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ABSTRACT 

The ‘gray area,’ or indeed overlap, in between primes versus composites pertains to facets 

spanning beyond their belonging on the natural axis. The former can, for one, best be posited as 

building blocks with reference to a generalized rho-operation. At this rate, primes build on 

multiplicity (rho specified anywhere near 0) whereas composites on additivity (rho taken to 1). 

These result from symmetry (self-duality) versus averaging over the latter’s solutions, 

respectively, while pointing to scenarios such as “either/both” versus “neither/both” (suggesting 

the number of (#, X) prime materializations/hits for the prime versus [higher] composite 

subdomains). The “both” overlap (boasting a relatively lower proportion in the prime subdomain) 

may plausibly amount to the aforementioned inconclusive-necessity area. The prime power (i.e. 

the number of prime radicals in the putative composite, degenerate/singular not least) of (#, X) 

tends to that of the input prime/composite in question. Among other regularities, recurring 

sequences and collated generalizations are observed in a set of follow-on conjectures.  

 

 

Rehash Tag One: Zeroing in on Meaningful Rigor 

It was argued in the previous work (Shevenyonov, 2022) that primality tends to reveal the 

kind of self-spawned or sustained nature that forces it to recur in the |#±X| characteristic (the 

“hash/sharp” indicator pointing to what is known in standard literature as the ‘digital root,’ or 

“numerological count” simpliciter). If we now zoom in on the more rigorous representation of X 

as the ‘floor’ function (as cautioned before, I opt to denote X=[A/9] rather than [(A-1)/9] for the 

10-basis, if only because in my setup, #9k=0 per any natural k), then it turns out: 

∀𝐴 ∈ 𝑵 ∃𝑋 ∈ 𝑵:  𝐴 ≡ #𝐴 + 9𝑋(𝐴) = # + 9 ∗ [
𝐴

9
]        (1) 

∀𝜔 , 𝜔 ≫
1

2
: |#𝑝𝜔 ± 𝑋(𝑝𝜔)| ∈ 𝑷  𝑖𝑓 𝑝𝜔 ∈ 𝑷       (2) 

|𝑋(𝑝) ± (𝑝 − 9𝑋(𝑝))| ≡𝜔 𝑝
′  (3)  
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𝑝′ = 2𝑚 ± 𝑝  𝑂𝑅 𝑝 + {
∓8𝑋 = ∓8 ∗ [

𝑝

9
]

±10𝑋 = ±10 ∗ [
𝑝

9
]
≡ 𝑝′   (4) 

Evidently, this applies to prior/input primes larger than or equal to 11 (or else the floor 

makes zero identically, without prime-generation never moving past self-identity). The omega-

index points to “[far] more often than not” (most of the time, a material share of instances, 

spanning a large enough domain), while (2) implying (3)-(4) suggests how the resultant prime 

generating structure productively informs (and constructively proves/motivates beyond weakly 

rationalizing) the more ‘naïve’ ones, notably p=2m±1 or p=4m±3 with respect to how m is 

endogenized in terms of the ‘floor’ metric. Follow-on Conjectures will show how, in a sense, the 

omega-qualifier (domain) is compact in that the resultant, or posterior, primes are largely of the 

same nature as the prior/input ones (5): 

𝑝, 𝑝′ ∈ 𝑷𝜔         (5) 

 

Rehash Tag Two: Recollections of the Universal Operation 

Along the orduale lines, one is now poised to deploy the rho-aggregate/residuale (rho-

lativity as one ultimate way of making a set or group one, in that a complete and least 

inconclusive relationship is hence defined therewithin) as a representation of the generalized 

operation, or a universal algebra, as has been attempted before (Shevenyonov, 2019).  

∀𝑃𝑘 ∈ 𝑆(𝑛) ∈ 𝑃𝜌 ∃𝜌:  𝑛𝑃𝜌̂ ≡∑𝑛𝑘𝑃𝑘
𝜌
 , ∑𝑛𝑘 ≡ 𝑛

𝑘

     (6)

𝑛

𝑘=1

 

It is easy to see that, as rho tends to 0, the generalized rho-operation collapses to multiplication, 

such that a composite results in the left-hand side (7a). (Note also that nP turns out a profitable 

formulation, in that it likewise connotes the non-prime/composite subdomain of the [odd] natural 

set.) By contrast, primality results as a self-identity degenerate prime-root vector as Pk’s collapse 

to P-hat or converge to each other (7b). Interestingly enough, the n need not be specified 

explicitly, as the set can embark on the entire prime-radicals axis with the respective nk powers 

applying (or amounting to zero identically as if to switch the irrelevant prime roots off.) 

  𝑃̂
𝜌→0
→  (∏𝑃𝑘

𝑛𝑘

𝑛

𝑘=1

)1/𝑛 ∈ 𝒏𝑷              (7𝑎) 

  𝑃̂
𝜌→1,   𝑃𝑘→𝑃̂
→        ∑

𝑛𝑘
𝑛
∗ 𝑃̂

𝑘

≡ 𝑃̂ = 𝑃 ∈ 𝑷       (7𝑏) 
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While the [unrestricted] rho-aggregation (or Lame set/group) could be viewed as an all-

comprising operation (indeed generalizing and straddling over multiplication, summation, 

minimization, finding the norm/distance, etc.), its select corners are of interest, too. As has been 

suggested, rho=0 results in logs/multiplicity, while rho=1 in additivity—indeed the core vicinities 

for composites versus primes, respectively. 

What is more, one could think of the composite subdomain as symmetry (I have long 

called it cardinalcy in contrast to ordinalcy/orduality), or self-duality, whereby (8) holds 

resulting in 0 and 2 (cf. the “neither” versus “both” scenarios pertaining to the conjectured 

primality of |X±#|)—e.g. capturing products and norms. In contrast, primality could be thought of 

as not complying with strong symmetry in general, or as an ‘average case’ in between those 

corners when it comes to sums building on rho=1 (9). Please note, as per (7c) that there is no way 

of distinguishing between the [meta] operations of multiplying versus summing between the 

[dual] operations/actions. 

1

𝜌
+
𝜌 − 1

𝜌
≡ 1, 𝜌 +

𝜌

𝜌 − 1
= 𝜌 ∗

𝜌

𝜌 − 1
      (7𝑐) 

𝜌 =
𝜌

𝜌 − 1
= {
0
2
 < 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑐𝑦, 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑠 >       (8) 

𝜌 ≠
𝜌

𝜌 − 1
~
1

2
∗ {
0
2
~1  < 𝑜𝑟𝑑𝑢𝑎𝑙𝑖𝑡𝑦, 𝑝𝑟𝑖𝑚𝑒𝑠 >    (9) 

 

Conjectures: The “Meseemeth” Swathe 

We are now in a position to induce a set of extra or qualifying Conjectures following up 

on the previous glimpse.  

Conjecture 2A. Refer to “either” (focality), “neither” (degeneracy, nil-focality), and “both” 

([am]bifocality) as scenarios featuring at least one (plus or minus-hit), none, or complete 

realization of posterior/generated primality as a matter of applying the |X±#| metric to the prior 

(ensured primality). It can be argued that “either” dominates for primes whereas “neither” is 

[relatively] more characteristic of composites. While they allow for the “both” quadrant (which 

may have a significant overlap with the ‘gray area’ of necessity as opposed to sufficiency), it is 

far more commonplace for composites (in strong/absolute terms included) and minor (weak or 

relative) per primes.  

Conjecture 2B. The effective power/rank of the prime root vector (i.e. the number of primes not 

switched off in the composite) for the implied X will routinely not exceed that of the input 

composite. 



Prime-Composite Duality Conjectures by Art Shevenyonov                                   4 
 

Conjecture 2C. For input primes (i.e. singular composites), the rank does not exceed one—or the 

order of comparison may be reversed in case of X proving a multiple of 3k or 5k. This partially 

explains Conjecture 2A or shows its bearing on Conjecture 2B.  

Conjecture 2D. The resultant (if any) prime composition of X resembles that of the prior/input 

(thus again liaising with Conjectures 2B-2C). Somewhat loosely, #radX(A)=#rad A overall as a 

sum and on a piecemeal, per-element basis as one possibility. More loosely, alternate 

generalizations tend to conform on a piecemeal/weak or complete/strong basis. (The rad operator 

defined as under the ABC conjecture.) This may have some bearing on (or informing for) the 

above omega-qualifier. 

 

The above could be induced from inspecting a sample of composites.  

143=11*13=(#,X)=(23, 3*5)=(8, 15): 15+8=23, 15-8=7 <“both”=max rank below 2 at min> 

221=13*17=(5, 23*3)=(5, 24): 24+5=29, 24-5=19 <“both”=max rank below 2 at min> 

247=13*19=(22, 33)=(4, 27): 27+4=31, 27-4=23 <“both”=max rank below 2 at min> 

323=17*19=(23, 5*7)=(8, 35): 35+8=43, 35-8=27=33 <“either”=rank below 2 due to singularity: 

rad 33=3<33> 

817=19*43=(7, 2*32*5)=(7, 90): 90+7=97, 90-7=83 <“both”= max rank below 2 at min > 

96773=29*47*71=(5, 28*3*7)=(5, 10752): 10757=31*347, 10747=11*977 <“neither,” max rank 

below 3> 

Not only are the total #-scores equal identically in the priors versus their #’s, or left-

characteristics (that being tautological), so too are they with respect to X, or the right-

characteristic in the latter case: 5=#5=#10752. Moreover, this one is of special interest (as is 221) 

in just how the generalized/lax representations of the conventional values suggest a one-to-one 

correspondence between A and X(A) per element or even sequence-wise!  

I will denote {B}=A, meaning that “A is a specification of B” without going into much 

detail. Consider {21}=221=13*17={3}{7} (i.e. 221, 13, 17 are particular specifications of 21, 3, 

and 7 respectively). Alternative generalizations may remind the rationale of Roman numerals: 

e.g. 47={7-4}={3}, Y9={Y}, even though aB={B-a} may be at odds with 1B={B} as a special 

case. As per 96773=29*47*71={2}{3}{7} cf. rad(28*3*7)=2*3*7.  Likewise, 19*43=817 

suggests {1}{4+3}={7}, with (81)7 acting as if analogous to (9)7={7}, #9=#81=0. 

Now consider still-higher power cases of 4 and 5.  
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3147941=17*23*83*97=(2, 349771)=(2, 19*41*449): minus-outcome 7*29*1723, plus-outcome 

3*31*3761 <“neither,” max rank under 4>  

173518049=23*29*37*79*89=(2, 19279783)=(2, 463*41641): minus 43*448367, plus 

3*5*72*17*1543 <“neither,” max rank equaling 5 at max> 

After all, rad is but one way of generalizing values alongside # and {} being alternate 

ways. It may come as much of a surprise they measure up as it should not seem counterintuitive!  

Whilst at it, somewhat informally, Conjecture 2E could be proposed surmising that 

[higher] composites [of smaller primes <53] boost the frequency of # making 2k, if only because 

the odds of stumbling into #- even matches increase with the rank given that the weight of even-# 

primes-values is disproportionately larger amid the even/odd product-match proportion being 

symmetric from within the basis’ structure alone (cf. the Vedic square). In such instances, X 

encompasses odd-only prime roots, whilst #-odd necessarily and sufficiently factors in 2k (strong-

evens) on the X make-up.  

Lest AAA (arbitrarily-abductive-adhockery) might seem outmatching, consider an 

informal alteration of formal estimates as in Conjecture 2F: The frequency/size of similar digital 

sequencing-match between prior/input composites versus posterior X-metrics or |X±#| outcomes 

tends to grow for higher composites. To illustrate (beyond the rad and {} and # matches): ..79.. as 

of 173518049, ..17*23.. versus ..1723.. as per 3147941, ..7*7.. in 96773, etc. 
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