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Abstract

In this paper, we will prove that when an integer n >1, there exists a prime number between 3n
and 4n. This is another step in the expansion of the Bertrand’s postulate - Chebyshev’s theorem
after the proof of a prime number between 2n and 3n.

Introduction

The Bertrand’s postulate - Chebyshev’s theorem States that for any positive integer n, there is
always a prime number p such that n < p < 2n. It was proved by Pafnuty Chebyshev in 1850 [1].
In 2006, M. El Bachraoui [2] expanded the theorem by proving that for any positive integer n,
there is a prime number p such that 2n < p <3n. In 2011, Andy Loo [3] expanded the theorem
to that when n 2 2, there exists a prime number in the interval (3n, 4n). Recently, the author
used a different method [4] to prove that a prime number exists between 2n and 3n by
analyzing the binomial coefficient (‘ZL) In this paper, we will use the similar way to prove that a

prime number exists between 3n and 4n by analyzing the binomial coefficient (47?).

Definition: Fa2p>b{(4:)} denotes the prime factorization operator of (47?). It is the product

of the prime numbers in the decomposition of (4111) in the range of a 2 p > b. In this operator,

p is a prime number, a and b are real numbers,and4n>2a2p>b 1.
It has some properties:

. 4n
It is always true that Fa2p>b{( n )} >1 — (1)
If there is no prime number in Fa2p>b{(4$)}, then Fa2p>b{(47?)} =1, or vice versa,
if Fa2p>b{(4,:l)} = 1, then there is no prime number in Fa2p>b{(47:l)} : —(2)
For example, F122p>8{(146)} =11°%= 1. No prime number is in (146) in the range of 12> p > 8.
. . . 4n 4n .
If there is at least one prime number in Fa2p>b{( n )}, then Fa2p>b{( n )} > 1, or vice versa,
if Fa2p>b{(4:)} > 1, then there is at least one prime number in Fa2p>b{(47:l)} . —(3)

For example, F82p>4{(146)} =5> 1. Prime number5isin (146) inthe range of 82 p > 4.

Let v, (n) be the p-adic valuation of n, the exponent of the highest power of p that divides n.

We define R(p) by the inequalities pR®) <4n < pR®+1 and determine the p-adic valuation
of (*).
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4n _ _ R(p) — 3_” — i
vy ((4)) = 5 (@)D =, (GD = vy = 228 (| 7] = || = |Z]) < rew)
because for any real numbers a and b, the expression of |a + b| — |a] — | b] isO or 1.
Thus, if p divides (?) then v, ((41;1)) <R(p) <log,(4n), or p”p((?)) <pR® <4n —(4)
And if 4n 2 p > |2v/n], then 0 < v, ((?)) <R(p)<1. —(5)
From the prime number decomposition, when n > [Zx/ﬁj
an (4n)! (4n)! (4n)! (4n)!
( ) = nl.(3n)| = F4n2p>n{ "(311)'} : n>p>lz\/ﬁj {n!'(37’l)! } . lZ\/ﬁsz { Tl!'(37’l)! }
4n (4n)! (4n)!
When n<[2va], (') < Canzpsnts 5t Tizvmgep { Gl )

(4n)! (4n)! (4n)!
Thus, ( ) < F4.n>p>n{ 1. (3n)'} Fn2p>[2\/ﬁj {n!‘(3n)! } : [2\/5]217 { n!-(3n)! }

Since all prime numbers in n! are not in the range of 4n>p >n,

(4n)! (4n)!
F4n2p>n{m} 4-n>p>n{ (3n)! }
. (4n)!
Referring to (5), Iy5 . 12vm) {n' (3n)'} [Insp D
It has been proved [5] that Hn>p p <22"3 whenn>3.
(4n)! (4n)!
Thus forn > 3, ( ) <Danspon{ G }-2 FIZ\/_J>p { — (3n)'} —(6)
Proposition
For every integer n > 1, there exists at least a prime number p such that3n<p <4n.
Proof:
. . 4ny_ (8 44n=3 512
By induction on n, for n=2, (n )= (2) =28> a3 = =, = 18.96
If (4n) 33n 3 for n stands, then for n+1,
(4(n+1)) ~ (4n+4)(4n+3)(4n+2)(4n+1) _ (411)
M+ )" (n+1)(3n+3)(3n+2)(3n+1)
(4n+4)(4n+3)(4n+2)(4n+1) 4*7"73 4 4n+3 4n+2 4n+l 44m—3
(n+1)(3n+3)(3n+2)(3n+1) n-33""3 " 3 3n+2 3n+l n (n+1)-33n-3
4_ 4 4 4 44-11 3 4_4-(Tl+1)—3
"3'3'3°1 (n+1):331-3  (n+1)-33(n+1)-3
an 4_4n 3
Thus forn > 2, (n) >n-33"‘3 —(7)
Applying (7) into (6)'
4-
in (4n)! 2 -3 (4n)!
Forn =3, ( ) F4-n>p>n{ (3n)! peo2em Flzﬁj>p { n-(3n)! } —(8)
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Let 7(n) be the number of distinct prime numbers less than or equal to n. Among the first six

consecutive natural numbers are three prime numbers 2, 3 and 5. Then, for each additional

six consecutive natural numbers, at most one can add two prime numbers, p =1 (MOD 6) and

p =5 (MOD 6). Thus, 7(n) < EJ+2 <22
Referring to (4) and (9),

(4n)! 4 (27 2Vn
L l2vmjzp {m} =Taymep {5} < (4)m@V) < (4n) 2
44n-3 (4n)!

I F . 92n—3 , M‘l'z
3n-3 nzp>n
Applying (10) into (8): ngzan=sy < Lanzp {—=1}-2 (4n) 3

(3n)!
Since for n 2 3, both 22"73 > 0 and (4n)T+2 >0
3n 3n
r (4n)! 44n-3 _ 27'@ 27 G)
snzponl Gy 1> o, Wag 2 me
n(33n-3)(22n-3)(4n) 3 2:(4n) 3 (4n) 3

2/x+9

u 27 (4\%*
Let f(x) = where x, u, w are real numbers and x 242, u=—- (E) , w=(4x)

2
)3 - w3 ()

dw 2vx+9 2Vx+9
_— = <(4x) 3 > = ((4x) P ) (ln(4x) n 2\/§+9) —w (ln(x)+ln(4)+2 + 3;)

dx 3Wx 3x 3vVx
, _(u " w@)'-uw) u ) 4\ _ In)+in(H+2 3
f (x) - (W) - w?2 “w ( 3-In (3) 3vx x)
4\  In()+in@+2 3
o) -50n () -
Since f;'(x) = % = >0, when x > 1, f; (x) is a strictly increasing function.
When x =42, f;(x) =3:In (%) —%—no 863 - 0.367 - 0.071 = 0.425 > 0.

Thus, when x 242, f;(x) >0.

Since when x 242, u,w,and f; (x) are greater than zero, f'(x) = % - fi(x)>0.

Thus f(x) is a strictly increasing function for x > 42. Then when x 242, f(x + 1) > f(x).

Q)"

Let x =n 242, then f(n+1)>f(n)=§-m

(4n) 3
4 3n 4 126
X 27 (g) 27 (5) 7.457E+16 X
Since forn=42, f(n) = S Tt 5 " 19m2pe1e 1, and since
(4n) 3 (168) 3

Q)"

f(n+ 1) > f(n), byinduction onn, whenn >42, f(n) = 22—7 — s> L
(4n) 3
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3n
4n)! . 27 G)
}>_' 2Vn+9 >
@Bn)! " 2 vt
(4n) 3

Applying (12) to (11): When n > 42, F4n>p>n{

Thus whenn > 42,

(4n)!

l—‘4-n>p>n{ 3n)! }
(4n)! (4n)! (4n)! (4n)! (4n)!
l_‘4n>1r)>3n{ Gn)! } 3n>p>2n{ (3n)! } 2n>p> an{ — (3n)! } 37n2p>4?n{ @} >p>n{ (3n)!

If there is any prime number p such that 3n > p >2n, then (4n)! has a factor of p in this range,

4n)!
and (3n)! also has the same factor of p. Thus, they cancel to each other in (4n) with no prime
(4n)!

(3n)!
}=
(3 )!

If there is any prime number p such that = p > 4n then (4n)! has the product of p - 2p, and

number in this range. Referring to (2), F3n>p>2n{

an
(3n)! also has the same product of p - 2p. Thus, they cancel to each other in (an)! with no

(3n)!
prime number in this range. Referring to (2), an { E;m;l }=
Thus, when n > 42,
(4n)! (4n)! (4n)! (4n)!
Lanzponl Gn)! = Danspsanl 75 Gn)! & 2n>p an{ Gl }-T >p n{ Gn)! 1. —(13)
(4n)! (4n)! (4n)!
Referringto (1), [ynspasn{ o, Gm! }>1, 2n>p> {(3 )I} 1, and F4n>p A= G 1> 1
(4n)! 4t .
If F2n>p>_{ )] }=1or I4 n>p n{ )] } =1, it will drop out from (13).
(4n)! . . .
Ifn>42and F4n>p>3n{ Gn)! } > 1, then referring to (3), there exists at least a prime number p
such that 3n <p <4n. — (14)
(4n)! (4n)!

1—‘znzp>37n{ @ b= 4 ( )=p>3- (—){ 3n)! b

n .
If 5221 and, [, » (Lyzps3- (_){ Gan )| } >1, let my= —, then when m, > 21, there exists at least a

prime number p such that 3m,; < p <4m,. Since n 242 > m, 2 21, the statement is also valid

4 4
for n. Thus, when n > 42, if [455p.3n{ Egn; } > 1, then [ypsp.3nd §3n;' } > 1, there exists at
least a prime number p such that 3an <p <4n. — (15)

(4n)! (4n)!
F%nzzbn{ 3n)! b=l (3)zp>3: (—){ (3n)! g

Page 4



If %2 14 and, F4 } >1, let mz- —, then when m, > 14, there exists at least

(3)zp>3 (—){ (3n )l
a prime number p such that 3m, < p < 4m,. Since n 2 42 > m, > 14, the statement is also valid
(4n)! (4n)!
(3n)!
least a prime number p such that 3n <p <4n. — (16)

for n. Thus, when n.2 42, if [yp>p.3n{ 7=} > 1, then F4n>p>3n{ } > 1, there exists at

From the right side of (13), at least one of these 3 factors is greater than one when n 2 42. From
(14), (15), and (16), when n > 42 and any one of these 3 factors is greater than one, there exists
at least a prime number p such that 3n <p <4n. —(17)

Table 1 shows that when 2 < n <42, there is a prime number p such that 3n <p <4n. — (18)

Thus, the proposition is proven by combining (17) and (18): For every integer n>1, there exists
at least a prime number p such that 3n <p <4n. —(19)

Table 1: For 2 < n <42, there is a prime number p such that 3n <p <4n.

3n 6 9 12 15 18 21 24 27 30 33 36 39 42 45

p 7 11 13 17 19 23 29 31 37 41 43 47 53 59

4n 8 12 16 20 24 28 32 36 40 44 48 52 56 60

3n | 48 51 54 57 60 63 66 69 72 75 78 81 84 87

p 61 67 71 73 79 83 83 89 89 97 97 | 101 | 101 | 103

4n 64 68 72 76 80 84 88 92 96 | 100 | 104 | 108 | 112 | 116

3n 90 93 96 99 | 102 | 105 | 108 | 111 | 114 | 117 | 120 | 123 | 126

p 103 | 107 | 107 | 109 | 109 | 113 | 113 | 127 | 127 | 131 | 131 | 137 | 139

4n | 120 | 124 | 128 | 132 | 136 | 140 | 144 | 148 | 152 | 156 | 160 | 164 | 168
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