such results could also be “less frequent” and “less probable” to happen in the universe.

In general, the center of mass m can reach its equilibrium or stable final position, in two ways: by approaching the final position asymptotically, or
by oscillating. When oscillations are present, they are mostly modulated in amplitude by a lower frequency motion, which | believe could be due
to the precession of mass M. This lower frequency motion modulation is, in general, also of variable frequency. So, we have both: amplitude

and frequency modulation of the motion.

10



There are also some unstable solutions of the motion (resonance), or because of some singularity, where amplitude increases steadily. There is

no real equilibrium or stable final position in these cases.

Precession and Nutation — Not Always Present

Before the present study, | thought that Precession and Nutation were
characteristic motions of any spinning body.

Surprisingly, some results show that the center of mass m not always
reaches the equilibrium position with an oscillatory motion, but
asymptotically. Precession and Nutation are absent in such cases.

For simplicity, Precession and Nutation motions are not shown in the
scheme of the positions of mass m, but they might be present in spinning
bodies under certain conditions. In such cases, the center of mass m at
equilibrium will follow those motions.

The z-axis will describe an oscillatory cone-like trajectory. In the x-y plane,
the motion will be like a wobbling dish or coin on a table. Since
gravitational acceleration is an EM wave [1], the motion will be subject to a
delay in function of the distance between both centers of masses.
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Conclusions

The present study demonstrates that in most of the cases, the secondary mass orbits in the equatorial plane of the main central mass. It is also
shown the real orbit trajectories and the spiral nature of the motion. Additionally, it is also demonstrated that the motion modulation caused by
precession and/or nutation is not always present. | don’t have access to high computation capacity clusters to validate some conclusions. The
use of powerful computation machines is advisable for this study. However, the performed calculations and plots in this analysis are more than
satisfactory to make conclusions.
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Table 1 — General Results
The calculations were made for three initial positions of the vector r(t):

Ty = 1.186071579 10" [m]; o) = 100 10° [m]; 7y = 15010° [m]  (distance Sun-Earth)

8(0) | i . " " " " = L] = = L L] L
[rad] @ 0% 103 103 103 108 103 103 6 4 2 3 4 2 3
®,(0)
1 0 10-15 1077 1072 1 10 100 0 10-15 1077 1072 1 10 100
%1
—r.10-7 |90°)
Q=210 ( +90°& 9(°
~0°- ~0°-0. -90°) (**) 90° 900 900 900 90° 900 1500 1350 180° 1500
[T] 000 109° (%)
Q=-2.7-10-6 0
[i] [deg] ~1.2°-3° | ~].2°3° 20° 9(° 900 900 900 90°-92° 9g°-91° 920 1500 1350 180° 1500
5
Q=0 88 r— 9:130
920
[i] 0(0) 0(0) 80°-90° 90° 909 90° 90° 0(0) 0(0) ( +90°¢ 1500 1350 180° 1500
5
- OUD} (***)

(%): result for r=150-10° and Q= 2-10"" [si]

1
(*%): result for r = 1186071579 10" and Q=2-10"" [T}

1
(=%%): pesult for r = 100 10° and Q = 0 [ T}

Note:
1. Results are the same for the three initial position values of r(0), except for (*), (**) and (***).

2. In general, the final polar position is given by @ )= 0(0) + 90°, except for the colored table cells, where the final position is 8,= 0(0), when the initial value of the

f

polar angular velocity oy(0) is very low or zero.

See APPENDIX | for all the plots and the details of the results summarized in the table above.
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Table 2 — Results only for initial polar positions 6(0) # 0 of the center of mass m
The calculations were made for three initial positions of the vector r(t):

Ty = 1.186071579 10" [m]; o) = 100 10° [m]; 7y = 15010° [m]  (distance Sun-Earth)

0(0) rrrr
[rad] 6°4°3°2
®.(0)
1 0 10715 1077 1072 1 10 100
(<]
Q=2-10-7 890_9(°
1 820_9(0° 87°_00° 1250(%%) 0(0) + 90° 0(0) + 90° 0(0) + 90° 0(0) + 90°
[T] 1090 (¥%)
0=-27.10-6 0
[i] [deg] 900-920 900-92° 920_940 0(0) + 90° 0(0) + 90° 0(0) + 90° 0(0) + 90°
5
Q=0 820_90°
= 8(0) 0(0) 357° (%) 0(0) + 90° 0(0) + 90° 6(0) + 90° 0(0) + 90°
] 3200 (%)

There is a "critical” mﬂ(oj for which the mass m reaches the equilibrium away fiom 90°. This value is around 3-1077 < wﬂ(@j <4-1077

(*): the plot cannot be done bevond a certain point because of a probable singularity. The angle increases steadily, and it is impossible to see an equilibrium or a final stable angle.
T T
(*%): results for r=150-10°, 6(0) =—= and 6(0) = — respectively

3
Note:
1. Results are quite the same for the four initial position values of 8(0) and the three initial position values of v(0), except for (*) and (**).

2. In general, for initial values of the polar angular velocitiy w,(0) > 4-1 0-7, the final polar position is given by 0 )= 0(0) + 90°. We also observe two cases on the

colored table cells on the left, where the final position is @, = 0(0) when the initial value of the polar angular velocity wy(0) is very low or zero.

f

See APPENDIX Il for all the plots and the details of the results summarized in the table above.

14



Table 3 — Results for a short and long-distance (r) between the two centers of masses
The calculations were made for two initial positions of the vector r(t):

T'].(O) = 109 [m] and T'Z(O) = 1015 [m]

0(0) r Tt rr
[rad] 1037 6747 3°2
o, (0)
1 0 10713 1077 1072 1 10 100
51
Q=2-10"7 _ 110 => 8(0) 1) => 6(0) r1(0) & r2(0) => r1(0) & r2(0) => r1(0) & r2(0) == r1(0) & r2(0) =>
. r1(0) => 6(0)
2i0) == 0
(] r2(0) == 50 72(0) == 90° 72(0) == 90°-116° a(0) + 90° 0(0) + 90° 8(0) + 96° a(0) + 90°
Q=-2710° |6 0= 6(0) ) ri(0) => 6(0) (*) r1(0)=> 6(0) (*) r1(0) & r2(0) => r1(0) &72(0) => r1(0) & r2(0) => rl(0) & r2(0) =>
! [deg] ) =
(5] 12(0) => 9° 72(0) = 90° r2(0) => 90°-920 6(0) + 90° 0(0) + 90° 0(0) + 90° 6(0) + 90°
Q=0 1(0) => " 1(0) => " : 2(0) == r1(0) & 12(0) => r1(0) & r2(0) => : 260) =>
1 1) = 0(0) () r1(0) => 6(0) (") r10) == 8(0) (") r1(0) & r2(0) r1(0) & r2(0)
- . == "
(] RO==00 O g = 60) () | r20=> 6(0) +90° 0(0) + 90° 8(0) + 90° 8(0) + 90° 0(0) + 90°

("): there is some discontinuity for all the initial positions of the polar angle. In some cases, it was taken the average value of the angle. In other cases, it was
considered the maximum value of the angle before the discontinuty, since the angle increases steadily.

T
(*): there is some discontinuity only at the initial position 6(0) = 73 of the polar angle. It was taken the maximum value of the angle before the discontinuty, since the

angle increases steadily.

Note:
1. Results are the same for the five initial position values of 0(0) and the two initial position values of r(0), when coe( 0)>4-10 7 Results are also the same for coa( 0)

< 410" and for r1(0), except for (") and (*), where the final polar angle is given by @ )= 0(0) when the initial value of the polar angular velocity (,oe( 0) is very low or

zero. However, for r2(0) we have three cases that differ of the rest, as shown in the highlighted values.
2. In general, for initial values of the polar angular velocitiy (,oe( 0)>4-10 7, the final polar position is given by 0 )= 0(0) + 90°.

See APPENDIX Il for all the plots and the details of the results summarized in the table above.
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APPENDIX |

All plots and details of the results for r(0) = 1.186071579 10! [m]
Analysis and plots of the motion for an initial distance of 14y = 1.186071579 10'* [m], and the following initial conditions and parameters:

2
G = 6.67408 « 10~ Y™ (the universal gravitational constant)
Kg?

M =2103°Kg (the mass of the Sun)
m = 5.9 10?* Kg (the mass of the Earth)
7oy = 0 [m/s] (linear velocity of the center of mass m at t=0)

Doy = 0 [rad] (azimuthal position of the center of mass m at t=0)
Since there is a singularity for 8 = 0, the “zero” initial condition of the polar angle was taken close to zero as 6 = 1% [rad].
(5(,:) = (is the relative angular velocity between the spin of the center of mass M and the translation of the center of mass m)

The polar angle of equilibrium (&) is found for several values of the initial conditions of 6, w(), and Q. The three vertical values of 6, on each
table cell, from top to bottom, are the results for each of the three values of Q from left to right. For example:

Q=2-10" Q=-27-10"% Q=0
~0° -1.16° I

~1.5°

~(°

Obs.: the table is very long and continues over several pages.

See Table 1 for a summary of the results obtained here.

18



®.(0) Q=2-10'7[%] (makes the term in brackets = 0) Q=72.7-10'6[%1 Q=0[§]

(o) o ef T T T

[rad] [5] [deg] 7(0) =1.186071579 1011:D(r}(0}:O:Q(O}:W:D[Q](O):2 r(0) =1.186071579 1011,D(r)(0}:O,Q(O}:W,D((p](o) r(0) =1.186071579 10“;D(r)(0}:0;¢(0}:W;Dw)(o)
“10-7 =-27-10-6 -0
g A .. | The mass m reaches equilibrium by oscillating around
_Th;e_mass ?.}z_reaches equilibrium by ?S'cxfiajfzng around its 1.5°, having a max. s'.fing to ~27°. This fact‘?s not The mass m reaches equilibrium by oscillating around
~0°-1.16¢ |initial position from 0° to 1.16° This fact is not conclusive. Computation for longer times has to be 0°. This fact is not conclusive. Computation for longer

L conclusive. Computation for longer times has to be made | .o in order to check the behavior. times has to be made in order fo check the behavior.

10° 0 ~1.5¢ in order fo check the behavior. Note: I can't compute greater times for the plots. Note: I can't compute greater times for the plots. Whether

(== 8= Note: I can't compute greater times for the plots. Whether | wrhether it is not allowed or it might take days. A much| it is not allowed or it might take days. A much more
0°) 00 it is not allowed or it might take dayvs. A much more

powerful computer for numerical analysis is needed to
arrive fo a conclusion for this case.

more powerful computer for numerical analysis is
needed to arrive to a conclusion for this case.

powerful computer for numerical analysis is needed to
arrive fo a conclusion for this case.

3D plot for t=0..5-10°

0.0167
0.0147
0.012
p 0.0107
0.008
0.0067]
0.004

3D plot for t=0..10°

3D plot for t=0..6-10°

126535897885
926535897890
926535897894
3926535897900

0.0031415926
).003141592653589

5926535897907

5926535897910°
2.% 106, x 10" 1g!!
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Plotof @vs. v, fort= 0..10°

2 x 10" 4. % 10" 6 x 10! 8 x 10" 1 x 10"
!

Plotof Ovs. r, fort= 0..10°

0.30
025
0.20
| 0.15
0.10
0.05

2 %10 4 x 10" 6 x 101 8 x 10'? 1. x 10"
!

Plot of 0 vs. ¥, for t=0..6-10°

0.0031415926535897907

6 0.0031415926535897900
0.0031415926535897894
0.0031415926535897890

2 x 10'°

6 x 10'°
]

1. x 10

Plot of @ vs. tfort= 0.5-107:

0.020

0.016

]
0.010

0.006

0 1Lx100 2.x10 3.x10 4x10 s5x10
Tt

Plotof @vs. tfort=0..1 0°. For this time range, the
period of the eivelope increases from T= 5.3- 107 (~1.7
years) to T= 1.6- 108 (~5 years)

0.30
023
0.20
0.15
0.10
0.05
6x10° &x10® 1x10°

0 2x10® 4x10°
1

Precession and/or Nutation?

WARNING: the following calculations (plots) teake
\from many hours to more than 1 day on a regular PC.
To reach some conclusions, a much more powerfill
compuiter is necessary for plotting in this time range.
Plotof@vs. t, fort=0..1 0. The pattern is not clear.
We can see both: amplitude and frequency
modulation. So, the period of the mean value
oscillation (precession and/or nutation?) is not
constant.
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Plot of @ vs. t for t = 0..6-10%

0.0031415926535897907

6 0.0031415926535897900
0.00314159265358978%94
0.0031415926535897890

0 1 x10°

3 % 10°
T




04
0.3
02
0.1

0 2x10° 4x10° 6x10° 8&x10° 1x10"°
I

Plot of rvs. &, fort= 0.5-10"

1 x 10
"6 x 100

2 x 10'°

0 1x10] 2x10 3.x10 4x10 5x10
t

Plot ofrvs. t, fort=20..1 0°. For this time range, the
period of the envelope increases from T= 5.3-1 0’ (~1.7
years) to T= 1.6-10° (~5 years):

0 2x10° ax10® 6x10° 8 x10° 1x10°
T

i

Plot of rvs. &, fort= 0..6-10°.

1 x 10
6 x 1010

2 x10'°

0 1x10%2 x10%3 x10%4 x 10° 5 x 10%6. x 10°
t

—i ¥

Plot of rvs. ¢, fori= 0.5-10°

It seems that v has a quasi-sinusoidal periodic variation
with ¢, with avery slightly decrease in amplitude. The
changes in distance v w.r.t. the transiation angle ¢, may
suggest an elliptic trajectory of the mass m.

1 x 10"

8. % 10"

"6 x 10

4% 10"

2. % 10"
5 10 15 20 25

o]

Plot of rvs. ¢, forit= 0..10°

-600 -500 -400 -300 -100 0

-200

Plot of rvs. ¢, forit= 0..6-10°

1% 10"
r 6 %100

2 x 10"

0.0031415926535897894 0.0031415926535897907
]

— {0
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Polar plot of r vs 8, for [R, Theta, 0..3-10?]

]

3n
4

3m
bl
2

Polar plot of ¥ vs ¢, for | R, Phi, 0..3-10" ]

A slightly elliptic trajectory (orbit of mass m around
central mass M)

e

31
4

Polar plot of r vs 8, for [R, Theta, 0.1 O?]

v |

Polar plot of ¥ vs @, for [R, Phi, 0..2-10" ]
A quasi semi-circular trajectory (orbit of mass m
around central mass M)
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Polar plot of r vs 8, for [R, Theta, 0..6- 1 06]

=

Polar plot of ¥ vs ¢, for [R, Phi, 0..6- 10°]

=




Polar plot of v vs 1, for Polar plot of ¥ vs 1, for Polar plot of v vs t, for
[R[f], tLi= 0..9-]00}, numpoints = 4 [R[.f], L1=0.10"-2 ] numpoints = 3 [R(.f], it=0.7-10° } numpaoints = 3
A strange spiral... A strange spiral... A spiral showing forward and backward motion

3n
4

3m
4
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103
(6=0°)

10-15

~0°-1.16°
~1.5°

~0°

Same as above

Same as above
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The mass m reaches equilibrium by oscillating around
0°. This fact is not conclusive. Computation for longer
times has to be made in order to check the behavior.
Note: I can't compute greater times for the plots. Whether
it is not allowed or it might take davs. A much more
powerful compulter for numerical analysis is needed fo

arrive fo a conclusion for this case.

3D plot for t=0..6-10°

0.00314161

0.00314160
926535897885

10
2.x10g 19" T O

Plot of 8 vs. r, fort= 0..6-10°
0.00314165
0.00314164
0.00314163
% 0.00314162
0.00314161
0.00314160

2 x 10" 6 x 10'° 1 x 101
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Plot of 8 vs. t for t = 0..6-10°.
0.00314165
0.00314164
0.00314163
¥ 0.00314162
0.00314161
0.00314160

0 1 x10° 3 % 10° 6. % 10°
t

Plot of rvs. t, fort= 0..6-10°.
1.x 10!
7 6 x 10'0

2. x 10'°

0 1 x10%2x10%3 x10%4 x10%5 x 10%6. x 10°
t

— rif

Plot of ¥ vs. ¢, fort= 0..6-10°

1 x 10t

6. % 101

2. % 10" —

0.0031415926535897894 0.0031415926535897907
]

— e
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Polar plot of ¥ vs 8, for [R, Theta, 0..6-1 06]

T
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~
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Polar plot of vs ¢, for [R, Phi, 0..6-10°]

v |H




Polar plot of v vs t, for
[R(7), £, t=0..7-10° |, mumpoints = 3
A spiral showing forward and baclward motion
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~
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1077

907
(+90°& -90°)

90°

~80°

The mass m oscillates from 0° to maximum ~ + 180°,and
then swings fo the opposite direction oscillating from 0°
to maximum ~ - 180°, having thus a mean oscillation
angle of + 90° for some time, and then - 90° for a
longer time. Therefore, 90° can be considered the
(absolute) average equilibrium angle, with a center line
of oscillations around ~ + 28°,

3D plot for t = 0..10°:

1
2.5
-

8 1.57
E
0.59

The mass m oscillates from 0° to maxinum ~ 176°,
having thus a mean oscillation angle of ~ 90°, with a

center line of oscillations around ~ 28°.
3D plot for t = 0..10°:

The mass m oscillates from 0° to maximum ~ 160°,
having thus a mean oscillation angle of ~ 80°, with a
center line of oscillations around ~ 25°.

3D plot for t=0..10°:

1.x 10

6.x10° 8 x10!”
,

2.%x10"° 4 x 10

Plot of O vs. 1, fort= 0..10°

2.x10"% 4x10"% 6x10"0 8x10% 1 x10"

T

Plot of O vs. 1, fort= 0..10°

P B e P N
151

9 101

51 /

2x10% 4x10? 6x10° 8x100 1 x10"
.
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upper envelope period, we get T=1.1-10° (~3.5 years):
25
15

-]
1

os il
AR WIW\

0 1 x10%2 x10%3 x 10%4 x 1085 x 10
t

AMA “
il

8

Precession and/or Nutation?

some conclusions, a much more powerfil compuiter is
necessary for ploiting in this time range.

years):

0 2.x10° 4.x10° 6.x10° 8 x10°
T

Plot of @ vs. t, for t = 0.7-10° By measuring the lower or

6 x 10%7 x 10°

WARNING: the following calculations (plots) take from
many hours to more than 1 day on a regular PC. To reach

Plot of @ vs. t, fort=0..1 01 The period of the envelope
increases to T=650-10° (~21 years) and T=800-10° (~25

1.x 10

Plotof @vs. t, fort=0.7-1 0. By measuring the lower

or upper envelope period, we get T=1.1-10° (~3.5
years):

3.
25

24
s

8 1.51 f i |
14 i i I
0.54

0 1 x10° 3 % 10° 5 x10° 7 %x10°
t

Precession and/or Nutation?

WARNING: the following caiculations (plots) take
\from many hours to more than I day on a regular PC.
To reach some conclusions, a much move powerfil
computer is necessary for ploiting in this time range.
Plot of @ vs. t, for t = 0..10%°. The period of the
emvelope increases to T=0.4-1 0° (~13 years) and T~
1-10° (~32 years):

~”
s

—

5
2

g 1.5
1

0.5

At o talli I I
I U LV | I

0 2.x100 4x10° 6x10° 8x10° 1 x 10"
1

29

Plotof@vs. t fort=0.1 0. By measuring the envelope
period of single bursts, we get T=0.4-10° (~15 months),
and the period between the highest peaks is T=1-1 0°
(~3.2years) .

20 POV TS WESPE PR RSP ASPR N I |

15

9 10

5

0 2x10° ax10® ex10® gx10® 1x10°
t

Precession and/or Nutation?

WARNING: the following calculations (plots) take from
many hours to more than 1 day en a regular PC. To
reach some conclusions, a miuch more powerfill computer
is necessary for plotting in this time range.

Piot of 8 vs. &, for t=0..10". The pattern is not clear.
We can see both. amplitude and frequency modulation.
So, the period of the mean value oscillation (precession
and/or mitation?) is not constant.
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810

0 2x10" 4 x10 6x10" gx10" 1 x10!!
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Plotof @vs. t, fort=0..1 o', The pattern is not clear. We
can see both: amplitude and frequency modulation.So,
the period of the mean value oscillation (precession
and/or nutation?) is not constant.

"
-

2% 10 1

Plot of @vs. t, fort=10..1 o', The pattern is not clear.
We can see both: amplitude and frequency
modulation.So, the period of the mean value
oscillation (precession and/or nutation?) is not
constant.

25

0 2x100 4x10"° 6 x10" & x10? 1 x10"
t

Plot of vs. 1, for t=0..2-10°. For this scale, the period
of the envelope is T=0.2-1 0° (~6.3 years):

1.x 10 A il I i

0 5x10°  1.x100 15x100  2.x10°
1

— ¥

Plotof rvs. &, fort=0.2-1 0°. For this scale, the
period of the envelope is T=0.2-1 0° (~6.3 years) :

1.x 10

AARRRAAAR A

r 7% 1019

2 x 1019

5.x10° 1x10° 15x10° 2.x10°
Tt

rie

Plot of rvs. t, for t=0..2-10°. For this scale, the period
of the envelope is T=0.2-1 0° (~6.3 years) :

1_)(1011 L

(1AL 00O OO0 (LR RS A
10 . A AR
roT.x10M T

2 % 10'%4
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T
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Plot of rvs. ¢, fori= 0.2-10°
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— rl¢

Plot of v vs. @, fort= 0.2-10°
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Plot of rvs. ¢, fort= 0.2-10°

1. x 10! LA

0 100 200 300 400 500 600 700
]

800

— r(o

30




Polar plot of v vs 6, for [R, Theta, 0‘.3-107]

T
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4

Polar plot of ¥ vs @, for
[R Phi, 0..6-107], numpoints = 10000

A weird trajectory, back and forth mainly in the negative
direction.|
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Polar plot of r vs 8, for {R, Theta, 0..3-107}
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Polar plot of ¥ vs @, for

[R Phi, 0..2-107], numpoints = 10000
A slightly rotated quasi semi-circular motion.
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Polar plot of r vs 8, for [R, Theta, 0..3-107}

1
2
“~

Polar plot of ¥ vs @, for |[R, Phi, 0..2-107]
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Polar plot of 1 vs t, for [R[t], L= 0..9-10‘5]
A strange spiral...

31
4

Polar plot of v vs t, for
[R(1), £ t=0..9-10° |, mumpoints = 4
A strange spiral...

3m
4

Polar plot of v vs &, for
[R(t], t1=0.9-10° }, numpoints = 4
A strange spiral...
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103
(==8=
0°)]

90°

90°

90°

The mass m reaches equilibrium at 8 = 90°.

3D plot for t = 0..10%:
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0.2 ?

0.00314165

0.00314160
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The mass m reaches equilibrium at 8 = 90°. 3D plot
for t=0..10%:

The mass m reaches equilibrium at 8 = 90°. 3D plot for
t=0.10°:
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0.003141592653589790.
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Plot of @ vs. v, fori= 0..10°
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Plot of @vs. r, fort= 0..10°

14

1.0

06

2.x 107 4. x 108 6. x 107 8 x 101 1 x 10"
.

Plot of @vs. r, fort= 0..10°
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Plot of @ vs. t, for t = 0.10°

Plot of @ vs. ¢, for t = 0..10°

Plot of @ vs. t, for t = 0..10°
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Polar plot af rvs 8, for {R, Theta, 0..2-102]
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Polar plot of r vs ¢, for {R, Phi, 0..103]
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Polar plot of v vs 8, for [R, Theta, 0..2-1 02]
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Polar plot of ¥ vs ¢, for [R, Phi, 0..103]
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Polar plot of v vs 8, for [R, Theta, 0..2-1 02]
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Polar plot of ¥ vs ¢, for [R, Phi, 0..103]
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Polar plot of  vs t, for [R(-’]» L= 0..6-102} Polar plot of ¥ vs t, for [R(1), £ 1= 0..6-10°] Polar plot of 1 vs f,fﬂ?‘

It seems to be a logaritmic spival that evolves forwards It seems to be a logaritmic spiral that evolves forwards [R[f), tt=0.6-10° ], numpoints = 4

and backwards... and backwards... It seems to be a logaritmic spiral that evolves forwards
and backwards...
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90°

90°

90°

The mass m reaches equilibrium at 8 = 90°,
3D plot for t=0..10:
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The mass m reaches equilibrium at @ = 90°, 3D plot
Jort=0.10:
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The mass m reaches equilibrium at @ = 90°. 3D plot for
t=0.10%
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Plot of @ vs. v, fort= 0..10°
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Plotof 8vs. r, fort= 0..10°

Plotof @ vs. r, fort= 0..10°
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Plot of 8 vs. t, for t=0..10°

Plot of 6 vs. t, for t = 0..10

Piot of 6 vs. t, for t=0..10°

14 14 1.4
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0 20 40 60 80 100 0 » 0, ® o 0 20 40 60 80 100
' I3
¥ ol Y}
Plotof rvs. t, fort=0..10° Plot of ¥ vs. t, for t=0..10° Plotof rvs. t, fort=0..10°
1x 1013 1% 1013 1. x 1013
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Polar plot of v vs 6, for [R, Theta, 0..1 0]
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Polar plot of ¥ vs 6, for [R, Theta, 0..1 0]
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Polar plot of ¥ vs 6, for [R, Theta, 0..10]
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Polar plot of 1 vs ¢, for [R, Phi, 0..3-10}
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Polar plot of rvs &, for [R(f), { t=0..3-10]
It seems to be a regular spiral
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Polar plot of v vs ¢, for [R, Phi, 0‘.3-10]
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to be a regular spiral
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Polar plot of v vs @, for [R, Phi, 0‘.3-10]
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Polar plot of ¥ vs 1, for [R(1), t. t=0..3-10]. It seems | FPolar plot of rvs 1, for

[R(f], Lt=0.3-10 l mumpoints = 4. It seems to be a
regular spiral
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.o 10 90° Same as above for 609(0) =1 Seame as above for @ 9( 0)=1 Same as above for 9( 0)=1
103 R
(== 8= 90
00
/ 90°
n 100 90° Same as above for 609(0) =1 Seame as above for @ 9( 0)=1 Same as above for 9( 0)=1
103
(=>8= 90°
a°)
20°
T 0 90° The mass m oscillates from 30° to maximum 150°,having | The mass m reaches equilibrium at 0=91° The mass m reaches equilibrium oscillating around 0=
6 thus a mean oscillation angle of 90° (+ 60°) which can be 30°
91° considered the average equilibrium angle, with smaller
oscillations around ~45°.
30°

3D plot for t=0..10%:

3D plot for t=0..10%:

8.%x 10"
T 1ax10B 0

3D plot for t=0..10°:

35987755982993

1598T755982991

5987755982990

5987755982989

0.003141592653
J 0.003141592653 58

1.165 x 10"

1.175 x 10!

1.185 x 10"
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Plotof 8vs. r, fort= 0..10°

Plotof 8vs. r, fort= 0..10%

Plot of 8vs. r, fort= 0..6-10°

25
5 15 0.5235987755982991
515 12 6 0.5235987755982990
810
1 - 0.5235987755982989
08
10 10 10 10 1 0.6 10 10 1
2.% 10 4 %10 6.% 10 8 x 10 1.% 10 o o s 0 2.x10 6.x 10 1x10
T 2.x 10 6.x 10 1Lx10 14x 10 T
;
Plotof @vs. &, for t=0.. 7-105. By measuring the lower or | Plot of @ vs. 1, for i = 0.. 7-105. Plot of @ vs. &, for t = 0..6-10°.
upper emvelope period, we get T=1.1-1 0’ (~3.5 years):
24 15
20 2 0.5235987755982991
g L6 | i 810 s 0.5235987755982990
Lod L W T 08 0.5235987755982989
B | A LA LA n A Ind A I 0.6
06 I
5 . . . . ¢ 0 1x108 3% 10° 5.x 10° 7% 10° 0 1 x1 10
1.x10°2. % 10°3.x 10" 4. x 10°5. x 10°6. x 10° 7. x 10 ' Lx10 3> 10 6%
t

Precession and/or Nutation?

WARNING: the following calculations (plots) take from
many hours to move than 1 day on a regular PC. To reach
some conclusions, a much more powerfil computer is
necessary for plotting in this time range.

Plot of @ vs. &, for it = 0..10'%. The period of the envelope
increases to T=400-10° (~13 years) and T=800-10° (~25
years):
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Jil LIl . m

0 2x10° 4x100 6x100 8x10° 1.x10°
t
Plotof @vs. &, for t=0..1 o', The pattern is not clear. We
can see both: amplitude and frequency modulation.So,
the period of the mean value oscillation (precession
and/or mutation?) is not constant:
25

~
“

815

1

0 210" 4x10" 6x100 8x10" 1 x10!
t

Plot of rvs. t. for t=0..7-10° For this scale, the period
of the envelope is T=110-10°(~ 3.5 years).
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2 % 10"

0 1x10° 3 x10° 5 x10° 7.%x 10°
t

— rif

T

Plot of rvs. t, fort=0..7-10%.

1x 10"
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4 x 10"

1.x 101
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t

— s

5 % 10°

7 % 10°

Plot of vs. t, for t=0..6-10°.

1 x 10"
76 % 1010

2 x 10"

0 1x10%2 x10%3.x 10%4. x 10% 5. x 10% 6. x 10°
i

riE
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Polar plot of 1 vs 6, for [R, Theta, 0..3-107]
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Polar plot of v vs ¢, for [R, Phi, 0..5-107}

A slightly circular trajectory (orbit of mass m around
central mass M)
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Polar plot of rvs 6, for [R, Theta, 0..3-10" ]
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Polar plot of v vs ¢, for [R, Phi, 0..5-106]
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Polar plot of vs 6, for [R, Theta, 0..6-10°]
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Polar plot of ¥ vs ¢, for [R, Phi, 0..6-106]
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Polar plot of r vs t, for

[R(r‘], = 0..2-]07}, numpoints = 3

A strange spiral...
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Polar plot of r vs |, for

[R[.'], tt= 0..2-]07], numpoints = 3

A logaritmic spiral.

b
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“

Polar plot of r vs t, for

[R[r‘], tt= 0..9-106], numpoints = 4
A logaritmic spiral from outwards.
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10*15

90°

90°

450

The mass m swings from 45° to maximum 135°, so that it
oscillates at an average angle of 6= 90° 1 45°,
Therefore, 6= 90° can be considered the average
equilibrium angle.

3D plot for t = 0..10%:

The mass m reaches equilibrium at 6 = 90°. 3D plot
\for t=0..10%:

The mass m reaches equilibrium at 6 = 45°. 3D plot for
£=0.10%:

- __--—__-—-—‘——-
0.785398185
0.7853981807
5 07853981757
0.785398170 ]
L0.00314159265,
0.785398165 é 0.003141592653589;

L By
2.x 10 6. x ml{)l- <10 0.0031415926535897907

1.1 10"

9.x 10"

5 x 10" 7 x 10"

15

s.x10® 1x10t 1sx10t 2 x 10

T

Plot of O vs. v, fort= 0..107

0.78539822
078539821
078539820
® 078539819
0.78539818
078539817

2 x 10" 6 x 10" 1 x 101
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Plotof @vs. t fort=0..7-1 05, By measuring the lower or
upper envelope penod we get T=1.5-1 05 (~5 years):

il

0 1 x10%2 x10%3 x 10%4 x 10%5 x 10%6 x 1037 x 10°
t

Precession and/or Nutation?

WARNING: the following calculations (plots) take from
many hours to move than 1 day on a regular PC. To reach
some conclusions, a much more powerful computer is
necessary for plotting in this time range.

Plotof @vs. t fort=0..1 0°. It's very difficult to identify a
clear envelope to measure its period:
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916 -
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2x10° 4ax10® ex1® sx10® 1x10°
t

Plotof @vs. ¢, fort=10.. 7-10%:
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1.x10° 3 x 10°
1
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5 % 10°

7 x 10°

Plot of O vs. ¢, for t = 0..6- 10

0.78539822

0785398211
078539820
® 0.78539819/
078539818
0.785398171

0 1 x10

3. % 10°
r

6. % 10°




Plot of @ vs. t, for t=0..1 0L, The pattern is not clear. We
can see both: amplitude and frequency modulation.So,
the period of the mean value oscillation (precession
and/or nutation?) is net constant:

22

2.0

18

e Lo 1 I . |

1l N i He il I

1.24 (HHARERIRY i f i |

1.0 fitth AHHHGH f

0.8

0

2 x10" 4x10° 6x10? 8x10° 1 x10"
1

Plotof rvs. t, fort=0..7-1 05, For this scale, the period
of the enmvelope is T=1.5-1 0° (~3 years).

1.1 x 10t M
r 8x 10 1 1 . .'
6 x 10 HHHHH HIT
4 x 101°4 : ‘ : |
0 1 x10° 3. x 10? 5.%10° 7. % 10°
— rif

Plot of rvs. t, fort= 0..7-10%

0 1.x10°  3.x10°
1

=]

5 % 10°

7 % 10°

Plot of rvs. t, fort= 0..6-10°%

1 x 10
7 6 x 10'°

2. x 10'°

0 1 x10%2x10%3 x10%4 x10%5 x 10%6. x 10°
t

— rif
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Polar plot of ¥ vs 6, for R, Theta, 0..3-10]

T

o
=

3

o
<

Polar plot of v vs ¢, for [R, Phi, 0‘.5-107]

A slightly circular trajectory (orbit of mass m around
central mass M)
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Polar plot of ¥ vs 6, for | R, Theta, 0..3-10°]
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Polar plot of v vs @, for [R, Phi, 0..3-106]
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Polar plot of ¥ vs 6, for R, Theta, 0..6-10°]
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Polar plot of v vs ¢, for [R, Phi, 0..6-106]
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Polar plot of r vs t, for
[R(2), t t=0..9-10%], numpoints = 4
Seems to be aregular spiral...

-n-|;’

A|;'

Polar plot of ¥ vs {, for
[R(), t t=0..2-107],
A logaritmic spiral.

numpoints = 3

LS
2

Polar plot of r vs t, for
[R[t], tt= 0..9-106], numpoints = 4
A logaritmic spiral from outwards.
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1077

90°

92°

~88°

The mass m swings from 63° to maximum 116°, so that it
oscillates ai an average angle of 6 = 90° + 26.5°.
Therefore, 6 = 90° can be considered the average
equilibrium angle.

3D plot for t=0..10%:

12%10') 551!

1.9x10"

The mass m reaches equilibrium at @ = 92°. 3D plot
fort=0.10%:

16053
1.6003
15953
o 1.5903
1.58573
1.580
15754

5.% 10"

The mass m reaches equilibrium oscillating around
0= 88° ( + 83°). 3D plot for t = 0..10%:

1.1 % 10"

Plot of O vs. 1, fort= 0..10°
2.00x 10°
1.80 x 10"
o 160 10
1.40 % 10"
120% 10

120,00 x 10° 140.00 x 10° 160.00 x 10° 190.00 x 10°

T

Plot of O vs. 1, fort= 0..10°8

1.600
5 1.590

1.580

1.x 107 2 x 108 3 x 10

Plot of @ vs. 1, fort= 0..10°

20
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10
5 /
2x10"0 4x10"0 6x10” 8x10 1 x10"

r
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Plotof @vs. t, fort=10..1 0°. We can see avery smooth
envelope with a period T=1.5-10° (~5 years):
2.00 x 10°
1.80 x 10°
o 160 10°
1.40 x 10°

120 % 10°4 I

0 200.00x 10°

600.00 x 10° 1.00 x 10°
T

Precession and/or Nutation?

WARNING: the following calculations (plots) might take
\from maiy hours to more than 1 day on a regular PC. To
reach some conclusions, a much more powerfil computer
is necessary for plotting in this time range.

Plotof @vs. t, fort=10..1 0. We can see both: amplitude
and frequency modulation. So, the period of the mean
value oscillation (precession and/or nutation?) is not
constant, and for this time range it changes from T=

1.8-10%% (~ 571 years), and T~3.12-10" (~ 989 years):
20
18

g L6

|
12
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||]”

2 x10"% 4 x10° 6x10"0 gx10° 1 x10"
t

Plot of @ vs. t, for t = 0..10%
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2x100 4x10 6x10 8x10 1 x10°
1

Plot of 6 vs. 1, for t = 0..10°. The period between the
minima spikes (~ envelope) is T=1 10° (~ 3.2 years).
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2x10° 4x10® 6x10° sx10° 1x10°
i
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Plotof rvs. t, fort=20..1 0°. We can see a very smooth
envelope with a period T=1.5-1 05 (~5 years):
19x 10"

; 16x 10
14% 107

12 x 104 ‘ . . ; |
0 2x10® 4x10® 6x10° &8x10® 1.x10°
t

Plot of rvs. t, fort= 0..10". We can see both:
amplitude and frequency modulation. So, the period of
the mean value oscillation (precession or nutation?) is
noft constant, and for this time range it changes from T=
1.8-10" (~ 571 years), and T=23.12-10'° (~ 989 years):
19 x 10"
it A ! Il

PR R I (1
» 1.6 10! TRV

14 x 101

12 x 1014
0 2x10"0 4 %10 5 %10 8 x 10" 1. x 10
s

Plot of rvs. t, fort= 0..108%:

2.%100 4.%x100 6.x10 & x10° 1 x10°
T

i

Details for t = 0..10°

122 % 10!
. 121x 10!
12x 10!

119 % 10!
0 20000 40000 6DO0O
1

80000 100000

— rl(f

Plotofrvs. t, fort=20.1 0° The period between the
minima spikes (~ envelope) is T=1-1 0° (~ 3.2 years).

L x 10" it AR AR

r 7 x10°

2. x 1010 I ' 1 ' ' .
0 2x10° 2x10° 6x10° 8x10® 1x10°
t

— rif
Details for t=0..8-10":
1 x 10"
r 7.x10%°
2 x 1014
01 x100 3x10 5x10 8 x 107
t

— rif
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Polar plot of ¥ vs 6, for | R, Theta, 0..5-10"]

Polar plot of ¥ vs 6, for R, Theta, 0..10%]:
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Polar plot of 1vs 6, for R, Theta, 0..2-107 |
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Polar plot of v vs ¢, for [R, Phi, 0..5-107] Polar plot of v vs ¢, for [R, Phi, 0‘.106}:
Seems to be a circular trajectory (orbit of mass m around

Polar plot of ¥ vs ¢, for [R, Phi, O..7-JO?]:
central mass M)
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Polar plot of v vs 1, for Polar plot of v vs 1, for Polar plot of ¥ vs @, for
[R(7), t, t=0..2-107], numpoints = 3 [R(1), £ =0..9-10° |, mumpoints = 4 [R Phi 0..6-10°], numpoints = 10000
Seems to be a logaritmic spiral... A logaritmic spiral from inwards...
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400
300
® 200
100

2.x108 4x10° 6 x10°

—L 0]

Polar plot of v vs 1, for
[R[f], tt=0.9-10° }, numpoints = 4
A strange spiral...
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1072

150°

150°

150°

The mass m reaches equilibrium at @ = 150° (i.e., initial
position of 60° + 90°)

3Dpforforr=0‘.104.'

267 I
2.4
22]
2.0
o 18]
1.6

1.4
1.2
0.003145

12
2.x 1078, x ]()121_)( “)u‘

The mass m veaches equilibrium at 8 = 150° (ie.,

initial position of 60° + 90°)
3D plot for t = 0..10%

0.0027

12
2.x 10 12
6. % 1”1,x 108

The mass m reaches equilibrium at 6 = 150° (i.e., initial
position of 60° + 90°)

3D plot for t = 0..10*:

L].UUB 14159265.
0.003141592653585

12 0.0031415926535897910
2.% 10 6. X 1(]121‘x 1013

Plotof @ vs. v, fort= 0..10%
26

2x102 4 x 107 6.x10" 8 %102 1.x 10"
E

Plot of @ vs. v, for t= 0..10*
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Plotof @ vs. v, fort= 0..10*
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Plot of @ vs. &, for t = 0..10*

Plot of @ vs. ¢, for t = 0..10*

Plot of @ vs. &, for t = 0..10*
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Plot of vs. ¢, for t=0..10" Plot of rvs. t. for t=0..10": Plot of vs. t, for t=0..10":
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Details fort = 0..10° — r(z
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16x 10! Details for t = 0..10~
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Polar plot of 1 vs 6, for [R, Theta, 0..10*%]
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Polar plot of v vs ¢, for [R, Phi, 0..104]
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Polar plot of ¥ vs 6, for | R, Theta, 0..10%]:
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Polar plot of v vs ¢, for [R, Phi, 0..104].‘

L
2
<

58

Polar plot of 1 vs 6, for [R, Theta, 0..10]:
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Polar plot of v vs ¢, for [R, Phi, 0..104].'
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Polar plot of ¥ vs t, for
[R(r‘), L= O..4-102], numpoints = 3
A strange spiral going forward and backwards...

T
2
-

[¥5)

2
4

3
2

Polar plot of ¥ vs I, for
[R(.f}, L= 0.4-]02], numpoints = 3
A strange spiral going forward and backwards...
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Polar plot of ¥ vs t, for
[R(.f}, L= 0.4-102], numpoints = 3
A strange spiral going forward and backwards...
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The mass m reaches equilibrium at @ = 135° (i.e., initial
position gf 45° + 90°)

3Dp,’0rfor.*=0‘.102.'

0.00314160
0.00314168
Ty 000314178 ¢
%107

initial position of 45° + 90°)
3D plot for t = 0.10°:

The mass m reaches equilibrium at @ = 135° (ie.,

The mass m reaches equilibrium at @ = 135° (i.e., initial
position gf 45° + 90°)

3Dp,’orf0r.*=0‘.102.‘

L0.00314159265.
0.00314159265358¢

12 0.0031415926535897916
2% 107 x 10" o3

-

Plot of @ vs. v, fort= 0..10*

2 x102 4 x 10" 6 x 102 8 x102 1.x 10"
R

Plot of @ vs. v, fort= 0..10%
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1 x 100

Plot of @ vs. v, fort= 0..10*
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Plot of @ vs. &, for t = 0..10

Plot of @ vs. ¢, for t = 0..10%

Plot of @ vs. &, for t = 0..10
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Plot of rvs. t, fort=0.10° Plot of rvs. t, fort=10.10°: Plot of rvs. t, fort=0.10°:
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Polar plot of v vs 6, for [R, Theta, 0..102]
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Polar plot of r vs ¢, for [R, Phi, 0..103]
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Polar plot of r vs ¢, for {R, Phi, 0..102]
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Polar plot of v vs 8, for [R, Theta, 0..1 02]:
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Polar plot of v vs 6, for [R, Theta, 0..1 02]:
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10 180° The mass m reaches equilibrium at @ = 180° (i.e., initial | The mass m reaches equilibrium at 8@ = 180° (i.e., The mass m reaches equilibrium at 8 = 180° (i.e., initial
position gf 90° + 90°) initial position of 90° + 90°) position qf 90° + 90°)
180 3D plot for t=0..10°: 3D plot fort=0..10°: 3D plot for t=0..10°:
180°
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Plot of O vs. t, for t = 0..10

Plot of O vs. t, for t = 0..10*

Plot of @ vs. t, for t = 0..10%
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Polar plot of r vs 8, for [R, Theta, 0..10]
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Polar plot of r vs 8, for [R, Theta, 0..1 0]
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Polar plot of ¥ vs t, for Polar plot of v vs 1, for Fofar plot of ¥ vs t, for

[R(1), t t=0..6-10], mumpoints = 10 [R(#), ¢, t=0..6-10], numpoints = 10 [R(#), t t= 0..6-10], mumpoints = 10
A regular spiral A regular spiral A regular spiral
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100

150°

1507

150°

The mass m reaches equilibrium at 8 = 150° (i.e., initial
position of 60° + 90°)

3D plot for t=0..10:
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3D plot for t=0
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The mass m reaches equilibrium at @ = 150° (ie.,
initial position of 60° + 90°}
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The mass m reaches equilibrium at 8 = 150° (i.e., initial
position of 60° + 90°)
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Plot of @ vs. v, fort=0..10

Plot of @vs. v, fort=0..10
2.6 2.6
26
20 20
5 8 20
1_6 176 o e
12 12 16
13 13 13 13 1
2 2x10% 4 x10% 6. x 10 8 x 10 1.x 10 12
2x10° 4 x10” 6.x 107 8 x 10" 1.x10™ ; | | , ‘ |
! 2 x10° 4x10” 6 x 10 8 x 10" 1 x 10"
,

68



Plotof @vs. t, for t=0..10
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Polar plot of v vs 6, for [R, Theta, 0..10]
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Polar plot of r vs 6, for [R, Theta, 0..1 0]
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APPENDIX I

All plots and details of the results for r(0) = 100 10° [m]
Analysis and plots of the motion for an initial distance of r,y = 100 10° [m], and the following initial conditions and parameters:

1 Nm?

G =6.67408 x 10711 —
Kg

(the universal gravitational constant)

M = 2103 Kg (the mass of the Sun)
m = 5.9 10%* Kg (the mass of the Earth)
7oy = 0 [m/s] (linear velocity of the center of mass m at t=0)

Doy = 0 [rad] (azimuthal position of the center of mass m at t=0)

Since there is a singularity for 6 = 0, the “zero” initial condition of the polar angle was taken close to zero as 6 = 1% [rad].

(5(,:) = (is the relative angular velocity between the spin of the center of mass M and the translation of the center of mass m)

The polar angle of equilibrium (&) is found for several values of the initial conditions of 6, w(), and Q. The three vertical values of 8, on each
corresponding table cell, from top to bottom, are the results for each one of the three values of Q from left to right. For example:

Q=2-10" ~0°-1.16° Q=0
~0° -1.16° I

~1.5°

~0°
Obs.: the table is very long and continues over several pages.

See Table 2 for a summary of the results obtained here.
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71 6.1 1
0 Q=2-10"7[= Q=-27-10"°[— Q=0[—
L] a0 o ] [ 5]
1
[rad] = de s bis T
[ s r(0) =100 105, D(r) (0) =0, 6(0) = 3¢5 D(6) (0) =2:10-7 | r(0) =100 105, D(r) (0) =0,6(0) =355 D(6) (0) =-2.7-10-6 | r(0) =100 10%, D(r) (0) =0,6(0) = 305> D(6) (0) =0
The mass m reaches equilibrium by oscillating around 5 g 5 ilibri » oscillati . . I
0° o . g T g . Thecﬂmss_.m reach?s eqfwhbmnn f,? asr-zh’afm_gmmmd The mass m reaches equilibrium by oscillating at 8= 0°,
~ its initial position from 0°. This fact is not conclusive. |1.2°, having a max. swing to ~15°. This fact is not This fact is not conclusive. Computation for longer
. . . 3 2 1\ » ? 2 . L EE. . [ =
ig 1.20 Computation for ltl;r.nger fimes has fo be made in order 0011{;‘.‘1{51\ “ ICO;HIH;MHE :’{fa; i;m%rf’r times has to be times has to be made in order to check the behavior.
10 0 fo check the behavior. fmade i oraer 1o check e benavior. Note: I can't compute greater times for the piots. Whether
(==8= Note: I can't compute greater times for the plofs. Note: I can't compute greater times for the plots. it is not allowed or it might take deavs. A much more
0°) ~0° Whether it is not allowed or it might take deyvs. A much | Whether it is not allowed or it might take days. A much | ) ) 4

more powerful computer for numerical analysis is
needed to arrive to a conclusion for this case.

more powerful computer for numerical analysis is
needed to arrive to a conclusion for this case.

powerful computer for numerical analysis is needed to
arrive 1o a conclusion for this case.

3D plot for t= 0..16°

0.00484
0.00467
0.0044
0.0042]
0.00407
0.00387]
0.00367
0.0034-
] 4 <

L]

5.x 10"

1L
7.% 10
1.x 10"

3D piot for t=0..10°

3D plot for t = 0..5-10°

926535897885
926535897800

926535897804
1926535897900

926535897907
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Plot of 6 vs. v, fort=0..3-10"

Plot of @vs. v, fort= 0..10%

Plot of 8 vs. v, fort= 0.5-10°

0.011
020 0.0031415926535897907
, 0008 015
0.006 5 010 5 0.0031415926535897900
0.0031415926535897894
0.004 005 0.0031415926535897890
1x10% 3 x10" s5x10? 7 x10" 1 x 101 " " " " .
r 1.x10% 3.x10" 5.x10" 7.x10 1.%10 1x10"0 4x10? 7.x10" 1x:
r r
Plot of @ vs. ¢, for t = 0..8-10%. There are amplitude and
\frequency modulation of the envelope. For this time
range, the max. periodis T=1.7-1 0° (~5.4 years), and
the min. period is T=0.4 10° (~1.3 years):
0.16
0.10
-]
006
0.02
0 1x10®  3x100®  sx10° 8. x 10°
; ! Plot of 8 vs. f,fori‘=0‘.5-106.
Plot of @vs. ¢, fort=0..3-10 Precession and/or Nutation?
0.011
WARNING: the following calculations (plots) take 0.0031415926535897907
0.008 \from many hours to more than 1 day on a regular PC.
9 To reach some conclusions, a much more powerful 6 0.0031415926535897900
0.006 computer is necessary for plotting in this time range. 0.0031415926535897894
0.004 0.0031415926535897890
0 1.x 10 2.x 107 3.x 10’ ’ o — -
0 1x10 3% 10 5 %
t
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Plotof @vs. t, fort=0..3-1 0°. The pattern is not clear.
We can see both: amplitude and frequency modulation.
So, the period of the mean value oscillation (precession
and/or nutation?) is not constant.
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0 1% 10° 2 x10° 3 x10°

¢

Plot of rvs. t, fort= 0.3-10"
1.x 10"
x 101"

"5 % 10"

-1
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1x10 2% 10

3.x10°

Plotof rvs. t, fort=0.8-1 0°. There are amplitide
and frequency modulation of the envelope. For this time

range, the max. period is T=1.7- 10° (~5.4 years), and
the min. period is T~=0.4-1 05 (~1.3 years):

1.x10
7.x 10
j 4.x 10"
1.x 10'%
1.x10®  3x108 F 5 % 10° g x 10°
— rit

Plotof rvs. t, forit= 0..5-10°

0 1x10® 2x10° 3x10° 4x10% 5 %10
f

— rif
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Polar plot of v vs 8, for [R, Theta, 0..107}
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Polar plot of ¥ vs ¢, for [R, Phi, 0..107]

Seems to be a slightly elliptic trajectory (orbit of mass
m around central mass M)
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Polar plot of v vs 8, for [R, Theta, 0..1 07]
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Polar plot of v vs ¢, for [R, Phi, 0..107]
Seems to be a quasi semi-circular trajectory (orbit of
mass m around central mass M)
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Polar plot of r vs 6, for [R, Theta 0..5-1 06]
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Polar plot of 1 vs 1, for Polar plot of v vs 1, for

Polar plot of ¥ vs 1, for
[R(f), Li= 0..9-]06}, mumpoints = 4 [R(f), L= 0..9-]06}, numpaoints = 4 [R(.f], L t= 0..9-106], mmpoints = 4
A type of spiral that that evolves with forward and A type of spiral that that evolves with forward and A type of logaritmic spiral firom outwards...
bachward motion... backward motion...
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T 10713 ~0° Same as above Same as above The mass i reaches equilibrium at 8= 0°. This fact is not
1.2¢
103

conclusive. Computation for longer times has to be
made in order to check the behavior.

Note: I can't compute greater times for the plots. Whether
it is not allowed or it might take davs. A much more
powerful computer for numerical analysis is needed to
arrive to a conclusion for this case.

(== 8= ~0°
0°)

3D plot for i = 0..5-10°

T0.00314159268

Plotof@vs. r, forit=20.35- 10°

0.003141615
0.003141610
g 0.003141605
0.003141600

0.003141595
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Plotof @vs. t, fort=0..5 108,
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Polar plot of ¥ vs 0, for [R, Theta, 0..5-1 06]
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Polar plot of v vs ¢, for [R, Phi, 0..5-106]
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Polar plot of ¥ vs {, for
[R(.*), L= O..9-10°l numpoints = 4
A tvpe of logarvitmic spiral from outwards...
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102
(:>9:
0°)

1077

90°

90°

~85°

The mass m oscillates firom 0° to maximum ~180°,
having thus a mean oscillation angle ~ 90° which can
be considered the average equilibrium angle, with
smaller oscillations around ~16°.

This fact is not conclusive. Computation for longer
times has te be made in order to check the behavior.
Note: I can't compute greater times for the plots.
Whether it is not allowed or it might take davs. A much
meore powerful computer for numerical analysis is
needed fto arrive to a conclusion for this case.

The mass m oscillates from 0° to maximun ~180°,
having thus a mean oscillation angle ~ 90° which can
be considered the average equilibrium angle, with
smaller oscillations around ~16°.

This fact is not conclusive. Computation for longer
times has to be made in order to check the behavior.
Note: I can't compuite greater times for the plots.
Whether it is not allowed or it might take davs. A much
more powerful computer for numerical analysis is
needed fo arrive to a conclusion for this case.

The mass m oscillates from 0° to maximum ~171°,
having thus a mean oscillation angle ~ 85° which can be
considered the average equilibrivin angle, with smaller
oscillations around ~16°.

3D plot for t=0..10°

3D plot for t=0..10°

3D plot for t = 0..10°
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Plot of 8 vs. r, fori= 0..10°
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1.x10% 3.x101" s5x10° 710"
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Plot of @vs. r, fort= 0..10°
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Plot of @ vs. r, forit= 0..10°
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1.x10"% 3x10? 5x10% 7.x10!° 1 x 10
:

Plot of 8 vs. &, for t = 0..10°. The period of the envelope
\for this time range is T=1.4- 108 (~ 4.4 years).
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b = g n

2.x10° 4.x10® 6.x10° & x10° 1.x10°
t

Precession and/or Nutation?

WARNING: the following calculations (plots) might
take from many hours to more than I day on a regular
PC. To reach some conclusions, a much more powerful
computer is necessary for plotting in this time range.

Plot of @vs. t, fort =0..1 oM. The patiern is not clear.
We can see both: amplitude and frequency
meodulation.So, the period of the mean value
oscillation (precession and/or nutation?) is not
constant:

Plot of O vs. &, for t = 0..10°. The period of the ervelope
\for this time range is T=1.4- 108 (~ 4.4 years):

2x10° 4x10®° 6x10° &x10® 1x10°
1

Precession and/or Nutation?

WARNING: the following calculations (plots) might
take firom many hours to more than 1 day on a regular
PC. To reach some conclusions, a much more powerfil
compuiter is necessary for plotting in this time range.
Plotof @vs. t, fort=0..1 0*. The pattern is not clear.
We can see both: amplitude and frequency modulation.
So, the period of the mean value oscillation (precession
and/or mitation?) is not constant:
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Plotof @vs. t, fort=0..1 0°. The period of the ervelope
\for this time range is T=1.4-1 0’ (~ 4.4 years):

15
10

2.x10°  4.x10° &x10° 8x10® 1 x10°
1

Precession and/or Nutation?

WARNING: the following calculations (plots) might take
\from many hours to more than 1 day on a regular PC. To
reach some conclusions, a much more powerfill compuiter
is necessary for plotting in this time range.

Plotof @vs. t, fort=10..1 0L, The pattern is not clear.

We can see both: amplitude and frequency modulation.
So, the period of the mean value oscillation (precession
and/or nutation?) is not constant:
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Plotof rvs. t, fort=20..1 0°. The period of the Plotof rvs. t, fort=20..1 0°. The period of the envelope |Plot of rvs. t, fort=10..1 0°. The period of the envelope

emvelope for this time range is T=1.4-10° (~ 4.4 years): | for this time range is T=1.4-10° (~ 4.4 years): |for this time range is T=1.4-10% (~ 4.4 years):
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Polar plot of ¥ vs 6, for | R, Theta, 0..10" ]

Polar plot of ¥ vs 6, for | R, Theta, 0.
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Polar plot of v vs ¢, for
[R Phi, 0..107], numpoints = 5000
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Polar plot of r vs @, for
[R Phi, 0..107), mumpoints = 20000
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Polar plot of ¥ vs 8, for R, Theta, 0..10" ]
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Polar plot of v vs t, for

[R(1), & t=0..9-10°], mumpoints = 4

A strange spiral...
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Polar plot of v vs 1, for
[R(7), 1, = 0..9-10°], munpoints = 4
A strange spiral...
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Polar plot of v vs £, for

[R[.f), L= 0..9-106}, numpoints = 4

A strange spiral...
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10-2

90°

90°

90°

The mass m reaches equilibrium at @ = 90°. 3D plot for
t=0.10°"
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The mass m reaches equilibrinm at 8 = 90°. 3D plot for
t=0.10°
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The mass m reaches equilibrium at @ = 90°. 3D plot for
t=0.10°
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Plot of @ vs. t, for t = 0..10°

Plot of @ vs. t, for t = 0..10°

Plot of @ vs. t, for t = 0..10°
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Polar plot of ¥ vs 8, for [R, Theta, 0..1 03}
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Polar plot of v vs @, for
[R Phi 0..10%], numpoints = 100
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Polar plot of ¥ vs 8, for [R, Theta, 0..1 03]
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Polar plot of v vs @, for
[R Phi, 0..10%], mmpoints = 100
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Polar plot of ¥ vs 6, for [R, Theta, 0..103]
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Polar plot of ¥ vs t, for
[R(.f), L= 0..8-102], numpoints = 3

A type of spiral that that evolves with forward and
backward motion...
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Polar plot of ¥ vs t, for
[R(f], L= 0..8-]02], numpaoints = 3

A type of spiral that that evolves with forward and
backward motion...

T
ol
'

an
4

3
2

Polar plot of v vs 1, for
[R(f], ti= 0..8-]02], mumpoints = 3

A type of spiral that that evolves with forward and
backward motion...
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90°

90°

The mass m reaches equilibrium at 8 = 90°. 3D plot for

i=0.10°
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Plot of 8 vs. &, for t = 0..10° Plot of 8 vs. t, for t = 0..10° Plot of @ vs. &, for t = 0..10%
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Polar plot of ¥ vs 6, for [R, Theta, 0..1 0]
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Polar plot of v vs @, for
[R, Phi, 0..]02}, numpoints = 100
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Polar plot of v vs ¢, for
[R, Phi, 0..]02], mumpoints = 100
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Polar plot of v vs 6, for [R, Theta, 0..1 0]
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Polar plot of ¥ vs ¢, for [R, Phi, 0..10°]
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Polar plot of i vs t, for
[R(.f), tLi= 0..6-]02], mampoints = 4

A tvpe of spiral that that evolves with forward and
backward motion...
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Polar plot of v vs &, for
[R[r], Lt= 0..6-]02], numpoints = 4

A tvpe of spiral that that evolves with forward and
backward motion...
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Polar plot of ¥ vs t, for
[R(7), t, t=0..6-10°], mumpoints = 4

A tvpe of spiral that that evolves with forward and
backward motion...
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T 10 gg: Same as above for m9(0)= 1 Same as above for wsﬂ}'): 1 Same as above for a)g(O): 1
3
0°)
T 100 gg: Same as above for ©,(0)= 1 Same as above for (0)= 1 Same as above for @ ,(0)= 1
3
(:lf . 90°
0°)
r 0 ~90° The mass m oscillates firom 30° to maximum ~143°, The mass m reaches equilibrium at an angle ~ 92°. The mass i reaches equilibrium at an angle
6 . having thus a mean oscillation angle ~ 90° (£ 56°)} 0= 30° with little oscillations around this cngle.
~92 which can be consider ed fh? average equilibrium This fact is not conclusive. Computation for longer
. angle, with smaller oscillations around ~33°. times has to be made in order to check the behavior.

This fact is not conclusive. Computation for longer
times has to be made in order to check the behavior.
Note: I can't compute greater times for the plots.
Whether it is not allowed or it might take davs. A much
more powerful computer for numerical analysis is
needed to arrive to a conclusion for this case.

Note: I can't compuite greater times for the plots. Whether
it is not allowed or it might take days. A much more
powerful computer for numerical analysis is needed to
arrive to a conclusion for this case.

3D plot for t=0..10°

—— e = b B

3D plot for t = 0..10°

12 % 10"

3D plot for t=0..4.2-10°

5987755982994
5987755982993
5987755982991

5987735982990

5987755982989 —0.003141359265:

0.00314159265358¢
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Plot of 8 vs. r, forit= 0..10°

Plot of @ vs. r, fort= 0..10°

Plot of @ vs. ¥, forit= 0.4.2-10°

Precession and/or Nutation?

WARNING: the following calculations (plots) might
take from many hours to more than 1 day on a regular
PC. To reach some conclusions, a much more powerful
compuiter is necessary for plotting in this time range.
Plot of 8vs. t, fort=0..1 0*. The patiern is not clear.
We can see both: amplitude and frequency
modulation.So, the period of the mean value
oscillation (precession and/or nutation?) is not
constant:
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Plot of 0 vs. t, for i = 0..10°. The period of the envelope | Plot of 6 vs. 1, for t = 0..10°. Plot of @ vs. t. for t=0..4.2-10°.
\for this time range is T=1.4-1 o° (~ 4.4 years):
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Plot of rvs. t, fort=0..1 0°. The period of the

emvelope for this time range is T=1.4-1 0’ (~ 4.4 years).
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Plot of rvs. t, fort= 0..4.2-105.

. x 10
x 10
x 10
x 10

x 10t

10
10
10
10

0 1x10°  2x109 3 x108
iy

—

4 % 10

97




Polar plot of r vs 6, for [R, Theta, 0..1 07}
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Polar plot of ¥ vs ¢, for [R, Phi, O..IOF]

m around central mass M)
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Seems to be a slightly elliptic trajectory (orbit of mass

Polar plot of r vs 8, for [R, Theta, 0..1 07]
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Polar plot of 1 vs ¢, for [R, Phi, 0..]07}
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Polar plot of v vs 8, for [R, Theta, 0..1 07]
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Polar plot of 1 vs ¢, for [R, Phi, 0..]07}
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Polar plot of v vs @, for Polar plot of ¥ vs @, for Polar plot of v vs ¢, for

[R{ t),tt= 0..3-]07], numpoints = 4 [R{.f), ti= 0..3-]07}, numpaoints = 4 [R{.f), ti= 0..4-]05}, numpaoints = 4
A strange spiral... A type of spiral that that evolves with forward and A type of spiral that that evolves with forward and
backward motion... backward motion...
™ ™
2 2
3T

3

3 e

99




10-1%

90°

~91°

450

The mass m has an average oscillation angle of 0=
90°(+45°), though its center line of oscillation is
around an angle of ~51°, swinging firom 45° to ~135°.
This fact is not conclusive. Computation for longer
times has to be made in order to check the behavior.
Note: I can't compute greater times for the plots.
Whether it is not allowed or it might take davs. A much
more powerful computer for numerical analysis is
needed to arrive to a conclusion for this case.

The mass m reaches equilibrium at an angle 0= 91°

The mass m reaches equilibrium at an angle 0=45°,

This fact is not conclusive. Computation for longer
times has to be made in order fo check the behavior.
Note: I can't compuite greater times for the plots. Whether
it is not allowed or it might take days. A much more
\powerful computer for numerical analysis is needed to

3D plot for t=0..10°

3D plot for t=0..10°
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3D plot for t=0..4.2-10°

arrive fo a conclusion for this case.
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Plot of @ vs. ¥, fort=0.10°
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Plot of @vs. t, fort=0..5-1 0°. The period of the

emvelape for this time range is T=0.6-1 0° (~ 1.9 years):
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g 1.6

2x10° 4.x10° 6.x10° & x10® 1 x10°
s

Precession and/or Nutation?

WARNING: the following calculations (plots) might
take firom many hours to move than 1 day on a regular
PC. To reach some conclusions, a much more powerfil
compuiter is necessary for plotting in this time range.

Plot of @ vs. &, fort = 0..10". The patiern is not clear.
We can see both: amplitude and frequency
meodulation.So, the period of the mean value
oscillation (precession and/or nutation?) is not
constant:
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Plot of O vs. &, fort= 0..10°
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Plot of @ vs. ¢, for t = 0..4.2-10°
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Plot of rvs. t, fort=10..1 0°. The period of the

envelope for this time ramge is T=0.6-1 ® (~ 1.9 years):
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Polar plot of ¥ vs 8, for {R, Theta, 0..1 07]
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Polar plot of ¥ vs ¢, for |[R. Phi, 0..5-107]

Seems to be a slightly elliptic trajectory (orbit of mass
m around central mass M)

T
2
=

Polar plot of v vs 6, for [R, Theta, 0..1 07]
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Polar plot of ¥ vs @, for [R. Phi, 0..107]
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Polar plot of v vs 8, for [R, Theta, 0..1 07]
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Polar plot of ¥ vs ¢, for [R. Phi, 0..107]
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Polar plot of ¥ vs {, for

[R(1), £ t=0..3-107], numpoints = 4
A strange spiral...
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Polar plot of r vs ¢, for
[R(f], L= 0..3-]07], numpoints = 4

A type of spiral that that evolves with forward and
backward maotion...
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Polar plot of r vs t, for
[R(f], tLi= 0..4-]06], numpoints = 4

A type of spiral that that evolves with forward and
backward motion...
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1077 90° The mass m oscillates around 6 = 90° with an amplitud | The mass m recaches equilibrium at 6 = 92°, 3D plot for | The mass m reaches equilibrium oscillating around 8=
020 ~of 8 £ 26.5°. t=0.10° 270°, with a swing ~ 8+85°. 3D plot for t = 0..10°
3D plot for t = 0..10°
270° (-90°)
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Plot of 8vs. 1, fort=20..10°
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Plot of @ vs. v, fort=0..10
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Plot of @ vs. t, for t = 0.9-10°% The period of the
envelope for this time range is T=1.2-1 o° (~ 4 years):
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1 1l I | 1
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g 16
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01 x10° 3x10° s5x10® 7x10® o x10°
i

Precession and/or Nutation?

WARNING: the following calculations (plots) might
take from many hours to more than 1 day on a regular
PC. To reach some conclusions, a much more powerful
computer is necessary for plotting in this time range.

Plot of 8 vs. ¢, for t = 0..10". The patiern shows two
clear envelopes at the end of this time range, the

shorter with a period of T=1.3-1 ot? (~ 412 years),and
the longer with a period of T=2.5-10°? (~ 793 years):
20
Lsipi iii ' CATERAAAAA AR
s 16
1.44 i i | | i il
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0 2x10' 4x10% 6% 10" 8 x 10! 1 x 10!
Plot of 8 vs. ¢, for t = 5-101% .5-10". The paitern is not
clear. We can see both: amplitude and frequency
meodulation.So, the period of the mean value
oscillation (precession and/or nutation?) is not
constant:
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Plot of O vs. t, for t = 0..10°.
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Plot of @ vs. t, fort=0..1 0°. The period of the einvelope
\for this time range is T=1.4-1 03 (~ 4.4 years):
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Precession and/or Nutation?

WARNING: the following calculations (plots) might take
\from many hours to more than 1 day on a regular PC. To
reach some conclusions, a much inore powerfill computer
is necessary for plotting in this time range.

Plotof @vs. t, fort=0..1 0L, The pattern is not clear...
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Plot of 1 vs. t, for t=0..9-10°. The period of the Plot of ¥ vs. t, fort=0..10° Plot of #vs. t, for t=0..10°. The period of the envelope
emvelope for this time range is T=1.2- 1 05 (~ 4 years): \for this time range is T=1.4-1 0° (~ 4.4 years):
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Polar plot of r vs 6, for [R, Theta, O..E-IOT} Polar plot of r vs 6, for

Polar plot of r vs 6, for
[R Theta 0..107]

[R Theta 0..107]
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Polar plot of v vs ¢, for [R, Phi, O‘.2-107] }
Polar plot of ¥ vs @, for | R, Phi, 0..10" |
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Seems to be a circular trajectory (orbit of mass m

Polar plot of ¥ vs @, for | R, Phi, 0..10 |
around central mass M)
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Polar plot of v vs 1, for
[R(.f), t1=0.810°2 ?T], mimpoints = 3

A tvpe of spiral that that evolves with forward and
bachward motion...
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Polar plot of ¥ vs 1, for
[R[f], tt=0.8-10°2 rc], mumpoints = 3

A tvpe of spiral that that evolves with forward and
backward motion...
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Polar plot of v vs 1, for
[R(f], t1=0.8-10°2 rc], mumpoints = 3
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1072

150°

150°

150°

The mass m reaches equilibrivmm at 8 = 150° (initial
position of 8=60° plus 90°)
3D plot for t = 0..10*

ta b3 b b2
= b BoD

=]
o =

(RN

003145

12
1Lx1075. %107 | w10

The mass m reaches equilibrium at @ = 150° (initial
position of 6=60° plus 90°)
3D plot for t = 0..10*
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The mass mn reaches equilibrium at 8 = 150° (initial
position of 8=60° plus 90°)
3D plot for t = 0..10*
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Plot of 8 vs. r, fori= 0..10°
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Plot of 8 vs. f,ﬁor.f':(]!‘.ICJ"i Plot of 8 vs. Lfor.f:(}..104 Plot of 8 vs. f,forf:O..}O'1
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Polar plot of v vs 6, for [R, Theta, 0..1 03}
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Polar plot of ¥ vs ¢, for [R, Phi, 0..104]
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Polar plot of r vs ¢, for [R, Phi, 0‘.104]
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Polar plot of v vs 0, for [R, Theta, O..IGB]
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Polar plot of v vs t, for

[R(1), £, t=0..9-10°-2 x|, numpoints = 3

A regular spiral.
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Polar plot of v vs 1, for
[R(.f), ti=0.910°2 ﬂ], mumpoints = 3
A regular spiral.
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Polar plot of v vs 1, for
[R(.f), ti=0.9-10°2 ﬂ], mumpoints = 3
A regular spiral.
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The mass m reaches equilibrium at § = 135° (initial
position of 0=45° plus 90°)
3D plot for t = 0..10°

5.00314172 ¢
Lx 1075 gl

1.% 10"

The mass m reaches equilibrium at 8 = 135° (initial
position of 0=45° plus 90°)
3D plot fort = 0..10%
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13 ¢

The mass m reaches equilibrium at 8 = 135° (initial
position of =45° plus 90°)
3D plot for t = 0..10
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Plot of @ vs. r, fort= 0.10°
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Plot of 8 vs. &, for it = 0.10° Plotof @ vs. ¢, for t = 0.10° Plot of @ vs. ¢, fort= 0.10°
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Polar plot of ¥ vs 0, for [R, Theta, 0..10}
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Polar plot of v vs ¢, for [R, Phi, 0..102]
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Polar plot of v vs 0, for [R, Theta, 0..1 0]
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Polar plot of r vs ¢, for [R Phi, 0..102]

A

115

Polar plot of ¥ vs 0, for [R, Theta, 0..1 0}
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Polar plot of v vs &, for
[R[r‘], t1=0.10°2 Jr], numpoints = 4

A tvpe of spiral that that evolves with forward and
backward motion...
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Polar plot of v vs &, for
[R[.'], Lt=0.10°2 ﬁfl numpoints = 4

A type of spiral that that evolves with forward and
backward motion...
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Polar plot of v vs &, for
[R[.f], t1=0.10°2 ?T], numpoints = 4

A tvpe of spiral that that evolves with forward and
backwvard motion...
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180°

180°

180°

The mass m reaches equilibrium at 8 = 180° (initial
position of 0=90° plus 90°)
3D plot for t = 0..10*:
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The mass m reaches equilibrium at 8 = 180° (initial
position of =90° plus 90°)
3D plot fort=0..10:
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The mass mn reaches equilibrium at 8 = 180° (initial
position of 0=90° plus 90°)
3D plot fort=0..10:
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Plot of 8 vs. r, forit= 0..10°
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Plot of 0 vs. t. for t=0..10% Plot of 6 vs. t. for t=0..10% Plot of @ vs. 1, for t = 0..10°
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Polar plot of r vs 8, for [ R, Theta, 0..1]

Polar plot of ¥ vs 8, for [R, Theta, 0..1]
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Polar plot of v vs ¢, for [R, Phi, 0..102]
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Polar plot of v vs ¢, for [R, Phi, 0.102]
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Polar plot of ¥ vs 8, for [R, Theta, 0..1]
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Polar plot of v vs ¢, for [R, Phi, 0.102]
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Polar plot of v vs ¢, for

[R(f], £Lt=0.9-10-2 ﬁfl numpoints = 4
A tvpe of logaritmic spiral.
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Polar plot of v vs &, for

[R[.f], 1t=0.9-10-2 n’], numpoints = 4
A type of logaritmic spiral.
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Polar plot of v vs £, for

[R(.’], £Lt=0.9-10-2 ﬁfl numpoints = 4
A tvpe of logaritmic spiral.
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100

150°

150°

150°

The mass m reaches equilibrium at @ = 150° (initial
position of 8=60° plus 90°)
3D plot fort=0..10:

2.27
2.07
8 1.8
1.67
1.4
1.2

13
L 104 %107« 1017 ) 1 o14

The mass m reaches equilibrium at @ = 150° (initial
position of 8=60° plus 90°)
3D plot for t =0..10:

0.00314155

The mass m reaches equilibrium at @ = 150° (initial
position of 6=60° plus 90°)
3D plot fort=0..10:
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0.003141592653
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Plot of 8vs. r, fort=0..10 Plot of 8vs. v, fort=0.10 Plotof @vs. v, fort=0..10
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Plot of 8vs. ¢, fort=0..10

26

Plotof @vs. ¢, for t=0..10

Plotof @vs. t, fort=0..10
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Polar plot of v vs ¢, for [R, Phi, 0..102]
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Polar plot of v vs 0, for (R, Theta, 0..0.1]
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Polar plot of ¥ vs 0, for (R, Theta, 0..0.1]
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Polar plot of v vs ¢, for [R, Phi, 0..102}
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Polar plot of ¥ vs t, for

[R(f), tt=0.10-2 ?c], numpoints = 4

A regular spiral.

3n
4

I
2

Polar plot of ¥ vs t, for

[R[t], tt=0.10-2 75], numpoints = 4

A regular spiral.
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Polar plot of ¥ vs t, for

[R(f), tt=0.10-2 ?c], numpoints = 4

A regular spiral.
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APPENDIX 1l

All plots and details of the results for r(0) = 150 10° [m]
Analysis and plots of the motion for an initial distance of ryy = 150 10° [m], and the following initial conditions and parameters:

1 Nm?

G =6.67408 x 10711 —
Kg

(the universal gravitational constant)

M = 2103 Kg (the mass of the Sun)
m = 5.9 10%* Kg (the mass of the Earth)
7oy = 0 [m/s] (linear velocity of the center of mass m at t=0)

Doy = 0 [rad] (azimuthal position of the center of mass m at t=0)

Since there is a singularity for 8 = 0, the “zero” initial condition of the polar angle was taken close to zero as 6 = 1% [rad].

(5(,:) = (is the relative angular velocity between the spin of the center of mass M and the translation of the center of mass m)

The polar angle of equilibrium (&) is found for several values of the initial conditions of 6, w(), and Q. The three vertical values of 8, on each
corresponding table cell, from top to bottom, are the results for each one of the three values of Q from left to right. For example:

Q=2-10" ~0°-1.16° Q=0
~0° -1.16° I

~1.5°

~0°
Obs.: the table is very long and continues over several pages.

See Table 3 for a summary of the results obtained here.
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1

1

1

o) | 0, Q=2:107" 17 Q=-27-107(7 Q=017
[rad] [L J [deg] b 1 n b
5 r(0) =150 109;D(r}(0}:O,@(O}:?;D(Q](O}:Z-IO" r(0) =150 109;D(r)(0):o;(p(O):F;D[q;](O) =-2.7-10-6 | 7{0) =150 109;D(r)(0):O;@(O):F,D((v](o):o
~ 0.85° The n.h?rs‘s " ?‘?‘,’Che‘s eqwhfnmn by Cosczﬁ(.mng m ound The mass m reaches equilibrium by oscillating around | The mass m reaches equilibrium by oscillating around
its initial p O'”,Imnﬁ om ~0%0 ~ 1.7°, f-nakmg- this a 0= 3°. This fact is not conclusive. Computation for the initial position 8= 0. This fact is net conclusive.
4 ~3° medn OS.C"THM"O” ang.?e‘ of ~0.85° Th{sf act is not longer times has fo be made in order to check the Computation for longer times has to be made in order fo
T . c'onch{sn e. Contl'mtan?n Jfor im:gfar times has to be behavior. check the behavior.
(=>@a= ~0° made in or('ler to check the befmvmr. Note: I can't compute greater times for the plots. Note: I can't compute greater times for the plots. Whether
) Note: I can't compute greater times for the plots. Whether it is not allowed or it might take days. A much |it is not allowed or it might take dayvs. A much more

Whether it is not allowed or it might take days. A much
more powerful computer for numerical analysis is
needed to arrive fo a conclusion for this case.

more powerful computer for numerical analysis is
needed to arrive fo a conclusion for this case.

powerful computer for numnerical analysis is needed to
arrive fo a conclusion for this case.

3D plot for t = 0..10°

3D plot for t=0..10°

3D plot for t=0..7-10°

3926535897880
3926535897885
1926535897890
1926535897894

926535897903

926535897907
0.00314159265

0.00314159265358978¢
9.%x 10 11
1.2x 10

1.5 x 10"
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Plot of Ovs. v, fort= 0..10°

Plot of @vs. v, for t=0..10°

Plot of Ovs. v, fort=10.

.7-10°

0.025 030 0.0031415926535897907
0.020 0.25 0.0031415926535897903
A 0.20
0.015 s
0010 0.15 6 0.0031415926535897894
) 010 0.0031415926535897890
0.005 = 0.05 0.0031415926535897885
10 10 11 1
2.=x10 6.x 10 1.x10 14x10 )
r 2.x 1010 6% 1010 1. x 1()11 14x 1011 6. x 1010 o x 1010 1.2 x 1011 1.5 %
r 7
Plot of @ vs. t, for t=0..2-10°. The envelope has a
3 ] 4 N f_ o P 5 Plot of 0vs. t, fort=0..7-10°
Piotof @vs. t, fort=10.10 variable period in this time range, from T=1.1-10
(~3.5 years) to T=3.1-10% (~9. 8 years).
0.025 04 0.0031415926535897907
0.020 . 0.0031415926535897903
¥ 0015 03
0010 o 02 8 0.0031415926535897894
: . 0.0031415926535897890
0.0054 0.1 0.0031415926535897885
0 2x10 4x10 6x10 8x10 1x10° . p p p
i
0 5.x100  1x10°  1sx100  2x10° Lx100 3.x100 S.x100 7x
s
Plot of rvs. t, forit=0..2-10° Plot of rvs. t. for t=0..2-10°. The envelope has a Plot of rvs. t, fori=10..7-10°.
14x 10! variable period in this time range, from T=1.1-10%
- . 3 1.10% ) ) 11
DY (- 3.5}3(1:';?1) to T=3.1-10° (~9.8 years). 15x% 10
r 1.4 101l It . 12 x 10"
6. % lli)l‘:J 1% 1‘011 WL (Al I|‘i|ilii||||u||I il l it r
r ' 9. x 10'°
2 % 1010 6.x 10 10
' 7 8 g 8 ” 10 6.% 10
0 5x100  1.x10° 15x10° 2x10 2.x107 0 1 x108 3. x 108 5 x 109 7 % 109
! 0 5.x10°  1.x10° 15x10° 2.x10° !

i
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Polar plot of v vs 8, for [R, Theta, 0‘.107]
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Polar plot of v vs ¢, for [R, Phi, 0..2-107]

A vertical elliptical trajectory (orbit of mass m around
central mass M)
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Polar plot of 1 vs 8, for [R, Theta, 0..1 07]
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Polar plot of r vs @, for [R, Phi, 0..2-107]

A quasi semi-civcular trajectory (orbit of mass m
around central mass M)
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Polar plot of v vs 8, for [R, Theta, 0..1 07}
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Polar plot of v vs ¢, for [R, Phi, 0 7-107]
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Polar plot of rvs t, for
[R(1), £ 1= 0.5-10°-2 ], mumpoints = 4

A tvpe of spiral that that evolves with forward and
backhward motion...

Polar plot of rvs £, for
[R[f], tt=0.510°2 :‘I}, numpoinis = 4

A tvpe of spiral that that evolves with forward and
backward maotion...

3
4

Polar plot of v vs &, for
[R(f], tt=0.510°2 ?T], numpoints = 4
A kind of logaritmic spival from outwards

129




1015

~0.85°
~30
~0°

Same as above for we( 0)=0

Same as above for ms(()): 0

130

The mass m reaches equilibrium by oscillating around
the initial position 6~ 0. This fact is not conelusive.
Computation for longer times has to be made in order to
check the behavior.

Note: I can't compute greater times for the plots. Whether
it is not allowed or it might take days. A much more
powerful computer for numerical analysis is needed to
arrive to a conclusion for this case.

3D plot for t = 0..7-10°

0.003141604
0.003141602
0.003141600
g 0.003141598
0.0031413596
0.003141594

0.0031415926:
0.003141592653 58

6.x 10" | o

1.5% 10"

Plotof @vs. v, fort=0..7 108
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0.003141602
0.003141600
0.003141598
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Plot of @ vs. 1, fort=0..7-10°.
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0.003141600
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Plot of rvs. t, fort= 0..7-105.
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Polar plot of v vs 8, for [R, Theta, 0..107 ]
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Polar plot of v vs @, for [R, Phi, 0..2

T
>
-

3n
4




Polar plot of v vs &, for
[R{f}, tt=0.510°2 .Tr], numpoints = 4
A kind of logaritmic spival from outwards
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103
(== 6=
0°)

1077

~90°

~90°

~90°

The mass m reaches equilibrium oscillating at a mean
angle of 6 = 90° (= 90°). It swings between 0 = 0° and

0~ 180°
3D plot for i = 0..10°

The mass m oscillates from 0° to maximum ~ 180°,
having thus a mean oscillation angle of ~ 90°, with a
center line of oscillations around ~ 57°. 3D plot for

t=0.10°

The mass m oscillates from 0° to maximum ~ 180°,
having thus a mean oscillation angle of ~ 90°, with a
center line of oscillations around ~ 90°. 3D plot for

t=0.10°

15x 10"

6.%x100 gx10 1.x10'" 12x10"
k

6.x10° g x10 110!l 12x10" 15% 10"

T

6.x10"0 g x10° 1x10' 12x10" 15x 10"

T
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Plot of Ovs. &, fort= 0..10°
3
25

-
pa

815
1
0.5

0 2x10° 4.x108® 6x100 8 x10f
1

Plot of 8 vs. t, and the slower oscillation qf the mean
value, for t=0..1 0°. The mean approximate fimction

t 2
3]

wr
(found manually) is: 0.825 + 0.3- [sin[

withw = ﬁ, and a period T=2.2-10° (~7
years): o

‘”i I ALY
‘mlunﬂ‘mlul‘x'mnm“umu“m

t
Precession and/or Nutation?

WARNING: the following calculations (plots) might
take firom many hours to move than 1 day on a regular
PC. To reach some conclusions, a mich more powerful
computer is necessary for plotting in this time range.

1x10°

Plot of Ovs. I, fort= 0..10°. The envelope has a
period in this time range, of T=2.7- 10° (~8.5 years)

3

L=

0 2x10° 4x10® 6x10° &x10®
t

What is the mean value oscillation: Precession or
Nutation?
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1% 10°

Plot of Ovs. &, forit= 0..6-10°

0 1x10° 2%x10° 3.x10° 4.x10° 5.x10° 6.x10°
t

Plot of @ vs. &, fori= 0..10"°. From t=4-10° the curve
has a period in this time range, of T=1-1 o’ (~32 years)

15
510
5
0 2%x10°0 4x100 6x100 8x10° 1 x 107
t
Precession and/or Nutation?

WARNING: the following calculations (plots) might take
\from many hours to more than I day on a regular PC. To
reach some conclusions, a much more powerful computer
is necessary for plotting in this time range.

Plot of O vs. t, for t = 0..10'!: not done because it takes
too long.




Plot of 8 vs. t, for t = 0..10" . The partern is not clear.
We can see both: amplitude and frequency medulation.
So, the period of the mean value oscillation (precession
and/or nutation?) is not constant.
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Plot of rvs. t, forit= 0..10°
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T 1 x 10t
8. x 10'°
6. % 101°

2.x10% 4.x10° 6.x10° 8 x10% 1.x10°
iy

Plotof rvs. t, fori=0.1 0°. The emvelope has a period
in this time range, of T=2.7-1 o’ (~8.5 years)

L5 10" 1) _ | n

12x 10
r | i |
9.x 10" | U

6.x 101 _
0 2x10° 4.x10% 6x10° e x10° 1 x10°
I

— rit

Plot of rvs. t, fort=0..1 0°. The envelope has a period
in this time range, of T=2-1 0’ (~6.3 years)
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Polar plot of v vs ¢, for
[R Phi 0..3-107], numpoints = 50000

S

Polar plot of ¥ vs 6, for [R, Theta, 0..107]
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Polar plot of ¥ vs 8, for | R, Theta, 0..2-10]
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Polar plot of v vs ¢, for
[R Phi, 0..3-107], manpoints = 50000
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Polar plot of ¥ vs 8, for | R, Theta, 0..3-107]

b

5
-

Sn
4

Polar plot of v vs ¢, for

[R, Phi, 0..8-1 08], mmpoints = 50000. The plot is not

clear. I cannot calculate for longer times because it migt
take days in PC...
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Polar plot of v vs t, for
[R[r], t1=0.7-10°-2 :rr], nmumpoints = 3

A tvpe of spiral that that evolves with forward and
backward motion..

Polar plot of v vs t, for
[R(.f], t1=0.7-10°2 :r}, numpoints = 3

A type of spiral that that evolves with forward and
backward motion..

Polar plot of ¥ vs t, for
[R(.f], t1=0.7-10°2 :r}, numpoints = 3

A type of spiral that that evolves with forward and
backward motion..
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103
(=> 8=
0°)

10-2

90°

90°

90°

The mass m reaches equilibrium at 8 = 90°

The mass m reaches equilibrium at 8 = 90°. 3D plot

The mass m reaches equilibrium at 8 = 90°. 3D plot for

3D plot for t = 0..10% \fort = 0..10" t=0.10°
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Plot of @vs. I, fort= 0.10*

Plot of @vs. I, fort= 0..10*

Plot of @vs. I, fort= 0..10*
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11
2110 21 % 10"
11
9 x
. 1.9 % 10 1ox 10!
11 r
1.7 %10 1"
1.7x10
1.5 10t 1
0 20 40 60 80 100 15%10 *
0 20 40 60 80 100
!

140




Polar plot of 1 vs 8, for [R, Theta, 0..1 03]
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Polar plot of ¥ vs @, for [R, Phi, 0..104}
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Polar plot of r vs 8, for [R, Theta, 0..1 03]
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Polar plot of ¥ vs @, for [R, Phi, 0..104]
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Polar plot of r vs 8, for [R, Theta, 0..1 03]
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Polar plot of ¥ vs @, for [R, Phi, 0..104}
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Polar plot of ¥ vs 1, for

[R[.f], tt=0.7-10-2 fc], numpoints = 3
A logaritinic spiral.

™
2
£

ELS
4

3
2

Polar plot of ¥ vs t, for

[R(.f], tt=0.7-10-2 ?T], mimpoints = 3
A logaritinic spiral.
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Polar plot of ¥ vs t, for

[R{.f), ti=0.7-10-2 :ir], numpoinis = 3
A logaritmic spiral.

™
2
£

3n
4

I‘Jm
A

142




103
(==>8=
0°)

90°

90°

90°

The mass m redaches equilibrium at @ = 90°
3D plot for i = 0..10%

The mass m redaches equilibrium at @ = 90°. 3D plot
\for t=0..10°

The mass m redaches equilibrium at @ = 90°. 3D plot for
t=0..10°
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Plot of Ovs. &, fort= 0..10* Plot of 8vs. &, fort= 0..10 Plot of Ovs. &, forit= 0..10%
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Polar plot of ¥ vs 0, for [R, Theta, 0‘.10]

=

Polar plot of v vs ¢, for [R, Phi, 0..103]

Polar plot of v vs 0, for [R, Theta, 0..1 0]
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Polar plot of ¥ vs ¢, for [R, Phi, 0..103]
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Polar plot of ¥ vs 0, for [R, Theta, 0..1 O]
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Polar plot of v vs ¢, for [R, Phi, 0..103]
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Polar plot of v vs t, for

[R(?), t t=0..3-2 rt], mumpoints = 3
A regular spiral.
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Polar plot of r vs £, for

[R(f), & t=0..3-2 1], mumpoints = 3
A regular spiral.
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Polar plot of v vs &, for

[R(2), t t=0..3-2 rt], numpoints = 3
A regular spiral.
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n 10 gg: Same as above for @,(0) = 1 Same as above for a,(0) = 1 Seame as above for w,(0) = 1
103
(== 6= 90
0°)
™ 100 gg: Same as above for @,(0) = 1 Same as above for wy(0) = 1 Same as above for wy(0) = 1
103
(== 6= 90
0°)
T 0 90° The mass m reaches equilibrium oscillating at a mean | The mass m reaches equilibrium at 8 = 90°. The mass m reaches equilibrium oscillating around 6 =
6 angle of 8 = 90° (= 60°). It swings between 8 = 30° 3D plotfor t = 0..10° 30° (the initial position).
00 and 0= 150° 3D plot for t=0..7-10°
100 3D plot for t = 0..10°
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Plot of 8 vs. v, for t=0..10°
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Plot of @ vs. v, for t=0..10°
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Plot of Ovs. &, fort= 0..10°
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Plot of @ vs. t, and the slower oscillation of the mean value,

fort=0.1 0°. The mean approximate function (found
2

manually) is: 1.08 + 0.3- [sm[ %t + 3] ] , with

= ﬁ and a period T=2.2-10° (~7 years):
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Plot of Ovs. &, forit= 0..7-10°
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WARNING: the following calculations (plots) might
take from many hours to more than 1 day on a regular
PC. To reach some conclusions, a much more powerfiil
computer is necessary for plotting in this time range.

Plotof @vs. 1, fort=10.1 0. The pattern is not clear.
We can see both: amplitude and frequency modulation.
So, the period of the mean value oscillation (precession
and/or nutation?) is not constant.
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Details for t= 0..10°
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Polar plot of r vs 8, for [R, Theta, O..3-107]
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Polar plot of r vs ¢, for [R, Phi, 0..3-107]
A vertical semi-elliptical trajectory (orbit of mass m
around central mass M)
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Polar plot of v vs 8, for [R, Theta, 0..5-1 05]
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Polar plot of v vs ¢, for [R, Phi, 0..5-106}
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Polar plot of v vs 8, for [R, Theta, 0..1 07}
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Polar plat of r vs ¢, for [R, Phi, 0..107]
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Polar plot of v vs t, for
[R(.f], £1=0.8-10°2 :'cl numpoints = 3

A type of spiral that that evolves with forward and
backward motion..

Polar plot of 1 vs &, for
[R(f], L t=0.8-10°2 :rc], mumpoints = 3

A type of spiral that that evolves with forward and
backward motion..
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Polar plot of r vs &, for
[R(f], L 1=0.5-10°2 :rc], mumpoints = 4
A tvpe of logaritmic spiral firom outwards
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10°13 90° The mass m reaches equilibrium oscillating at a mean | The mass m reaches equilibrium at 8 = 90°. The mass m reaches equilibrium oscillating around 8 =
angle of 6 = 90° (= 45°). It swings between 8 = 45° 3D plot for t = 0..10° 45°(the initial position).
90° and 8 = 135° 3D plot for t=0..7-10°
45 3D plot for t = 0..3-10°
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Plot of @ vs. 1, fort=0..3-10°
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Plot of 8 vs. t, and the slower oscillation of the mean

value, fort=0..3.1-1 0°. The mean approximate
\fimction (found manuaily) is:
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Precession and/or Nutation?
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067210°" and a period T=0.672-10° (21.3
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WARNING: the following calculations (plots) take firom
many hours to more than 1 day on aregular PC. To
reach some conclusions, a much more powerfil
compuiter is necessary for plotting in this time range.
Plot of O vs. &, for t = 3-10°..5-10". It shows that the
period of the mean value oscillation increases to T =
(4.1-10"7 — 1.1-10") = 3- 10 (9513 years):
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Lx1o 2. x10t 3x10! 4.x10M 5 x 10!
t

Plot of O vs. &, fort= 10%.5-10% The pattern is not
clear. We can see both: amplitude and frequency

modulation.So, the period of the mean value oscillation
(precession and/or nutation?) is not constant.
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Plot of rvs. t, fort= 0.3-10°
153 x 10!
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Plot of ¥ vs. &, fort= 0..10°
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Details for t = 0..10°
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Plot of ¥ vs. t, fort= 0..7-10°
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Polar plot of v vs 8, for [R, Theta, 0‘.108]
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Polar plot of v vs @, for [R, Phi, 0..7-107]

A slightly shifted circular trajectory (orbit of mass m
around central mass M)
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Polar plot of r vs 8, for [R, Theta, 0..3-106]
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Polar plot of r vs @, for [R, Phi, 0..5- 106]
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Polar plot of v vs 8, for [R, Theta, 0..1 0?}
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Polar plot of v vs ¢, for [R, Phi, 0..107]
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Polar plot of ¥ vs t, for Polar plot of ¥ vs t, for

Polar plot of ¥ vs t, for
[R(r], ii=0.7-10°2 :rc], numpoints = 3 [R[f], £ 1=0.810°2 :rcl numpoints = 3 [R(f], £ 1=0.5-10°2 :rr], numpoints = 4
A type of a tight spiral... A tvpe of spiral that that evolves with forward and A tvpe of logaritmic spiral firom outwards
r backward motion.. .
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1077

109°

92°

90°

The mass m redaches equilibrium at € = 109°
3D plot for i =0..10*°
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The mass m reaches equilibrium at 0 = 92°
3D plot for t=0..10
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The mass m oscillates with variable period around 6 =
90° (£90°).
3D plot for t = 0..10°

Plot of @ vs. v, fort= 0..10'°
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Plot of B vs. t, fort= 0..101°
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Plotof@vs. t, fort=20..1 0%, The mass m oscillates with
variable period around 0= 90° (=90°).

0 2x10° 4x100 6x100 8&x10° 1 x10°
t

Plot of rvs. f, fort= 0..10'°

14 % 10"
1x 10"
.

6 x 10

2 x 101

0 2x10° 4x10° 6.x10° g x10° 1 x 10"
t

Plot of rvs. f, fort= 0..10°

4% 10"
r 3.x10!

2 x 10!

0 200000 400000 600000 800000 1000000
1
—_ rir

Details fort=0..1 7

155 10!

>

152 10!

15x 1014
0 20000 40000 60000 80000 100000
t

— rit

Plot of rvs. 1, for t = 0..10°. The period of th envelope
\for this time range is T=2.2-1 0° (~7 years)
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Polar plot of ¥ vs 8, for | R, Theta, 0..2-107]
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Polar plot of v vs ¢, for [R, Phi, 0..5-107]
The angle ¢ tends to 135° for longer times (can be
verified with the plot r vs ¢)
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Polar plot of ¥ vs 6, for | R, Theta, 0..2-10°]
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Polar plot of ¥ vs @, for [R, Phi, 0..5-106]
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Polar plot of ¥ vs 6, for [R, Theta, 0..3-10 |
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Polar plot of v vs ¢, for [R, Phi, O..IOS]
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Polar plot of v vs , for
[R[r], tt=0.7-10°2 :rc], mumpoints = 3

A tvpe of spiral that that evolves with forward and
backward motion..
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Polar plot of rvs t, for
[R(.f], tt=0.7-10°2 :'cl numpoints = 3

A type of spiral that that evolves with forward and
backward motion..
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Polar plot of v vs , for
[R[r], t1=0.7-10°2 :rc], mumpoints = 3

A tvpe of spiral that that evolves with forward and
backward motion..
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1072

150°

150°

150°

The mass m reaches equilibrium at 8 = 150° (initial
position of 60°, plus 90°).
3D plot for t = 0..10*

The mass m reaches equilibrium at 8 = 150° (initial
position of 60°, plus 90°).
3D plot for i = 0..10%

The mass m reaches equilibrium at 6 = 150° (initial
position of 60°, plus 90°).
3D plot for t = 0..10°
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Plot of G vs. t, for.’=0‘.104 Plot of @ vs. t, for.’=0..104 Plot of @ vs. t, for.’=0..104
26
26 26
20
-]
20
16 20
-]
12 L6 16
0 12 12
0 4000 6000 0 2000 4000
ol 9l
Plot of rvs. t, fort= 0..10* Plot of rvs. t, fort=0..10° Plot of rvs. t, fort=0.10°
14x 10"
1 2.1 x 10" 21x 101!
1% 10
1
’ o 19x 10 19 x 10t
6.x10° : I r
- 1.7x10 17 x 101!
2.%x10° .
} 15x 10 1
15x 107
0 0 20 40 60 0 0

rf

163




Polar plot of v vs 8, for [R, Theta, 0..103}
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Polar plot of ¥ vs @, for [R, Phi, 0..10°]
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Polar plot of v vs 8, for [R, Theta, 0..1 03]
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Polar plot of ¥ vs ¢, for R, Phi, 0..10°]
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Polar plof of v vs 8, for [R, Theta, 0..1 03]
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Polar plot of v vs t, for
[R[r], Lt= 0.10°-2 :rcl numpoints = 4

A tvpe of spiral that that evolves with forward and
backward motion..
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Polar plot of v vs t, for
[R(.f], Lt= 0.10°-2 :rc], rmumipoints = 4

A type of spiral that that evolves with forward and
backward motion..
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Polar plot of ¥ vs t, for
[R(.f], Lt= 0.10°-2 :rc], mumipoints = 4

A type of spiral that that evolves with forward and
backward motion..
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135¢

135°

135°

The mass m reaches equilibrium at 0 = 135° (initial
position of 43°, plus 90°).
3D plot for t = 0..10°

13
2.x107 8.x 10714 % 10"

The mass m reaches equilibrium at 6 = 135° (initial
position of 45°, plus 90°).
3D plot for t = 0..10*
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The mass m reaches equilibrium at 0 = 135° (initial
position of 45°, plus 90°).
3D plot for t = 0..10%
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Plot of 8 vs. v, for t=0..10°
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Plot of Ovs. &, fort= 0.10° Plot of 8vs. &, fort= 0..10 Plot of Ovs. &, forit= 0..10%
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Polar plot of v vs 8, for [R, Theta, 0..10]
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Polar plot of ¥ vs @, for [R, Phi, 0..10°]
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Polar plot of 1 vs 8, for [R, Theta, 0..1 0}
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Polar plot of ¥ vs ¢, for [R, Phi, 0..10°]
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Polar plot of v vs 8, for [R, Theta, 0..1 0]
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Polar plot of ¥ vs ¢, for [R, Phi, 0..10°]
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Polar plot of rvs t, for

[R(t], Li=0.10-2 ?C], numpoints = 4

A regular spiral.
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Polar plot of rvs &, for

[R[f], tt=0.10-2 ﬂ], mimpoints = 4

A regular spiral.
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Polar plot of v vs &, for

[R(f], Li=0.10-2 71'], numpoinis = 4

A regular spiral.
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180°

180°

180°

The mass m reaches equilibrium at 8 = 180° (initial
position of 90°, plus 90°).
3D plot for t = 0..10%
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The mass m reaches equilibrium at 8 = 180° (initial
position of 90°, plus 90°).

3D plot for t=0..10:
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Plot of 0 vs. 1, for t = 0..10 Plot of @ vs. 1, for t = 0..10° Plot of @ vs. 1, for t = 0..10°
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Polar plot of ¥ vs 8, for | R, Theta, 0..1]
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Polar plot of ¥ vs @, for [R, Phi, O..JOZ}
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Polar plot of ¥ vs 8, for | R, Theta, 0..1]
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Polar plot of ¥ vs @, for [R, Phi, 0..102]
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Polar plot of ¥ vs 8, for | R, Theta, 0..1]
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Polar plot of ¥ vs @, for [R, Phi, 0..102}

T

A
&




Polar plot of ¥ vs t, for
[R(i‘], ti=0.52 n], numpoints = 4
A regular spiral.
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Polar plot of ¥ vs t, for
[R(f], tt=0.52 Tc] numpoints = 4
A regular spiral.
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Polar plot of ¥ vs t, for

[R(f], Li=0.5-2 TI], numpoints = 4
A regular spiral.
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100 150° The mass m reaches equilibrium at 6 = 150° (initial The mass m reaches equilibrium at 8 = 150° (initial The mass mn reaches equilibrium at 8 = 150° (initial
position of 60°, plus 90°). position of 60°, plus 90°). position of 60°, plus 90°).
150 3D plot for t = 0..10: 3D plot fori=20.1: 3D plotfort=20.1:
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