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Internal Structure of All Particles

Sylwester Kornowski

Abstract: In my book, I described internal structure of gauge bosons, Higgs bosons, 
leptons, masses of quarks, lightest mesons, all Upsilons, nucleons, hyperons and all chi-b (42 
particles). In other my paper, I described the Type-X particles (8 particles). Here we described 
all other baryons with 3- or 4-star status (144 baryons) and all other mesons marked with a dot 
on the list of mesons (116 mesons). We described also the pseudoscalar axion and solved the 
strong CP problem not via an axion field.

1. Introduction
In the Scale-Symmetric Theory (SST), we present the atom-like structure of baryons [1] –

it leads to masses of all baryons and mesons.
In [1], we described internal structure of gauge bosons, Higgs bosons, leptons, masses of 

quarks, lightest mesons, all Upsilons, nucleons, hyperons and all chi-b (42 particles). In [2], 
we described the Type-X particles (8 particles).

Here we described additional 144 baryons and 116 mesons.
All masses are in MeV so for simplicity we omit units.
From SST [1] follows that in baryons is a core and relativistic pions (we call them the W 

pions) in the d = 1, 2 and 4 states. At higher energies, there can appear relativistic pion or 
kaon in the d = 0 state that transform into the spacetime condensates, C, that are scalars. There 
can be created also neutral or charged gluon loops overlapping with the d states (we call them 
the S particles). The approximate masses of the W pions and S loops are listed in Table 1 [1]. 
The XX = X+X– = 2·318.2955 MeV ≈ 637 MeV is mass of the pair composed of the 
torus/electric-charge in the core of baryons and its antiparticle – mass of it in d = 0 state is
5732 MeV and such pseudoscalar, PsXX, appears in the bottom charmed mesons.

Table 1 Masses of W pions and S loops [MeV]
States 

d
S(+–),d S(o),d W(+–),d W(o),d

0 727 725 Cπ± = 1257 
CK± = 4445

Cπ = 1215
CK = 4480

PsXX = 5732
1 423 421 216 209
2 298 297 182 176
4 188 187 162 157

For properties of hyperons are responsible the relativistic pions in the d = 2 state which is 
the ground state above the Schwarzschild surface for the nuclear strong interactions.
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The experimental central masses of baryons and their resonances are from [3], [4] and [5].
The symbol Δ(1232 | 1233) means that it concerns the Δ(1232) resonance and that our 

theoretical mass is 1233 MeV and it is marked in red.
The symbol {3/2+u} means that J = 3/2, the sense of J is “up”, and the parity is P = +1. Our 

results are marked in red. The “d” in {3/2+d} means that the sense of J is “down”.

2. The IG(JPC) quantum numbers in SST
The basic objects presented in Table 2 are created inside the nucleons, hyperons, and are 

the parts of mesons.
The transitions of the relativistic pions from the d = 2 state to the d = 4 state, cause that 

there appear the vector bosons with a mean mass ΔW2-4 = 19.367 MeV ≈ 19 MeV {IG(JPC) = 
0–(1– –)} [1].

Notice that neutral pions are the binary systems of the FGLs [1].
We know that the baryon resonances decay due to the nuclear strong interactions. On the 

other hand, parity, P, is conserved in nuclear strong interactions and electromagnetic ones.

Table 2 Basic objects created in baryons
Object Mass [MeV] IG(JPC)}

πo (the single neutral pion) 135 1–(0–+)
πo,± Mean 138 (0–)

mFGL (spin-1 fundamental gluon loop)
W(o) gluons or S(o) open gluon loops

ΔW2-4 (a gluon [1])

67.5

19.4

0–(1– –)

2mFGL
2W(o) or 2S(o)

2ΔW2-4
The single gluons in the pairs interact 
one with other

135

39

0+(0–+) or 0+(2– –)*

2mFGL
2W(o) or 2S(o) or 2ΔW2-4

The single gluons in the pairs do not 
interact with each other

135 0+(0++) or 0+(2++)

3mFGL
The single gluons in the triplet do not 
interact with each other

203 0–(1– –)

Spacetime condensates C 0+(0++)
Pseudoscalar PsXX 5732 0(0–)

X+X– 637 (0–) or (1–)
*When spins are antiparallel then it behaves as neutral pion. When we change 
the sense of a vector boson in a particle then parity is conserved.

Below we present some examples concerning the SST [1].
The SST Higgs boson is the non-rotating spacetime condensate composed of the confined 

SST-absolute-spacetime (SST-As) components so it is a scalar IG(JPC) = 0+(0++). Such scalars 
decay, generally, to two photons. The same concerns the condensate in centre of baryons or 
the predicted in SST scalar with a mass of ~17.2 ÷ 17.3 TeV.

The SST neutral pion is the pseudoscalar JPC = 0–+ (two spin-1 loops with antiparallel spins 
and the same internal helicity) – it decays to two photons. In such a way was organized the 
neutron matter in the Protoworld – there were the thin-disc massive protogalaxies composed 
of neutron stars so we observe too many massive thin-disc galaxies in comparison to the 
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predicted number of them in the mainstream Lambda cold dark matter (ΛCDM) model in the 
standard model of cosmology.

Photon and gluon are the rotational energies of the SST-As components so they are the 
vectors JPC = 1– –. The same concerns the spin-1 gluon loops and the open gluon loops created 
in the nuclear strong interactions. For the single vectors is C = –1 (photons in strong fields 
behave as gluons [1]).

We define isospin as a number of members in a multiplet, N, minus one and then we divide 
it by two.

The isospin selection rules for nucleons and hyperons are described in [1].
Isospins, I, of the baryon resonances, because of the attached only neutral objects, are the 

same as the basic particles: I = 1/2 for N, I = 3/2 for Δ, I = 0 for Λ, I = 1 for Σ, I = 1/2 for Ξ 
and I = 0 for Ω. Isospin of baryons follows from number of charge states, NQ

NQ = 2 I + 1 .       (1)

The G-parity is defined as follows

G = (–1)I + S + L .      (2)

But SST shows that for the gluon loops (due to their behaviour) is L = 0 [1] so we have

G = (–1)I + S . (3)

For the neutral pion is I = 1 and there are two gluon loops so we have G = –1.
For a single gluon we have I + S = 1 so G = –1.

But there are 17 mesons (about 12% of all mesons with defined IG(JPC)) that do not fit to 
the above SST model: the 10 Type-X particles [2] and 7 other particles, i.e. two a1 mesons, 
two π1 mesons, ψ2(3823), Rc0(4240) and Υ2(1D). We claim that such discrepancy follows 
from the fact that such particles contain the spin-0 quadrupole composed of one real spin-1 
electron-positron pair and one virtual spin-1 electron-positron pair – for such an object is 
IG(JPC) = 0+(0++) but the unobserved spin-1 of the virtual pair causes that the observed 
quantum numbers are as follows: {IG(JPC)}Observed = 0+(1++) – its mass is Q ≈ 1 MeV.

Part 1: Baryons

3. Δ(1232) resonance
The Δ(1232) resonance is the only one to behave in an unusual way that results from the 

dynamics of baryons [1]. Decay of such resonance starts from d = 2 state as it is for all baryon 
resonances. But the relativistic radial speed of the charged pions, π±, in the d = 4 state is [1]

vradial = (c2 – vspin,d=4
2)1/2 = 0.8614778 c , (4)

where vspin,d=4
2 / c2 ≈ 0.6974 fm / 2.7048 fm (here the 0.6974 fm is the equatorial radius of the 

core of baryons, and 2.7048 fm is the radius of the d = 4 state) [1].
It causes that the relativistic mass of the charged pions in the d = 4 state is (it moves in 

radial direction)
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π±
rel,d=4 = 274.8557 MeV and it is close to π±

rel = π± + πo = 274.5472 MeV , (5)

so there is a resonance! Such a resonance does not apply to the neutral pion. But notice that 
the second value in (5) is a little lower so it is the ground state. It causes that in our theory of 
the Δ(1232) resonance, there will appear following mass

π±
rel {0–} = π± + πo = 274.5472 MeV .           (6)

Notice that following sum of masses

N(938.9187) ≈ 939) + π±
rel {0–} = 1213.466 MeV           (7)

is close to the experimental value of the real part for mixed charges (~1210 MeV) [6].
There is also the virtual part that leads to the mean mass of the vector boson (gluon) ΔW2-4

= 19.367 MeV {JP = 1–} that interacts with the relativistic charged pion – then the spin is 
equal to 1 as it is for the SST-absolute-spacetime components [1].

In SST, we have the four charge states of the Δ(1232) resonance:

Δ(1232)++ {3/2+u} = p {1/2+u} + π+
rel {0–} + ΔW2-4 {JP = 1–u} =

= 1232.186 MeV , (8)

Δ(1232)+ {3/2+u} = n {1/2+u} + π+
rel {0–} + ΔW2-4 {JP = 1–u} =

= 1233.480 MeV ,   (9)

Δ(1232)o {3/2+u} = p {1/2+u} + π–
rel {0–} + ΔW2-4 {JP = 1–u} =

= 1232.186 MeV ,   (10)

Δ(1232)– {3/2+u} = n {1/2+u} + π–
rel {0–} + ΔW2-4 {JP = 1–u} =

= 1233.480 MeV . (11)

The arithmetic mean of the four masses is

Δ(1232 | 1233) {3/2+} = 1232.83 MeV . (12)

The basic objects in Δ(1232) are created in the d = 2 state, i.e. in the ground state above the 
Schwarzschild surface for the nuclear strong interactions [1]. Radius of the d = 2 state is Rd=2
= 1.7011 fm [1]. It means that the FGL produced in the core of baryons reaches the d = 2 orbit 
after τ = Rd=2 / c = 5.67·10–24 s. From formula Γ = h / τ we can calculate the full width that 
relates to τ: 116 MeV. On the other hand, the Breit-Wigner full width for mixed charges of 
the Δ(1232) is 114 < Γ < 120 MeV [2] so our result (116 MeV) overlaps with the 
experimental data – it validates our assumption that the basic objects listed in Table 1 indeed
are created in the d = 2 state.

JP for S(o),d=2 can be 1– for open gluon loop and ~2– for gluon loop (it follows from the fact 
that when it behaves as the S(o),d object then there is J ≈ 2.6 h while when it behaves as the 
W(o),d object there is J ≈ 1.6 h so the mean value is ~2.1 h [1]). The mean value ~2.1 h is not
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equal to J = 2 so the correct structure of Δ(1232) is defined by formulae (8) – (11). Moreover, 
the sum N(939) + S(o),d=2 > Δ(1232 | 1233) so the second state is the ground state.

From formula Γ = h c / R we know that width is inversely proportional to distance covered 
by gluons and that for R ≈ 1.7 fm is about Γ ≈ 116 MeV – it is for the Λ and Σ resonances. It 
means that when most of gluons are created in d = 0 state (R ≈ 1 fm) then Γ ≈ 200 MeV, when 
most are created in d = 1 (R ≈ 0.5 fm) then Γ ≈ 400 MeV – it is for the N and Δ resonances. 
When most are created on the d = 2 (then maximum distance is equal to diameter: R ≈ 3.4 fm) 
then Γ ≈ 60 MeV – it is for the Ξ and Ω resonances. But different intrinsic interactions can 
change value of the mean full width. Generally, in more massive resonances gluons cover 
bigger distances.

There are the four charge states so isospin of Δ(1232)++,+,o,- is I = 3/2.

4. Nucleon resonances
N(939 | 939) {1/2+u} + 4 πo {0+} + mFGL {1–d} = N(1535 | 1547) {1/2–}

N(939 | 939) {1/2+u} + 2 S(o),d=2 {2–d} = N(1520 | 1533) {3/2–}

N(1520 | 1533) {3/2–u}  mFGL {1–u} + N(1440 | 1465) {1/2+u}

N(1440 | 1465) {1/2+u} + 3 mFGL {1–d} = N(1650 | 1668) {1/2–}

N(1650 | 1668) {1/2–u} + mFGL {1–u} = N(1720 | 1736) {3/2+}

N(939 | 939){1/2+u} + S(o),d=2{1–u} + S(o),d=2{1–d} + 2 mFGL{2–u} = N(1675 | 1668) {5/2–}

N(1535 | 1547) {1/2–u} + 2 mFGL {2–u} = N(1680 | 1682) {5/2+}

N(1680 | 1682) {5/2+u} + ΔW2-4 {1–d} = N(1700 | 1701) {3/2–}

N(1700 | 1701) {3/2–u} + ΔW2-4 {1–d} = N(1710 | 1720) {1/2+}

N(1720 | 1736) {3/2+u} + 2 πo {0+} + mFGL {1–u} = N(2060 | 2074) {5/2–}

N(2060 | 2074) {5/2–u} + 4 πo {0+} = N(2570 | 2614) {5/2–}

N(2060 | 2074) {5/2–u}  ΔW2-4 {1–u}+ N(2040 | 2055) {3/2+u}

N(1710 | 1720) {1/2+u} + S(o),d=2{1–d} + mFGL {1–u} = N(2100 | 2085) {1/2+}

N(2100 | 2085) {1/2+u}  3 mFGL {1–d} + N(1875 | 1882) {3/2–u}

N(1875 | 1882) {3/2–u}  ΔW2-4 {1–d} + N(1860 | 1863) {5/2+u}

N(1875 | 1882) {3/2–u} + ΔW2-4 {1–d} = N(1880 | 1901) {1/2+}

N(1880 | 1901) {1/2+u} + ΔW2-4 {1–d} = N(1895 | 1920) {1/2–}

N(1895 | 1920) {1/2–u} + ΔW2-4 {1–u}= N(1900 | 1939) {3/2+}

N(1710 | 1720) {1/2+u} + 2 πo {0+} + 4 mFGL {4+u} = N(2220 | 2260) {9/2+}
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N(2220 | 2260) {9/2+u} + 2 πo {0+} + mFGL {1–u} = N(2600 | 2598) {11/2+}

N(2220 | 2260) {9/2+u}  mFGL {1–u} + N(2190 | 2192) {7/2–u}

N(2600 | 2598) {11/2+u} + mFGL {1–u} + 2 ΔW2-4 {0–} = N(2700 | 2705) {13/2+}

N(1700 | 1701) {3/2–u} + S(o),d=2 {1–u} = N(2000 | 1998) {5/2+}

N(1720 | 1736) {3/2+u} + πo {0–} + 2 mFGL {2–u} = N(1990 | 2006) {7/2+}

N(1680 | 1682) {5/2+u} + 4 πo {0+} + 2 ΔW2-4 {2–u} = N(2250 | 2261) {9/2–}

N(1990 | 2006) {7/2+u} + 2 mFGL {2–d} = N(2120 | 2141) {3/2–}

N(2100 | 2085) {1/2+u} + πo {0–} + mFGL {1–d} = N(2300 | 2288) {1/2+}

5. Delta resonances
Δ(1232 | 1232.8) {3/2+u} = N(938.92) {1/2+u} + π+

rel(274.55) {0–} + ΔW2-4(19.37) {1–u}

Δ(1232 | 1233) {3/2+u} + S(o),d=2 {1–u} + mFGL {1–d} = Δ(1600 | 1598) {3/2+}

Δ(1600 | 1598) {3/2+u} + ΔW2-4 {1–d} = Δ(1620 | 1617) {1/2–}

Δ(1620 | 1617) {1/2–u} + πo {0–} = Δ(1750 | 1752) {1/2+}

Δ(1750 | 1752) {1/2+u}  mFGL {1–d} + Δ(1700 | 1684) {3/2–u}

Δ(1620 | 1617) {1/2–u} + 2 πo {0+} = Δ(1900 | 1887) {1/2–}

Δ(1900 | 1887) {1/2–u} + 2 ΔW2-4 {2–u} = Δ(1905 | 1926) {5/2+}

Δ(1900 | 1887) {1/2–u} + ΔW2-4 {1–d} = Δ(1910 | 1906) {1/2+}

Δ(1900 | 1887) {1/2–u} + ΔW2-4 {1–u} = Δ(1920 | 1906) {3/2+}

Δ(1920 | 1906) {3/2+u} + ΔW2-4 {1–u} = Δ(1930 | 1925) {5/2–}

Δ(1910 | 1906) {1/2+u} + ΔW2-4 {1–u}= Δ(1940 | 1925) {3/2–}

Δ(1930 | 1925) {5/2–u} + ΔW2-4 {1–u} = Δ(1950 | 1944) {7/2+}

Δ(1700 | 1684) {3/2–u} + S(o),d=2 {1–u} = Δ(2000 | 1981) {5/2+}

Δ(1940 | 1925) {3/2–u} + πo {0–} + mFGL {1–d} = Δ(2150 | 2128) {1/2–}

Δ(1905 | 1926) {5/2+u} + S(o),d=2 {1–u} = Δ(2200 | 2223) {7/2–}

Δ(2200 | 2223) {7/2–u} + mFGL {1–u} = Δ(2300 | 2291) {9/2+}
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Δ(2300 | 2291) {9/2+u} + πo {0–} = Δ(2400 | 2426) {9/2–}

Δ(2400 | 2426) {9/2–u}  ΔW2-4 {1–d}+ Δ(2390 | 2407) {7/2+u}

Δ(2400 | 2426) {9/2–u} + ΔW2-4 {1–u} = Δ(2420 | 2445) {11/2+}

Δ(2400 | 2426) {9/2–u} + S(o),d=2 {1–u} + ΔW2-4 {1–u} = Δ(2750 | 2742) {13/2–}

Δ(2750 | 2742) {13/2–u} + 3 mFGL {1–u} = Δ(2950 | 2945) {15/2+}

Δ(2390 | 2407) {7/2+u}  mFGL {1–d} + Δ(2350 | 2339) {5/2–u}

6. Lambda resonances
Λ(1116) {1/2+u} + S(o),d=2 {1–d} = Λ(1405 | 1413) {1/2–}

Λ(1116) {1/2+u} + 2 πo {0+} + 2 mFGL {2–d} = Λ(1520 | 1521) {3/2–}

Λ(1520 | 1521) {3/2–u}  mFGL {1–u} + mFGL {1–u} + Λ(1385 | 1386) {1/2–d}

Λ(1405 | 1413) {1/2–} + 2 πo {0+} = Λ(1670 | 1683) {1/2–}

Λ(1670 | 1683) {1/2–u}  mFGL {1–u} + Λ(1600 | 1615) {1/2+d}

Λ(1405 | 1413) {1/2–u} + S(o),d=2 {1–d} = Λ(1710 | 1710) {1/2+}

Λ(1710 | 1710) {1/2+u}  ΔW2-4 {1–d} + Λ(1690 | 1691) {3/2–u}

Λ(1520 | 1521) {3/2–u} + S(o),d=2 {1–u} = Λ(1820 | 1818) {5/2+}

Λ(1670 | 1683) {1/2–} + πo {0–} = Λ(1810 | 1818) {1/2+}

Λ(1810 | 1818) {1/2+u}  ΔW2-4 {1–u} + Λ(1800 | 1799) {1/2–d}

Λ(1820 | 1818) {5/2+} + 2 ΔW2-4 {0–} = Λ(1830 | 1857) {5/2–}

Λ(1830 | 1857) {5/2–u} + mFGL {1–d} = Λ(1890 | 1925) {3/2+}

Λ(1800 | 1799) {1/2–u} + πo {0–} + 2 mFGL {2–u} = Λ(2080 | 2069) {5/2–}

Λ(2080 | 2069) {5/2–u}  ΔW2-4 {1–u} + Λ(2070 | 2050) {3/2+u}

Λ(2070 | 2050) {3/2+u}  2 ΔW2-4 {0–} + Λ(2050 | 2011) {3/2–u}

Λ(2080 | 2069) {5/2–u} + ΔW2-4 {1–u} = Λ(2085 | 2088) {7/2+}

Λ(1710 | 1710) {1/2+u} + S(o),d=2 {1–d} = Λ(2000 | 2007) {1/2–}

Λ(1820 | 1818) {5/2+u} + S(o),d=2 {1–u} = Λ(2100 | 2115) {7/2–}

Λ(2100 | 2115) {7/2–u}  ΔW2-4 {1–u} + Λ(2110 | 2096) {5/2+u}
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Λ(2050 | 2011) {3/2–u} + 2 πo {0+} = Λ(2325 | 2281) {3/2–}

Λ(2050 | 2011) {3/2–u} + 4 πo {0+} = Λ(2585 | 2551) {3/2–}

Λ(1810 | 1818) {1/2+u} + 2 πo {0+} + 4 mFGL {4+u} = Λ(2350 | 2358) {9/2+}

7. Sigma resonances
Σ(1193) {1/2+u} + πo {0–} + mFGL {1–u} = Σ(1385 | 1396) {3/2+}

Σ(1385 | 1396) {3/2+u} + πo {0–} + 2 mFGL {2–d} = Σ(1660 | 1666) {1/2+}

Σ(1660 | 1666) {1/2+u} + ΔW2-4 {1–u} = Σ(1670 | 1685) {3/2–}

Σ(1385 | 1396) {3/2+u} + 4 πo {0+} = Σ(1940 | 1936) {3/2+}

Σ(1940 | 1936) {3/2+u}  S(o),d=2 {1–u} + Σ(1620 | 1639) {1/2–u}

Σ(1620 | 1639) {1/2–u} + 2 πo {0+} = Σ(1900 | 1909) {1/2–}

Σ(1900 | 1909) {1/2–u} + 2 ΔW2-4 {2–u} = Σ(1915 | 1948) {5/2+}

Σ(1620 | 1639) {1/2–u} + πo {0–} + 2 mFGL {2–d} = Σ(1910 | 1909) {3/2–}

Σ(1910 | 1909) {3/2–u}  πo {0–} + Σ(1780 | 1774) {3/2+u}

Σ(1780 | 1774) {3/2+u}  ΔW2-4 {1–d} + Σ(1775 | 1755) {5/2–u}

Σ(1780 | 1774) {3/2+u}  ΔW2-4 {1–u} + Σ(1750 | 1755) {1/2–u}

Σ(1750 | 1755) {1/2–u} + πo {0–} = Σ(1880 | 1890) {1/2+}

Σ(1880 | 1890) {1/2+u}  S(o),d=2 {1–d} + Σ(1580 | 1593) {3/2–u}

Σ(1780 | 1774) {3/2+u} + 2 πo {0+}= Σ(2080 | 2044) {3/2+}

Σ(2080 | 2044) {3/2+u} + mFGL {1–d} = Σ(2110 | 2112) {1/2–}

Σ(2110 | 2112) {1/2–u} + 2 mFGL {2–d} = Σ(2230 | 2247) {3/2+}

Σ(2230 | 2247) {3/2+u}  2 mFGL {2–d} + Σ(2110 | 2112) {7/2–u}

Σ(1880 | 1890) {1/2+u} + 2 mFGL {2–d} = Σ(2010 | 2025) {3/2–}

Σ(2010 | 2025) {3/2–u} + 2 ΔW2-4 {2–u} = Σ(2030 | 2064) {7/2+}

Notice also that mass distances between some resonances with the highest masses are close 
to mass of four pions, for example

Σ(3170) – Σ(2620) = 550 MeV ≈ 4 πo
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Σ(3000) – Σ(2455) = 545 MeV ≈ 4 πo.

On the other hand, SST shows that one of a few new symmetries is the four-particle 
symmetry [1]. Moreover, SST shows that range of an association of four neutral pions is 
equal to the equatorial radius of the core of baryons [1].

8. Xi resonances
Ξ(1315) {1/2+u}+ πo {0–} + mFGL {1–u} = Ξ(1530 | 1518) {3/2+}

Ξ(1315) {1/2+u} + S(o),d=2 {1–d} = Ξ(1620 | 1612) {1/2–}

Ξ(1620 | 1612) {1/2–u} + mFGL {1–u} = Ξ(1690 | 1680) {3/2+}

Ξ(1690 | 1680) {3/2+} + πo {0–} = Ξ(1820 | 1815) {3/2–}

Ξ(1820 | 1815) {3/2–} + πo {0–} = Ξ(1950 | 1950) {3/2+}

Ξ(1950 | 1950) {3/2+u} + mFGL {1–u} = Ξ(2030 | 2018) {5/2–}

Ξ(1820 | 1815) {3/2–u} + S(o),d=2 {1–d} = Ξ(2120 | 2112) {1/2+}

Ξ(2120 | 2112) {1/2+} + πo {0–} = Ξ(2250 | 2247) {1/2–}

Ξ(2250 | 2247) {1/2–} + πo {0–} = Ξ(2370 | 2382) {1/2+}

Ξ(2370 | 2382) {1/2+} + πo {0–} = Ξ(2500 | 2517) {1/2–}

9. Omega resonances
Ω(1672) {1/2+u} + 2 πo {0+} + mFGL {1–u} = Ξ(2012 | 2010) {3/2–}

Ω(1672) {1/2+u} + 2 S(o),d=2 {2–d} = Ξ(2250 | 2266) {3/2–}

10. Masses of the charmed and bottom baryons
In decays of the charmed and bottom baryons, very frequently appear pions and kaons. On 

the other hand, such baryons live relatively long so it suggests that there appears a spacetime 
condensate which interacts due to the slow weak interactions. We claim that there is a 
transition of relativistic neutral pion or relativistic neutral kaon in the d = 0 state (their mass 
increases about 9.0036 times – see (2.5.27) in [1]) into spacetime condensate. Masses of the 
condensates are as follows

Cπ = 1215 MeV and   CK = 4480 MeV .               (13)

Notice that these masses are close to masses of the charm and bottom quarks [2]

mc = 1270(20) MeV and mb = 4180+30
–20 MeV .  (14)

Within SST we calculated masses of gluon loops that relate to the masses of quarks [1]. 
Such gluon loops can transform into spacetime condensate [1]. Here we need mass of 
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spacetime condensate which is equal to mass of the SST charm quark (see Paragraph 2.23 in
[1])

Cc,SST = 1267 MeV .                              (15)

The gluon-condensate ambiguity causes that it is difficult to determine clearly parity and 
spin of the charmed and bottom baryons so here we concentrate, first of all, on the masses.

In [1], we calculated the mean lifetime of hyperons: τH,lifetime ≈ 1.1·10–10 s (see (2.18.8) in 
[1]) that decay due to the nuclear weak interactions – the coupling constant is w(p) = 
0.018722909. On the other hand, due to the additional pions, FGLs, and transitions from 
relativistic pions to condensates in the c-baryons and b-baryons, we have a transition from the 
nuclear weak interactions into the nuclear strong interactions (inside slowly moving baryons, 
the coupling constant for the nuclear strong interactions is s = 1) so, because τlifetime ~ 1/
(see (1.4.29) in [1]), lifetime of the b-baryons and the c-baryons should be close to

τlifetime,Bb,Bc = τH,lifetime w(p) / s ≈ 2·10–12 s .    (16)

Notice also that the additional condensate in c-baryons has lower mass so it should have an 
influence on lifetime.

Masses of the charmed baryons are as follows.
Λc(2286 | 2288)+ {1/2+u} = p(938) {1/2+u} + Cπ {0+} + mFGL {1–u} + mFGL {1–d}

Λc(2595 | 2597)+ {1/2–u} = Λc(2286 | 2288)+ {1/2+u} + 2 πo {0+} + 2 ΔW2-4 {0–}

Λc(2625 | 2626)+ {3/2–u} = Λc(2286 | 2288)+ {1/2+u} + 2 πo {0+} + mFGL {1–u}

Λc(2860 | 2867)+ {3/2+u} = Λc(2595 | 2597)+ {1/2–d} + πo {0–} + mFGL {1–u} + mFGL {1–u}

Λc(2880 | 2867)+ {5/2+u} = Λc(2595 | 2597)+ {1/2–u} + πo {0–} + mFGL {1–u} + mFGL {1–u}

Λc(2940 | 2935)+ {3/2–u} = Λc(2880 | 2867)+ {5/2+u} + mFGL {1–d}

Σc(2455 | 2460) {1/2+u} = Σ(1193) {1/2+u} + Cc,SST {0+}

Σc(2520 | 2528) {3/2+u} = Σc(2455 | 2460) {1/2+u} + mFGL {1–u}
JP has not been measured, 3/2+ is the quark-model prediction [2]. Our value is 3/2–.

Σc(2800 | 2798) = Σc(2520 | 2528) {3/2–u} + 2 πo {0+}

Ξc(2468 | 2461)+ + π– = Ξ(1315 | 1315)o + Cc,SST + ΔW2-4
JP has not been measured, 1/2+ is the quark-model prediction [2].

Ξc(2470 | 2466)o + πo = Ξ(1315 | 1315)o + Cc,SST + ΔW2-4
JP has not been measured [2].

Ξ’c(2578 | 2596) = Ξc(2468 | 2461) + πo
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Ξc(2645 | 2635) = Ξ’c(2578 | 2596) + 2 ΔW2-4

Ξc(2790 | 2770) = Ξc(2645 | 2635) + πo

Ξc(2815 | 2809) = Ξc(2790 | 2770) + 2 ΔW2-4

Ξc(2970 | 2944) = Ξc(2815 | 2809) + πo

Notice also that πo + 2 ΔW2-4 = 174 MeV ≈ W(o),d=2 = 175.7 MeV so there is an additional 
resonance [1].

Ξc(3055 | 3040) = Ξc(2790 | 2770) + 2 πo

Ξc(3080 | 3079) = Ξc(2815 | 2809) + 2 πo

Ωc(2695 | 2666)o + π– + πo = Ω(1672 | 1674)– + Cc,SST

Ωc(2770 | 2734)o = Ωc(2695 | 2666)o + mFGL

Ωc(3000 | 3004)o = Ωc(2770 | 2734)o + 2 πo

Ωc(3065 | 3072)o = Ωc(3000 | 3004)o + mFGL

Ωc(3050 | 3053)o + ΔW2-4 = Ωc(3065 | 3072)o

Ωc(3090 | 3092)o = Ωc(3050 | 3053)o + 2 ΔW2-4

Ωc(3120 | 3111)o = Ωc(3090 | 3092)o + ΔW2-4

Mass of the doubly charmed baryon is as follows.
Ξcc(3622 | 3638)++ + 2 π– = Ξ(1315 | 1315)o + 2 Cc,SST + mFGL

Masses of the bottom baryons are as follows.
Λb(5620 | 5595)o {1/2+u} = Λ(1116 | 1115)o {1/2+u} + CK {0+}

Λb(5912 and 5920 | 5933)o {1/2–u or 3/2–u} =

= Λb(5620 | 5595)o {1/2+u} + 2 πo {0+} + mFGL {1–d or 1–u}

Λb(6070 | 6068)o = Λb(5912 and 5920 | 5933)o + πo

Λb(6146 and 6152 | 6136)o = Λb(6070 | 6068)o + mFGL

Σb(~5813 | 5808) = Σ(1193)o + CK + πo

Σ*b(~5833 | 5827) = Σb(~5813 | 5808) + ΔW2-4

Σb(6097 | 6097) = Σ*b(~5833 | 5827) + 2 πo
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Ξb(~5795 | 5795) = Ξ(1315 | 1315) + CK

Ξ’b(~5945 | 5930) = Ξb(~5795 | 5795) + πo

Ξb(6227 | 6200) = Ξ’b(~5945 | 5930) + 2 πo

Ωb(6046 | 6019) + πo = Ω(1672 | 1674) + CK

Ωb(6316 | 6311) = Ω(1672 | 1674) + CK + W(o),d=4

Masses of the Pc
+ baryons

In the Type-X mesons, there is the spacetime condensate with a mass of CX = 3736 MeV
[2]. We claim that such a condensate is in Pc

+(4312)+

Pc(4312 | 4310)+ + 2W(+–),d=2 = p(938 | 938) + CX

Pc(4380 | 4378)+ = Pc(4312 | 4310)+ + mFGL

Pc(4440 | 4445)+ = Pc(4312 | 4310)+ + πo

Pc(4457 | 4464)+ = Pc(4440 | 4445)+ + ΔW2-4

Notice that the six objects, i.e. mFGL, πo, ΔW2-4, W and S vectors in the d = 2 state, and
spacetime condensates C, are the typical objects inside baryons.

Part 2: Mesons

11. Light unflavored mesons
Internal structure of pions is described in [1].

η(548 | 549)  0+(0–+) = CY 0+(0++) + mFGL 0–(1– –u) + 2 ΔW2-4 0+(0–+) + ΔW2-4 0–(1– –d)
In centre of all baryons, there is the spacetime condensate CY ≈ 424 MeV [1] so it also 

appears in the mesonic nuclei.

η’(958 | 964)  0+(0–+) = η(548 | 540)  0+(0–+) + CY 0+(0++)

η(1295 | 1292)  0+(0–+) = f2(1270 | 1253)  0+(2u++) + 2 ΔW2-4 0+(2d–+)

η(1405 | 1379)  0+(0–+) = η(1295 | 1292)  0+(0–+) + (mFGL + ΔW2-4) 0+(0++)

η(1475 | 1494)  0+(0–+) = η(548 | 549)  0+(0–+) 0+(0–+) + 14 mFGL 0+(0++)

η2(1645 | 1610)  0+(2u–+) + 2 ΔW2-4 0+(2d++) = η(1405 | 1379)  0+(0–+) + 4 mFGL 0+(0++)
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η2(1870 | 1846)  0+(2–+) = η(1475 | 1494)  0+(0–+) + 2 W(o),d=2 0+(2++)

fo(500 | 510)  0+(0++) + 2ΔW2-4 0+(0–+) = η(548 | 549)  0+(0–+)

fo(980 | 983)  0+(0++) = 2 CY 0+(0++) + 2 mFGL 0+(0++)

fo(1370 | 1350)  0+(0++) = Cπ 0+(0++) + 2 mFGL 0+(0++)

fo(1500 | 1485)  0+(0++) = fo(1370 | 1350)  0+(0++) + mFGL 0–(1u– –) + mFGL 0–(1d– –)

fo(1710 | 1702)  0+(0++) = fo(1370 | 1350)  0+(0++) + 2 W(o),d=2 0+(0++)

f2(1270 | 1253)  0+(2++) = 2 CY 0+(0++) + 4 mFGL 0+(0++) + 2 mFGL 0+(2++)

f2‘(1525 | 1523)  0+(2++) = f2(1270 | 1253)  0+(2++) + 4 mFGL 0+(0++)

f2(1950 | 1966)  0+(2++) = 4 CY 0+(0++) + 2 mFGL 0+(0++) + 2 mFGL 0+(2++)

f2(2010 | 2016)  0+(2++) = fo(1710 | 1702)  0+(0++) + 2 W(o),d=4 0+(2++)

f4(2050 | 2055)  0+(4++) = f2(2010 | 2016)  0+(2u++) + 2 ΔW2-4 0+(2u++)

f2(2300 | 2296)  0+(2++) = fo(1710 | 1702)  0+(0++) + 2 S(o),d=2 0+(2++)

f2(2340 | 2335)  0+(2++) = f2(2300 | 2296)  0+(2++) + 2 ΔW2-4 0+(0++)

ρ(770 | 782)  1+(1– –) = η(548 | 540)  0+(0–+) + πo 1–(0–+) + mFGL 0–(1– –) + 2 ΔW2-4 0+(0++)

ρ(1450 | 1457)  1+(1– –) = ρ(770 | 782)  1+(1– –) + 10 mFGL 0+(0++)

ρ(1700 | 1690)  1+(1– –) = ρ(770 | 782)  1+(1– –) + 4 mFGL 0+(0++) + QXXee 0+(0++)
Here the QXXee = X+X–e+e– ≈ 638 MeV is the real spin-0 quadrupole that transforms into

spacetime condensate.

ρ3(1690 | 1690)  1+(3– –) = ρ(770 | 782)  1+(1u– –) + 3 mFGL 0–(3u– –) + mFGL 0–(1d– –) + 
QXXee 0+(0++)

ω(782 | 782)  0–(1– –) = 11 mFGL 0–(1– –) + 2 ΔW2-4 0+(0++)

ω(1420 | 1418)  0–(1– –) = Cπ 0+(0++) + 3 mFGL 0–(1– –)

ω(1650 | 1688)  0–(1– –) = ω(1420 | 1418)  0–(1– –) + 4 mFGL 0+(0++)

ω(1670 | 1688)  0–(3– –) = ω(1420 | 1418)  0–(1u– –) + 3 mFGL 0–(3u– –) + mFGL 0–(1d– –)

ao(980 | 983)  1–(0++) = 2 CY 0+(0++) + πo 1–(0–+) + 2 ΔW2-4,virtual 0+(0–+)
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a1(1260 | 1254)  1–(1++) = ao(980 | 983)  1–(0++) + Q 0+(1++) + 4 mFGL 0+(0++)

a1(1640 | 1678)  1–(1++) = a1(1260 | 1254)  1–(1++) + CY 0+(0++)
It contains Q 0+(1++).

a2(1320 | 1335)  1–(2++) = ao(980 | 983)  1–(0++) + 2 W(o),d=2 0+(2++)

ao(1450 | 1470)  1–(0++) = a2(1320 | 1335)  1–(2u++) + 2 mFGL 0+(2d++)

a2(1700 | 1701)  1–(2u++) + 2 ΔW2-4 0+(2d++) = ao(1450 | 1470)  1–(0++) + 4 mFGL 0+(0++)

a4(1970 | 1971)  1–(4++) = a2(1700 | 1701)  1–(2u++) + 3 mFGL 0–(3u– –) + mFGL 0–(1d– –)

Φ(1020 | 1013)  0–(1– –) = 15 mFGL 0–(1– –)

Φ(1680 | 1651)  0–(1– –) = Φ(1020 | 1013)  0–(1– –) + QXXee 0+(0++)

Φ3(1850 | 1855)  0–(3– –) = Φ(1020 | 1013)  0–(1u– –) + 2 S(o),d=1 0+(2u++)

Φ(2170 | 2169)  0–(1– –) = Φ3(1850 | 1855)  0–(3u– –) + 2 W(o),d=4 0+(2d++)

h1(1170 | 1148)  0–(1+–) = 17 mFGL 0–(1– –) + 2 ΔW2-4,virtual 0+(0–+)

h1(1415 | 1418)  0–(1+–) = h1(1170 | 1148)  0–(1+–) + 4 mFGL 0+(0++)

b1(1235 | 1234)  1+(1+–) = 16 mFGL 0+(0++) + πo 1–(0–+) + ΔW2-4 0–(1– –)

π(1300 | 1350)  1–(0–+) = Cπ 0+(0++) + πo 1–(0–+)

π1(1400 | 1351)  1–(1–+) = π(1300 | 1350)  1–(0–+) + Q 0+(1++)

π1(1600 | 1621)  1–(1–+) = π1(1400 | 1351)  1–(1–+) + 4 mFGL 0+(0++)
It contains Q 0+(1++).

π2(1670 | 1663)  1–(2–+) + 2 ΔW2-4 0+(0++) = π(1300 | 1350)  1–(0–+) + 2 W(o),d=2 0+(2++)

π(1800 | 1798)  1–(0–+) = π2(1670 | 1663)  1–(2u–+) + 2 mFGL 0+(2d++)

π2(1880 | 1890)  1–(2–+) = π(1300 | 1350)  1–(0–+) + 6 mFGL 0+(0++) + 2 mFGL 0+(2++)

12. K strange mesons
For all kaons is I = 1 so we define only JP.
One of the two FGLs in a charged pion (it is a pseudoscalar), due to the transition from its 

circumference to its radius, transforms into the spacetime condensate Y – it means that the [Y 
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+ mFGL + (e±ν)virtual] is a pseudoscalar. The 4me,bare is a scalar, so K± is a pseudoscalar JP = 0–. 
The (e±ν)virtual stabilizes the [Y + mFGL] pair. We have

K(493.677(16) [3] | 493.708)± = K(493.7 | 493.7)± = [Y + mFGL + (e±ν)virtual] + 4 e±
bare

The spin-0 neutral kaon Ko is created because the neutral pion, after the transition described 
above, attaches the electromagnetic mass of the quadrupole of neutral pions (Mem = 4πoem = 
3.940 MeV) to stabilize the [Y + mFGL] pair – SST shows that range of the quadrupole 4πo is 
equal to the equatorial radius of the core of baryons so it is distinguished.

K(497.611(13) [3] | 497.648)o = K(497.6 | 497.6)o = [Y + mFGL + Mem] + 4 e±
bare

The spacetime condensate CY ≡ Y in K(497.6 | 497.6)o can decay to maximum 6 FGLs. On 
the other hand, the FGLs occupy the nuclear shells for FGLs [2] and there is the four-particle 
symmetry. We have 1s22s22p6 so there are two possibilities, i.e. 1s22s2 (there appear 2 pions) 
or 2p6 (there appear 3 pions) – it solves the Tau-Theta problem.

The composition of Ko*(700) is as follows
Ko*(700)mass = 2 CY 0+ so mass is 848 MeV.
But one of the two CY condensates can decay to two neutral pions so the mean mass is
Ko*(700)mean = CY 0+ + 2 πo 0+ = 694 MeV ≈ 700 MeV.
We will denote this kaon as Ko*(700 | 848)  0+.

K*(892 | 897)  1– = CY 0+ + 3 mFGL 1– + 2 πo 0+

K1(1270 | 1249)  1+ = K*(892 | 897)  1– + 2 W(o),d=2 0–

K1(1400 | 1384)  1+ = K1(1270 | 1249)  1+ + 2 mFGL 0+

K*(1410 | 1437)  1– = K*(892 | 897)  1– + 4 πo 0+

Ko*(1430 | 1422)  0+ : there are two possibilities
Ko*(700 | 848)  0+ + 4 πo 0+ = 1388 MeV
K*(1410 | 1437)  1u– + ΔW2-4 1d– = 1456 MeV,
so the mean mass is 1422 MeV.

K2*(1430 | 1422)  2+ : there are two possibilities
Ko*(700 | 848)  0+ + 3 πo 0– + 2 mFGL 2– = 1388 MeV
K*(1410 | 1437)  1u– + ΔW2-4 1u– = 1456 MeV,
so the mean mass is 1422 MeV.

K(1460 | 1461)  0– = Ko*(1430 | 1422)  0+ + 2 ΔW2-4 0–

K1(1650 | 1664)  1+ = K(1460 | 1461)  0– + 3 mFGL 1–

K*(1680 | 1703)  1– = K1(1650 | 1664)  1+ + 2 ΔW2-4 0–

K2(1770 | 1775)  2– = K*(1460 | 1461)  0– + 2 W(o),d=4 2+

K3(1780 | 1789)  3– = K*(1410 | 1437)  1u– + 2 W(o),d=2 2u+
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K2(1820 | 1805)  2– = K1(1400 | 1384)  1u+ + S(o),d=1 1u–

K2*(1980 | 2001)  2+ = K(1460 | 1461)  0– + 3 πo 0– + 2 mFGL 2+

K4(2045 | 2040)  4+ = K2*(1980 | 2001)  2u+ + 2 ΔW2-4 2u+

13. D charmed mesons
For all D charmed mesons is I = 1 so we define only JP.

D(1865 | 1864)o 0– = Cc,SST 0+ + 2 S(+–),d=2 0–

D(1870 | 1869)± 0– = D(1865 | 1864)o 0– + Δπ± = 4.6 MeV 0+

D*(2007 | 2010)o 1– = Cc,SST 0+ + 11 mFGL 1–

D*(2010 | 2015)± 1– = D*(2007 | 2010)o 1– + Δπ± 0+

Do*(2300 | 2348)  0+ = D*(2007 | 2010)o 1u– + 2 πo 0+ + mFGL 1d–

D1(2420 | 2415)  1+ = D*(2007 | 2010)o 1– + 3 πo 0–

D1(2430 | 2424)  1+ = D*(2007 | 2010)o 1– + πoπ+π– 0–

D2*(2460 | 2458)  2+ = D*(2010 | 2015)± 1u– + CY 0+ + ΔW2-4 1u–

D3*(2750 | 2755)  3– = D2*(2460 | 2458)  2u+ + S(o),d=2 1u–

14. D charmed, strange mesons
For all D charmed, strange mesons is I = 0 so we define only JP.

Ds(1968 | 1966)± 0– = Cc,SST 0+ + CY 0+ + π± 0– + 2 mFGL 0+

Ds*(2112 | 2101)± ?? = Ds(1968 | 1966)± 0– + mFGL 1d– (or 2 mFGL)

Ds0*(2317 | 2317)± 0+ = Ds(1968 | 1966)± 0– + 2 W(o),d=2 0–

Ds1(2460 | 2471)± 1+ = Ds0*(2317 | 2317)± 0+ + πo 0– + ΔW2-4 1–

Ds1(2536 | 2520)± 1+ = Ds0*(2317 | 2317)± 0+ + πo 0– + mFGL 1–

Ds2(2573 | 2587)  2+ = Ds0*(2317 | 2317)± 0+ + πo 0– + 2 mFGL 2–

Ds1(2700 | 2741) ± 1– = Ds0*(2317 | 2317)± 0+ + 2 πo 0+ + 2 mFGL 0+ + ΔW2-4 1–

15. B bottom mesons
For all B bottom mesons is I = 1 so we define only JP.
SST shows that there can be a spacetime condensate with a mass equal to the mass of the 

charged kaon in the d = 0 state CK± = 4445 MeV (see Table 1).
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B(5279 | 5279)± 0– = CK± 0+ + CY 0+ + πoπoπ± 0–

We can see that there are two states because of the π±.

B(5279 | 5279)o 0– = CK± 0+ + CY 0+ + 3 πo  0– (or πoπ+π– 0–)
So there are also two states because of 3πo and πoπ+π–.

There can be a loop (JP = 1–) with a mass equal to the mass of the SST bottom quark: Lb,SST
= 4190 MeV [1].

B*(5325 | 5325)  1– = Lb,SST 1– + 4 πo  0+ + 2 S(o),d=2 0+ (or 2 S(+–),d=2 0+)
So there are also two states because of 2S(o),d=2 and 2S(+–),d=2.

B1(5721 | 5730)  1+ = B*(5325 | 5325)  1– + 3 πo  0–

B2*(5747 | 5742)  2+ = B(5279 | 5279)± 0– + CY 0+ + 2 ΔW2-4 2–

BI(5970 | 5964)  0– or 2– or 4– = B2*(5747 | 5742)  2+ + πo  0– + mFGL 1– + ΔW2-4 1–

16. B bottom, strange mesons
For all B bottom, strange mesons is I = 0 so we define only JP.
There can be a spacetime condensate (JP = 0+) with a mass equal to the mass of the SST 

bottom quark: Cb,SST = 4190 MeV [1].

Bs(5367 | 5367)o 0– = Cb,SST 0+ + 4 πo  0+ + X+X– 0–

Bs*(5415 | 5405)  1– = Lb,SST 1– + Cπ 0+

Bs1(5830 | 5810)o 1+ = Bs*(5415 | 5405)  1– + 3 πo  0–

Bs2*(5840 | 5826)o 2+ = Bs*(5415 | 5405)  1u– + S(o),d=1 1u–

17. B bottom, charmed mesons
For all B bottom, charmed mesons is I = 0 so we define only JP.

Bc(6274 | 6277)+ 0– = PsXX 0– + πoπoπoπ+ 0+

Bc(2S: 6871 | 6871)± 0– = PsXX 0– + πoπoπoπ± 0+ + 2 S(o),d=2 0+

18. The ccanti mesons
J/ψ(1S: 3097 | 3096) 0–(1u– –) + X+X– 0–(1d– –) = 2 D(1870 | 1869)± 0+(0++)

or = 2 D(1865 | 1864)o 0+(0++)

ψ(3770 | 3771)  0–(1– –) = J/ψ(1S: 3097 | 3096)  0–(1u– –) + 10 mFGL 0+(0++)

ψ(2S: 3686 | 3684)  0–(1– –) + mFGL 0–(1u– –) + ΔW2-4 0–(1d– –) = ψ(3770 | 3771)  0–(1– –) 

ψ(4040 | 4041)  0–(1– –) = ψ(3770 | 3771)  0–(1– –) + 2 πo 0+(0++)

ψ(4160 | 4176)  0–(1– –) = ψ(4040 | 4041)  0–(1– –) + 2 mFGL 0+(0++)

ψ(4230 | 4215)  0–(1– –) = ψ(4160 | 4176)  0–(1– –) + 2 ΔW2-4 0+(0++)
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ψ(4360 | 4350)  0–(1– –) = ψ(4230 | 4215)  0–(1– –) + 2 mFGL 0+(0++)

ψ(4415 | 4446)  0–(1– –) = ψ(4160 | 4176)  0–(1– –) + 2 πo 0+(0++)

ψ(4660 | 4620)  0–(1– –) = ψ(4360 | 4350)  0–(1– –) + 2 πo 0+(0++)

ηc(1S: 2984 | 2978)  0+(0–+) = 2 Cc,SST 0+(0++) + 3 πo 0+(0–+) + 2 ΔW2-4 0+(0++)

ηc(2S: 3638 | 3653)  0+(0–+) = ηc(1S: 2984 | 2978)  0+(0–+) + 10 mFGL 0+(0++)

χc0(1P: 3415 | 3420)  0+(0++) = 2 (Cc,SST + CY + ΔW2-4) 0+(0++)

χc2(1P: 3556 | 3555)  0+(2++) = χc0(1P: 3415 | 3420)  0+(0++) + 2 mFGL 0+(2++)

χc2(3930 | 3929)  0+(2++) = χc2(1P: 3556 | 3555)  0+(2++) + 2 S(o),d=4 0+(0++)

ψ2(3823 | 3820)  0–(2– –) = Q 0+(1d++) + ψ(2S: 3686 | 3684)  0–(1u– –) + 2 mFGL 0+(2u++)

ψ3(3842 | 3858)  0–(3– –) = ψ(2S: 3686 | 3684)  0–(1u– –) + 2 mFGL 0+(2u++) + 2 ΔW2-4 0+(0++)

hc(1P: 3525 | 3549)  0–(1+–) + 2 mFGL 0+(0–+) = ψ(2S: 3686 | 3684)  0–(1– –)

Zc(3900 | 3896)  1+(1+–) = χc0(1P: 3415 | 3420)  0+(0++) + mFGL 0–(1– –) + πoπoπo± 1–(0–+)

Zc(4430 | 4436)  1+(1+–) = Zc(3900 | 3896)  1+(1+–) + 4 πo 0+(0++)

X(3915 | 3915)  1–(0–+) = Zc(3900 | 3896)  1+(1u+–) + ΔW2-4 0–(1d– –)

X(4020 | 4055)± ? (0+) = X(3915 | 3915)  1–(0–+) + π± (0–)

Note the following:

χc1(3872) – χc1(3511) = 361 MeV ≈ 2 W(+–),d=2 = 363.4 MeV

χc2(mass = 3923) – χc2(1P: 3556) = 367 MeV ≈ 2 W(+–),d=2

19. The bbanti mesons
Notice that in all such mesons there are two the CK± spacetime condensates.

Υ(1S: 9460 | 9471)  0–(1– –) = 2 CK± 0+(0++) + CY 0+(0++) + W(o),d=4 0–(1– –)
The second proposal is presented in [1] – it leads to 9465 MeV.

Υ2(1D: 10164 | 10158) 0–(2– –) = 2 CK± 0+(0++) + 8 πo 0+(0++) + S(o),d=4 0–(1u– –) + Q 0+(1u++)

hb(2P: 10260 | 10262) 0–(1+–) = 2 CK± 0+(0++) + πo
d=0=1215 MeV 0+(0–+) + W(o),d=4 0–(1– –)

Zb(2P: 10610 | 10619) 1+(1+–) = 2 (CK± + CY + 5 mFGL) 0+(0++) + πo,± 1–(0–+) + mFGL 0–(1– –)
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Zb(10650 | 10658)  1+(1+–) = Zb(2P: 10610 | 10619)  1+(1+–) + 2 ΔW2-4 0+(0++)

ηb(1S: 9399 | 9424)  0+(0–+) + 2 W(o),d=4 0+(0–+) = 2 (CK± + CY) 0+(0++)

20. The pseudoscalar axion and the strong CP problem
We must pay special attention to dark-matter (DM) particles – we described them in [1] (see 

formulae (2.1.21) and (2.1.22) in [1]). But we must add a few remarks. SST shows that there 
should be in existence the stable DM loops with different angular momentums and sizes (their 
size can be from 0.465 fm up to sizes of the halos of the massive spiral galaxies) but their 
mass is invariant ~1.17·10–11 eV [1]. Such stable loops with the spin speed equal to the speed 
of light c, can interact with the “ordinary” matter via the weak interactions of the virtual 
electron-positron pairs so the coupling constant is ~10–6 [1] – such interactions are via the 
spacetime condensates that also appear in this paper. But emphasize that such stable DM 
loops, due to their internal structure, cannot interact electromagnetically! Assume that such 
stable DM loops can create an unstable pion-like pairs which we can call the SST 
pseudoscalar axions. Their spin is zero and CP is odd. Their invariant mass is ~2.3·10–11 eV. 
But emphasize also that similar to the pseudoscalar pions, the SST pseudoscalar axions should 
be unstable so we rather should try to detect the stable DM loops.

The mainstream axions are described in [7]. In paper [8], it is suggested that an axion field 
“is the most popular solution to the strong CP problem”, i.e. the CP violation has not been 
observed in the strong interactions – it leads to a conclusion that the neutron has not an electric 
dipole moment. Here we show that Nature does not realize such popular solution.

SST shows that the CP violation in the weak interactions of the spacetime condensate in the 
centre of baryons is due to the poloidal motions of the torus/electric-charge in the core of 
baryons (see Fig.1 and the description in [1]). Very small changes in the mean distance 
between the SST absolute-spacetime (As) components cause that there appears the 
confinement of them and confinement between them and the torus which also consists of the 
SST-As components. The poloidal motions of the torus and the confinement cause poloidal 
motions to be transferred to spacetime in baryons. But the toroidal speed on the equator of the 
torus is equal to c so on it, the poloidal speed is equal to zero – it causes that outside the core 
of baryons, on the plane of the equator (there take place the nuclear strong interactions [1]), 
the poloidal motions vanish so the CP is not violated in the strong interactions.
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We see that the poloidal speed is maximal in direction of the spin of the torus, i.e. in the 
surroundings of the central spacetime condensate which is responsible for the weak 
interactions – it is the reason that the CP violation is characteristic for the weak interactions. In 
Fig.1, the thickness of the red curves represents the momentum density of the poloidal motion.

Emphasize that to stabilize the torus with different poloidal and toroidal speeds, there are 
exchanged the SST-As components the torus consists of. Moreover, there appear the radial 
motions which are responsible for creation of the central spacetime condensate.

In the pseudoscalar axions are two parallel loops with opposite spin speed so an axion field 
could shield the poloidal motions of the torus on the assumption that the confinement does not 
apply to the axion field (SST shows that it is untrue). But then also we should not observe 
the CP violation in the weak interactions. We know from experimental data that Nature 
does not implement such a scenario, so it is not possible to solve the strong CP problem by 
using an axion field.

21. Summary
Exactly 64 years ago (March 1, 1958), in a letter from Pauli to Gamow, the former 

commented on Heisenberg’s radio interview that they had decoded the structure of all 
particles known at that time. Pauli drew a blank square and found it depicted the world but 
lacking technical details [9].

Resonances, due to their interactions and charge states, have experimental widths of about 
one to even five hundred mega-electron-volts or so. Deciphering their internal structure is not 
an easy task. Here, using the atom-like structure of baryons and very simple model, our
theoretical masses are very close to the experimental central values. Our quantum numbers I, 
G, J, P and C, are fully in line with the experimental data. It validates the SST.

The charmed and bottom baryons are more stable than the baryon resonances because there 
is the additional spacetime condensate that interacts due to the nuclear weak interactions (such 
interactions are much slower than the nuclear strong interactions). Masses of the condensates 
are close to masses of the charm and bottom quarks.

Very important is the d = 0 state which is in contact with the equator of the core of 
baryons. Mass of particles in such state increases 9.0036 times. But to conserve the half-
integral spin of the core of baryons, such relativistic particles quickly transform into the scalar 
spacetime condensates, C, which are responsible for the additional nuclear weak interactions. 
In resonances, most important is the natural spacetime condensate in the centre of baryons, CY
= Y, and the spacetime condensates created from the relativistic pions and kaons which are 
produced in the core of baryons [1] – it causes that some of the baryonic and mesonic 
resonances can be created in the nuclear plasma composed of the cores of baryons packed to 
maximum (i.e. the d = 1, 2 and 4 states are destroyed).

The root-mean-square deviation in mass (RMSDM), i.e. for the mass distances between the 
SST masses and the mean central values observed, is defined as follows

RMSDM = ± (Σi Δmi
2 / Ni)1/2 , (17)

where Ni is the number of particles of higher mass, i.e. Δmi > 0, (or lower mass, i.e. Δmi < 0) 
plus a half of number of particles with the same mass, i.e. Δmi = 0.

Our global result is

Mcentral
+RMSDM

–RMSDM ≈ 2800+17
–15 MeV , (18)

where Mcentral is a mean central-mass observed for all 260 particles described in this paper.
We can see that the mean RMSDM (in plus or in minus) is only about 0.6%.
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Generally, the gluons and their associations interact with one or more spacetime 
condensates because of the nuclear weak interactions. The additional spacetime condensates 
are produced in collisions of the nucleons.

In the book [1], paper [2] and in this paper, we described a total of about 310 particles –
they include all major and all high-status particles. Here we described also the SST 
pseudoscalar axion and we solved the strong CP problem.
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