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Abstract

The serious obstacle for a quantum theory of general relativity is that Hamiltonian
mechanics fundamentally distinguishes time from other coordinates. Postulating that
the Hamiltonian dynamics of spacetime manifold must be entirely described by metric
tensor, and energy-momentum tensor, I heuristically derive corresponding equivalent
of Hamilton equations and then using the idea of wavefunction of spacetime, quantize
the theory.
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1 Introduction

From the paradigm of Quantum Field Theories one would expect to quantise the Newtonian
gravitational field ϕ and since that is substituted by gµν in General Relativity, one expects
it is the metric tensor that must be quantised. But in the view adopted in this paper,
something is overlooked in the common quest for quantum gravity: before one can do QFT,
one needs a non-relativistic quantum mechanics; similarly thus, before one can do quantum
gravity, one needs a neo-Hamiltonian non-quantic general relativity.

In our current understanding of GR, there are only two entities that are fundamental:
the metric tensor gµν and the energy-momentum tensor Tµν . In a retreat to the Hamiltonian
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paradigm, we can only compare these two entities with position qµ and momentum pν , and
since Tµν corresponds to pν , we conclude that gµν corresponds to qµ. Within our current
mindset the result is that we must force GR to talk in terms of quantities that quantum
mechanics understands, i.e. a new concept of phase space constructed by gµν and Tµν , for
which

{gµν , Tρσ} = δµνρσ ,

where { , } is a natural generalisation of the Poisson bracket and δµνρσ is the generalised
Kronecker delta, conveniently given by

δµνρσ =

∣∣∣∣δµρ δµσ
δνρ δνσ

∣∣∣∣ .
Contrary to the common expectation that a quantum theory of gravity must quantise space-
time (the metric tensor field), in this theory space-time is unaltered, very much like the case
with ordinary (non-relativistic) quantum mechanics in which qα is not quantised, in this
theory space-time is not quantised too.

2 Matter-waves of Manifolds

2.1 Generalisation of de Broglie relation

de Broglie relation
pµ = ℏkµ

where pµ is the four-momentum and Kµ four-wave-vector, suggests that momentum and
wave-vector must be treated similarly (if not equally). We have a generalised notion of
momentum in general relativity, but not that of wave vector. We therefore define the wave
tensor of a matter-wave by

T µν = ℏKµν . (1)

2.1.1 Wave-blackhole duality

We know that blackholes are very much like ordinary matter. They possess mass, which is
the characteristic property of matter. They can also possess electric charge and spin, which
are, again, properties of elementary particles. If wave-matter duality is a fundamental law of
nature, it might well be the case that blackholes in this case are similar to ordinary matter,
too. After the introduction of wave function for a manifold, we are now ready the propose
the following principle,
Principle of wave-blackhole duality To each blackhole we associate a wave-tensor defined
by its energy-momentum tensor. The wave function of a blackhole with metric gµρ is then
given by

ψ = eiK
µρgµρ .

It is crucial to understand that T µν = ℏKµν is the energy of the blackhole (spacetime) itself,
not the distributional source. I will write about the energy-momentum tensor of spacetime
(gravitational field) itself somewhere else, and provide an explicit tensor for it.
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3 Analytical Mechanics of Riemannian Manifolds

To describe the dynamics of a matterwave of spacetime, we need to find a way to do Hamil-
tonian mechanics of a manifold. The reader1 is assumed to be familiar with analytical
mechanics; see e.g. Lanczos.

Let M be a pseudo-Riemannian manifold. We postulate that the metric tensor g and
energy-momentum tensor T, completely describe the dynamics of this manifold, making them
canonical variables. Accordingly (gµν , Tµν) spans the 2n

2-dimensional phase space associated
to M.

The fundamental problem that obstructs the passage from classical Hamiltonian mechan-
ics to a Hamiltonian mechanics of manifolds, is that of time. Classical analytical mechanics
gives a special role to time (or equivalently a new variable τ , t(τ) which parametrizes paths
in phase space). But there is no methodologically continuous way to get from metric, which
knows no coordinates, to time. Therefore we cannot expect this new analytical mechanics of
manifolds to be a generalization in the conventional sense of the word. It would be a parallel
similar structure.

We begin with the Hamilton equations

dpi
dt

= −∂H
∂qi

(2)

dqi
dt

=
∂H
∂pi

(3)

The first equation, when its right-hand-side is let equal to zero, gives the conservation of
momentum. The analogue of conservation of momentum in GR is given by

∇µTµν = 0. (4)

This suggests
∇µTµν = −∂gνσHσ (5)

for the first Hamilton equation of a manifold, where

∂gαβ :=
∂

∂gαβ
. (6)

Note that for the indices to match, we have to promote H to an odd-rank tensor; I took the
minimal possibility (rank-1).
Observe that (5), when its right-hand-side is let equal to zero, yields the conservation of
momentum, naturally.

The problem now is that we do not have a definition for a vectorHamiltonianHσ(gµν , Tµν).
Let us look at the second Hamilton equation. As the canonical coordinates in GR are (g,T),
we expect the GR equivalent of the second equation to be

∇µgµν = ∂T νσHσ, (7)

1And the author! (to avoid the application of the academic maxim anything not mentioned by the author,
is unknown to him)
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where

∂Tαβ :=
∂

∂Tαβ
; (8)

but the left-hand-side is zero by metric compatibility condition. Therefore this second equa-
tion turns into an identity using which we can define a vector Hamiltonian. We thus define
vector Hamiltonian Hσ by the equation

∂T νσHσ = 0 (9)

This equation (given appropriate boundary conditions), uniquely determines Hσ.

4 Quantization

Using the notion of wavefunction of spacetime

Ψ = e−ikρσgρσ (10)

we can turn canonical variables Tρσ, g
ρσ hence Hamiltonian itself, into an operator. Note

that
∂gρσΨ = −ikρσΨ,

therefore

T̂ρσ := iℏ∂gρσ (11)

Applying the covariant derivative on this, and using (5)

iℏ∇µ∂gµν = ∇µTµν = −∂gρνHρ (12)

iℏ∇µ∂gµν + ∂gρνHρ = 0 (13)

Therefore the following set of equations provided a viable candidate for first quantization of
gravity. 

Rµν = 0,

∂TµνHµ = 0,

iℏ∇µ∂gµνΨ+ ∂gρνĤρΨ = 0.

(14)
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