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ABSTRACT 

This paper presents a model that characterizes a collateral process directly based on Credit Support 

Annex (CSA). The model is devised that allows for collateralization adhering to bankruptcy laws. We find 

evidence that there is a strong linkage between market and credit risk. Our study suggests that banks and 

regulators need to think about an integrated framework to capture interactions of these two types of risk. 

This requires all profits and losses are gauged in a consistent way across risk types as they tend to be driven 

by the same economic factors.  
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Due to the complexity of collateralization, the literature seems to turn away from direct and detailed 

modeling. For example, Johannes and Sundaresan [2007], and Fuijii and Takahahsi [2012] model 

collateralization via a cost-of-collateral instantaneous rate. Piterbarg [2010] regards collateral as a regular 

asset and uses the replication approach to price collateralized derivatives. 

This article makes theoretical and empirical contributions to the study of collateralization by 

addressing several essential questions. First, how does collateralization affect swap rate?  

Unlike generic mid-market swap rates, swap premia are determined in a competitive market 

according to the basic principles of supply and demand. A swap client first contacts a number of swap 

dealers for a quotation and then chooses the most competitive one. If a premium is too low, the dealer may 

lose money. If a premium is too high, the dealer may lose the competitive advantage. 

This article uses an indirect empirical approach. We define a swap premium spread as the premium 

difference between two swap contracts that have exactly the same terms and conditions but are traded with 

different CSA counterparties. We reasonably believe that if two contracts are identical except counterparties, 

the swap premium spread should reflect counterparty credit risk only, as all other risks/costs are identical.  

Empirically, we first study the marginal impact of credit risk. Since credit default swap (CDS) 

premium theoretically reflects the credit risk of a firm, we use the market swap premium spreads as the 

response variable and the CDS premium differences between two counterparties as the explanatory variable. 

The estimation result implies that approximately 75% of market spreads can be explained by counterparty 

credit risk. In other words, counterparty risk alone can provide a good but not overwhelming prediction on 

spreads. 

We then assess the joint effect. Because implied or model-generated spreads take into account both 

counterparty risk and collateralization, we assign the model-implied spreads as the explanatory variable 

and the market spreads as the response variable. The new adjusted 
2R  is 0.9906, suggesting that 

counterparty risk and collateralization together have high explanatory power on premium spreads.  



 2 

Second, we find that the CVA of a collateralized counterparty portfolio is always smaller than the 

one of the same portfolio without collateralization. We also find that credit risk is negatively correlated 

with collateralization as an increase in collateralization causes a decrease in credit risk. The empirical tests 

corroborate our theoretical conclusions that collateralization can reduce CVA charges and mitigate 

counterparty risk. 

Finally, We find that there is a positive correlation between market risk and credit risk as value at 

risk (VaR) increases after considering counterparty credit risk. We also find that collateralization and 

market risk have a negative correlation, i.e., collateral posting can actually reduce VaR. This finding 

contradicts the prevailing belief in the market that collateralization would increase market. 

 

Pricing Collateralized Financial Derivatives 

As the only reason for taking collateral is to reduce/eliminate credit risk, collateral analysis should 

be closely related to credit risk modeling. There are two primary types of models that attempt to describe 

default processes in the literature: structural models and reduced-form models. Many practitioners in the 

market have tended to gravitate toward the reduced-from models given their mathematical tractability and 

market consistency.  

We consider a filtered probability space (  , F ,  
0ttF , P ) satisfying the usual conditions, 

where   denotes a sample space, F  denotes a  -algebra, P  denotes a probability measure, and  
0ttF  

denotes a filtration. In the reduced-form framework, the stopping or default time   of a firm is modeled 

as a Cox arrival process whose first jump occurs at default and is defined by, 

 = 
t

s dssht
0

),(:inf      (1) 

where )(th  or ),( tth   denotes the stochastic hazard rate dependent on an exogenous common state t , and 

  is a unit exponential random variable independent of t .  

It is well-known that the survival probability from time t to s in this framework is defined by 
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 The default probability for the period (t, s) is given by 






−−=−== 

s

t
duuhstptsPstq )(exp1),(1)|(:),(     (2b) 

Let valuation date be t. Consider a financial contract that promises to pay a 0TX  at maturity 

date tT  , and nothing before the time. 

The binomial default rule considers only two possible states: default or survival. For a discrete one-

payment period (t, T ) economy, at time T  the contract either defaults with the default probability ),( Ttq  

or survives with the survival probability ),( Ttp . The survival payoff is equal to TX  and the default payoff 

is a fraction of TX : TX , where   is the recovery rate. The value of this defaultable contract at time t is 

the discounted expectation of all the possible payoffs and is given by 

    tt FF TT

N XTtITtDEXTtqTTtpTtDEtV ),(),(),()(),(),()( =+=      (3) 

where  tE F•  is the expectation conditional on tF ,  ),( TtD denotes the risk-free discount factor at time 

t for maturity T and  ),()(),(),( TtqTTtpTtI +=  can be regarded as a risk-adjusted discount ratio. 

Suppose that there is a CSA agreement between a bank and a counterparty in which the counterparty 

is required to deliver collateral when the mark-to-market (MTM) value arises over the effective threshold 

H.  

The default payment under a CSA can be mathematically expressed as 

( ) ))(1)(()()()()()( TTCXTTCXTTCTP TT

D  −+=−+=       (4) 

where )(TC  is the collateral amount at T. 

It is worth noting that the default payment in equation (4) is always greater than the original 

recovery, i.e., T
D XTTP )()(   because )(T  is always less than 1. Said differently, the default payoff of 

a collateralized contract is always greater than the default payoff of the same contract without a CSA. That 
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is why the major benefit of collateralization should be viewed as an improved recovery in the event of a 

default. 

According to CSA, if the contract value )(tV C
 is less than the effective threshold )(tH , no 

collateral is posted; otherwise, the required collateral is equal to the difference between the contract value 

and the effective threshold. The collateral amount posted at time t can be expressed mathematically as 

)0),()(max()( tHtVtC C −=      (5) 

where 0)( =tH corresponds to full-collateralization; 0)( tH  represents partial-collateralization; and 

0)( tH  reflects over-collateralization. 

For a discrete one-payment period (t, T) economy, at time T, if the contract survives, the survival 

value is the promised payoff TX  and the collateral taker returns the collateral to the provider. If the contract 

defaults, the default payment is defined in (4) where the future value of the collateral is ),(/)()( TtDtCTC = . 

Since the most predominant form of collateral is cash according to ISDA [2013], it is reasonable to consider 

the time value of money only for collateral assets. The large use of cash means that collateral is both liquid 

and not subject to large fluctuations in value. The value of the CSA contract is the discounted expectation 

of all the payoffs and is given by 

( )  tFTT
C XTtpTCXTTCTtqTtDEtV ),())()(()(),(),()( +−+=      (6) 

After some simple mathematics, we have the following proposition  

 The value of a collateralized single-payment contract is given by 

  ),(),()( TtGXTtFEtV T
C −= tF          (7a) 

where 

( ) ),(),(),(/11),(
)()()()(

TtDTtITtITtF
tHtVtHtV NN 

+=      (7b) 

( ) ),(/)(1),()(1),(
)()(

TtITTtqtHTtG
tHtV N −=


            (7c) 

where ( )tF),(),( TtIETtI = . ),( TtI  and )(tV N
 are defined in (3). 
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The pricing in (7) is relatively straightforward. We first compute )(tV N  and then test whether its 

value is greater than )(tH . After that, the calculations of ),( TtF , ),( TtG  and )(tV C  are easily obtained. 

We discuss a special case where 0)( =tH corresponding to full-collateralization. Suppose that 

default probabilities are uncorrelated with interest rates and payoffs1. From Proposition 1, we can easily 

obtain )()( tVtV FC =  where  tFT
F XTtDEtV ),()( =  is the risk-free value. That is to say: the value of a 

fully-collateralized contract is equal to the risk-free value. This conclusion is in line with the results of 

Johannes and Sundaresan [2007], Fuijii and Takahahsi [2012], and Piterbarg [2010]. 

 The value of a collateralized multiple-payment contract is given by 

( )  ( )   
−

= +
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where 

( ) ),(),(),(/11),( 111)(),()(),(1 11 ++++ ++
+= jjjjjjTHTTJTHTTJjj TTDTTITTITTF

jjjjjj
        (8b) 

( ) ),(/)(1),()(1),( 111)(),(1 1 ++++ −=
+ jjjjjjTHTTJjj TTITTTqTHTTG

jjj
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( )




 += +++++ jTF11111 )(),(),(),( jj

C

jjjjjj XTVTTITTDETTJ     (8d) 

where 
−

= + =
1

0 1 1),(
i

j jj TTF  is an empty product when 0=i . Empty product allows for a much shorter 

mathematical presentation of many subjects. 

 

Empirical Results 

Impact of collateralization on swap rate 

 
1 Moody’s Investor’s Service [2000] presents statistics that suggest that the correlations between interest 

rates, default probabilities and recovery rates are very small and provides a reasonable comfort level for the 

uncorrelated assumption. 
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Unlike the generic benchmark swap rates, swap premia are determined according to the basic 

principles of supply and demand. The swap market is highly competitive. In a competitive market, prices 

are determined by the impersonal forces of demand and supply, but not by the manipulations of powerful 

buyers or sellers. 

A swap premium is supposed to cover the expected profit and all the expenses, including the cost 

of bearing unsecured credit risk. Unfortunately, however, we do not know what percentage of the market 

swap premium is allocated to the unsecured credit risk, which makes a direct verification impossible.  

To circumvent this difficulty, we design an indirect verification process in which we select some 

CSA swap pairs such that the two contracts in each pair have exactly the same terms and conditions but are 

traded with different counterparties under different collateral agreements. It is reasonable to believe that 

the difference between the two contracts in each pair is solely attributed to collateralized counterparty credit 

risk, as all the other risks/costs are identical. Therefore, by accounting for credit risk and collateralization, 

we can efficiently compare the implied spreads with the market spreads for these pairs. 

Given the above information, we are able to compute the collateralized swap rates. We find that 

the model-implied spreads fluctuate randomly around the market spreads. We refer to the differences 

between the model-implied premium spreads and the market quoted premium spreads as the model-market 

premium spread differentials.  

Next, we examine the effects of credit risk and collateralization, alone or combined, on swap 

premium spreads. First, we study the marginal effect of credit risk. For each swap pair, we obtain the 

counterparty CDS premia. Presumably, the differences in CDS premia should mainly represent the 

differences in counterparty risk. To determine the strength of the statistical relationship between market 

premium spreads and counterparty risk, we present the estimate of the following regression model. 

++= bXaY      (9) 

where Y is the market swap premium spread, X is the difference between the counterparty CDS premia, a 

is the intercept, b is the slope, and   is the regression residual. 
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The results of this regression are shown in Exhibit 7. It can be seen that the adjusted 
2R  is 0.7472, 

implying that approximately 74% of market premium spreads can be explained by credit risk alone. We 

provide empirical evidence that counterparty credit risk alone plays a significant but not overwhelming role 

in determining credit-related spreads when contracts are under collateral agreements. Moreover, the slope 

is 0.0127, suggesting that a CDS spread of about 100 bps translates into a swap spread of about 1.27 bps. 

Finally the small p-value indicates that the changes in CDS premia are closely related to the changes in 

market premium spreads. 

 

Exhibit 1: Marginal credit risk regression results 

This exhibit presents the regression results for the following regression model: 

 MarketSwapPremiumSpreads = a + b * DifferencesBetweenCounterpartyCDSs +  ε 

where the market swap premium spreads are used as the dependent variable and the differences between 

the counterparty CDS premia as the explanatory variable. 

Slope Intercept Adjusted 
2R  Significance F T value P value 

0.0127 -2.7E-04 0.7472 1.1E-05 18.6 1.51E-66 

 
 

According to ISDA Margin Survey (ISDA [2013], 73.7% of OTC derivatives are subject to 

collateral agreements. For large firms, the figure is 80.7%. Accounting for collateralization has become 

increasingly important in pricing OTC derivatives. Since the implied spreads generated by our model take 

into account both credit risk and collateralization, the statistical relationship between the market spreads 

and the model-implied spreads should refer to the joint effect of counterparty credit risk and 

collateralization on market spreads. Thus, we present another regression model where the market spreads 

are regressed on the implied spreads. The regression results are shown in Exhibit 8. 

 

Exhibit 2: Credit risk and collateralization combined regression results 
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This exhibit presents the regression results for the following regression model: 

  MarketSwapPremiumSpreads = a + b * ImpliedSwapPremiumSpreads + ε 

where the market swap premium spreads are used as the dependent variable and the model-implied swap 

premium spreads as the explanatory variable. 

Slope Intercept Adjusted 
2R  Significance F T value P value 

0.9857 4.48E-05 0.9906 3.21E-08 25.4 3.16E-110 

 

Exhibit 2 shows that the adjusted  
2R  value is 0.9906, implying that approximately 99% of the 

market spreads can be explained by the implied spreads. Also, the small p-value suggests that the changes 

in implied spreads are strongly related to the changes in market spreads.  

The empirical results shed light on the economic and statistical significance of collateralization. 

The increase in the explanatory power of swap premium spreads bears an interesting finding: It seems that 

credit risk alone has a modest explanatory power on premium spreads. Only the combination of credit risk 

and collateralization can sufficiently explain them. 

 

Impact of collateralization on credit risk 

In this subsection, we study how collateralization affects credit risk by measuring CVA changes 

due to collateral posting. CVA is the market price of counterparty credit risk that has become a central part 

of counterparty credit risk management.  

From the same dataset above, we find that there are a total of 3052 counterparties having live trades 

as of May 11, 2012. 516 of them have CSA agreements. We randomly select one counterparty portfolio 

that contains 476 interest rate swaps, 36 interest rate swaptions and 223 interest rate caps/floors. First, we 

compute the risk-free value 702,737,2=FV  that is relatively straightforward as the risk-free portfolio 

value is what trading systems or pricing models normally report.  
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Second, we assume that there is counterparty credit risk but no collateral agreement. Based on the 

pricing model proposed by Xiao [2015], we compute the risky value of the portfolio as 014,688,2=NV

after considering counterparty credit risk. By definition, the CVA without collateralization is equal to 

.688,49=−= NF

N VVCVA  

Next, we further assume that there is a CSA agreement in which the threshold is 2 million and the 

MTA is 100,000. The risky value of the portfolio is calculated as 094,725,2=CV  according to 

Proposition 2. The CVA with collateralization is given by 608,12=−= CF

C VVCVA . Similarly, we can 

compute the CVAs under different collateral arrangements and present the results in Exhibit 9.  

 

Exhibit 3. Impact of Collateralization on CVA 

This exhibit shows that CVA increases with collateral threshold. The infinite collateral threshold is 

equivalent to no collateral agreement and the zero-value collateral threshold corresponds to full 

collateralization. An increase in collateral threshold leads to a decrease in collateralization. 

Effective Threshold  0 2.1 Million 4.1 Million 6.1 Million 8.1 Mil Infinite ( ) 

CVA 0 12,608 23,685 33,504 42,254 49,688 

 

Exhibit 9 tells us that collateral posting can reduce CVA. Full collateralization makes a portfolio 

appear to be risk-free. An increase in collateral threshold leads to a rise in unsecured credit exposure, and 

thereby an increase in CVA. In particular, CVA reaches the maximum when the threshold is infinite 

representing no collateral arrangement. 

We extend our analysis to other CSA portfolios. The results hold across different CSA 

counterparties and collateral agreements. Our findings show that collateral posting can reduce credit risk 

and CVA. The results also suggest a negative correlation between collateralization and CVA as an increase 

in collateralization causes a decrease in CVA charge and vice-versa. These findings improve our 

understanding of the relationship between collateralization and CVA. 
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Impact of collateralization on market risk 

We study how collateralization impacts market risk by gauging VaR changes due to collateral 

arrangements. VaR is the regulatory measurement for assessing market risk. It is defined as the maximum 

loss likely to be suffered on a portfolio for a given probability defined as a confidence level over a given 

period time. In its most general form, VaR measures 10-day 99th percentile of potential loss that can be 

incurred.  

There are three commonly used methodologies to calculate VaR – parametric, historical simulation 

and Monte Carlo simulation. Parametric model estimates VaR directly from the standard deviation of 

portfolio returns typically assuming returns are normally distributed. Historical simulation calculates VaR 

from the distribution of actual historical returns. Whilst Monte Carlo simulation computes VaR from a 

distribution constructed from random outcomes. In this paper, we calculate historical VaR. 

For monitoring market risk, many organizations segment portfolios in some manner. They may do 

so by traders and trading desks. Typically, a market risk portfolio contains derivatives across multiple 

counterparties, while a counterparty portfolio comprises transactions among different traders and trading 

desks. We fortuitously select a trading portfolio and then partition it into single-counterparty sub-portfolios. 

One sub-portfolio contains 172 interest rate swaps, 68 caps and floors, 25 European swaptions and 17 

cancelable swaps. 

First, we compute the VaR of the sub-portfolio without considering credit risk. The calculated result 

as of May 11, 2012 is -386,570. Here the VaR is a negative value by definition. However, the industry 

convention is to report VaR as a positive number that is the amount of money one can lose. Thus, people 

in the market usually say that the VaR is 386,570 in this case. This convention can be confusing in places. 

If one says that VaR increases, the numbers actually become smaller or move into the left tail. 

For many reasons, both historical and practical, market and credit risk have often been treated as if 

they are unrelated source of risk: the risk types have been measured separately, managed separately, and 

economic capital against each risk type has been assessed separately.  
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However, market risk and credit risk actually reinforce each other. Default-induced credit losses 

can be driven by market price changes. At the same time, the changes in prices depend on the rating 

migration or increase in the default perception of the firm. The Basel Committee on Banking Supervision 

(see BCBS [2009]) also finds that those banks that were more severely affected in the global financial crisis 

measured their market and credit risk separately, whereas banks that used an integrated approach to market 

and credit risk measurement were much less impacted. Measuring market risk without considering credit 

risk may mask the significant impact of credit risk and often leads to underestimation of risk. 

Therefore, we further calculate VaR by taking credit risk into account. Let us first assume that there 

is no CSA agreement. Each trade is valued by the risky model developed by Xiao [2015]. The VaR with 

credit risk is computed as -418,948. It can be seen that VaR has increased from 386,570 to 418,948 after 

accounting for credit risk. The above empirical results show that market fluctuation has a larger impact on 

VaR when credit risk is taken into account. Our research highlights the linkage between market and credit 

risk.  

Next, we measure VaR again by considering both counterparty credit risk and collateralization. 

Assume that there is a CSA arrangement. The VaR values under different effective collateral thresholds are 

displayed in Exhibit 10. 

 

Exhibit 4. Impact of Collateralization on VaR 

This exhibit shows that VaR increases with collateral threshold. The infinite collateral threshold is 

equivalent to no collateral agreement and the zero-value collateral threshold corresponds to full 

collateralization.  

Effective Threshold  0 2.1 Million 4.1 Million 6.1 Mil Infinite ( ) 

VaR -386,570 -398,235 -404,401 -410,756 -418,950 

 
 

Exhibit 10 tells us that collateral posting actually can reduce VaR. The results show that market 

risk exposure rises as collateral threshold increases. In particular, VaR reaches the maximum when the 
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threshold is infinite representing no collateral arrangement. We come to the same conclusion after repeating 

this test for other portfolios.  

Our findings suggest that there are important interactions between market and credit risk. We find 

a positive correlation between market and credit risk as they increase or decrease together. We also find 

that collateralization is actually negatively correlated with market risk, i.e., an increase in collateralization 

causes a drop in market risk. Said differently, collateral posting can reduce market risk. Our research 

contributes to the understanding of the interaction between market and credit risk. 

 

Conclusion 

This article presents a new model for pricing collateralized financial contracts based on the 

fundamental principal and legal structure of CSA. The model can back out market prices. This is very useful 

for pricing outstanding collateralized derivatives. 

Empirically, we use a unique proprietary dataset to measure the effect of collateralization on pricing 

and compare it with model-implied prices. The empirical results show that the model-implied prices are 

quite close to the market-quoted prices, suggesting that the model is fairly accurate on pricing collateralized 

derivatives. 

We find strong evidence that counterparty credit risk alone plays a significant but not 

overwhelming role in determining credit-related spreads. Only the joint effect of collateralization and credit 

risk has high explanatory power on unsecured credit costs. This finding suggests that failure to properly 

account for collateralization may result in significant mispricing of derivatives. 

We also find evidence that there is a strong linkage between market and credit risk. Our research 

results suggest that banks and regulators need to think about an integrated framework to capture material 

interactions of these two types of risk. This requires all profits and losses are gauged in a consistent way 

across risk types as they tend to be driven by the same economic factors. Our finding leads to an improved 
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understanding of the interaction between market and credit risk and how this interaction is related to risk 

measurement and management. 
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