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Abstract

In this paper we will use a different way to prove that there exists at least a prime number p in
between 2n and 3n where n is a positive integer. The proof extends the Bertrand’s postulate -
Chebyshev’s theorem which states that a prime number exists between n and 2n. The method
to prove this proposition is to analyze the binomial coefficient, a similar method used by Erdds
in the proof of Bertrand’s postulate.

Introduction

The Bertrand’s postulate - Chebyshev’s theorem states that for any positive integer n, there is
always a prime number p such that n < p < 2n. It was proved in 1850 [1]. In 1932, Paul Erdés [2]
used a much simpler method to prove the theorem by carefully analyzing the central binomial

coefficient (2:) In 2006, M. El Bachraoui [3] extended the theorem by proving that for any

positive integer n, there is a prime number p such that 2n < p < 3n. In this paper, the author
will use a different method to prove the same extension by analyzing the binomial coefficient

(37?) First, we will define and clarify some terms and concepts. Then we will propose the
subject of the thesis.
Definition: Fa2p>b{(3-:)} denotes the prime factorization operator of (37?) It is the product

of the prime numbers in the decomposition of (3111) in the range of a 2 p > b. In this operator,

p is a prime number, a and b are real numbers,and 3n2a2p>b2>1.

It has some properties:

. 3n
It is always true that Fa2p>b{( - )} >1 —(1)
If there is no prime number in Fa2p>b{(3,:1)}' then Fa2p>b{(37:l)} =1, or vice versa,
if Fa2p>b{(3-:)} = 1, then there is no prime number in Fa2p>b{(37:l)} : —(2)
For example, F82p>6{(142)} =7°%=1. No prime number is in (142) inthe range of 8 2 p > 6.
. . . 3n 3n .
If there is at least one prime number in Fa2p>b{( " )}, then Fa2p>b{( " )} > 1, or vice versa,
if Fa2p>b{(3:)} > 1, then there is at least one prime number in Fa2p>b{(37:l)} . —(3)

For example, F62p>4{(142)} =5> 1. Prime number5isin (142) intherangeof 6 2 p > 4.
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Let v, (n) be the p-adic valuation of n, the exponent of the highest power of p that divides n.
Similar to Paul Erd8s’ paper [2], we define R(p) by the inequalities pR(®) <3n < pR®+1 and
determine the p-adic valuation of (°1").

vy () = 5 (@D = 3y (@) = vy = 228 (|1 27] = | 5] = |Z]) < rew

p! p!
because for any real numbers a and b, the expression of |a + b| — |a] — | b] isO or 1.
Thus, if p divides (°I"), then v, ((31;1)) < R(p) <log,(3n), or p”p((?)) <pR® <3n —(4)
Andif 3n2p > [@J, then0< v, ((?)) <R(p)<1. —(5)
From the prime number decomposition, when n > [v3n],
Tl (Zn)' 3n>p>n n!-(2n)! nzp>|v3n] Loy on) W3nlzp Ly cony I
3n (3n)! (Bn)!
When n < [v3n], ( E Fsnzpon i G (Zn)'} W | nl-(2n)! }
(3n)! (3n)! (3n)!
Thus, ( DE Baneponly G (Zn),} n2p>|V3n| {m} mlzp { nl-(2n)! o

Since all prime numbers in (n!) are not in the range of 3n > p > n,

(3n)! (3n)!
Banzpny Gyt = Fanzpont g -
. Bn)!
Referring to (5), I'» . | vam {n' (Zn)'} [Insp p-

It has been proved [4] that Hn>p p < 2?73 whenn > 3.

(3n)! 3n)! }

. (
Thus forn 23, ( ) F3n>p>n{ (2n ),}'22 5 [mPp{ 1.(2n)! —(6)

Proposition

For every positive integer n, there exists at least a prime number p such that 2n<p <3n.

Proof:
3n-2 3n 9
By induction on n, forn =3, W_Z_‘*_%_ ( ) () 84.
3n
If ( ) (22n 5 for n stands, then for n +1,
3(n+1)) _ (3n+3)(3n+2)(3n+1) (3n) N 3(3n+2)(3n+1) 331772 S 33(n+1)-2
n+1 /° (n+1)(2n+2)(2n+1) 2n+2)(2n+1) n(227-2) " (n+1)(22M+1-2)
3(3n+2)(3n+1) 33n-2 3n+2 3n+1 33n-2 33n-2
because . . . > 33—
(2n+2)(2n+1) n(22" 2) 2n+1  2n (n+1)(22"72) (n+1)(221-2)
3n 331’1 2
Thus forn > 3, (n)>m —(7)

Page 2



Applying (7) into (6):

33n-2 (3n)! 2n-3 —(3n)!
Forn >3, m Bansponl (2n)! }-2 ‘Tz { n!-(2n)! }

—(8)

Let rt(n) be the number of distinct prime numbers less than or equal to n. Among the first six

consecutive natural numbers are three prime numbers 2, 3 and 5. Then, for each additional

six consecutive natural numbers, at most one can add two prime numbers, p =1 (MOD 6) and

p =5 (MOD 6). Thus, 1(n) < EJJ,Z <22
Referring to (4) and (9),

Bn)! 3n (V37 V3n
VeSS {m} =T iyampsp {00)} < Gm)™0A < (3n) 5 2
3311_ 2 (371)

. . -3 AL
Applying (10) into (8): — i < D3nspenl —= - (3n) 3
n(22n-2) P

(2n)!
. KT
Since forn >3, both 223 >0and (3n) 3 "“>0
n n
I (3n)! o2 _ 32(%) 32 (%)
3n2p>n{ (2n)! } > @+2 - @+3 3 V3n+9
n(22n=2)(2*"3)(3n) 3 3:(3n) 3 (3n) 3
x V3x+9
Let f(x) =— Wherex u,w are real numbersand x 284, u = 2 (2 , w=(3x)
3 \16

o (i—Z)x) () ()= ()

dw V349’ B\ (in(3x) | V3X49 In(3)+2 | 3
_x=<(3x) 3 > ((Bx) )(2m+ ™ )=W( OWRT +;)

= Q- ()22

let f,(x) = In(2) -2 _ 2

16 2+/3x x
. ’ ln(3x)
Sincewhenx >1, f; (x) = et >0, fi(x) is astrictly increasing function.
When x =84, f,(x) = ln(27) —%—;zo 523 -0.237 - 0.012 = 0.274 > 0.

Thus, when x > 84, f;(x) >0.

u
Since when x 284, u, w,and f; (x) are greater than zero, f'(x) = e fi(x)>0.

Thus f(x) is a strictly increasing function for x > 84. Then when x > 84, f(x + 1) > f(x).

®)"
\3n+9
3n) 3

Let x =n > 84, then f(n+1)>f(n)=§.
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27\ 27\ 84
I 32 I 1.307E+20

. 32 .
- _ =32, ~ >
Since for n =84, f(n) 2 s = 3 s a1o1E T 1, and since
(3n) 3 (252) 3

(Bn) 3

f(n+ 1) > f(n), byinduction on n, whenn > 84, f(n) = ? >1. —(12)

G, w (@)

Applying (12) to (11): When n > 84, I‘3n>p>n{ ! > NI
Bn) 3
Thus when n > 84,
(3n)! (3n)! (3n)! (3n)!
l—‘3n>p>n{ (2n)! }= 3n>p>2n{ (2n)! } 2n>p> sn{ —— 2! } —>p>n{ 2n)! 1. —(13)

If there is any prime number p such that 2n>p >37n , then (3n)! has the factor of p, and (2n)!

3n
also has the same factor of p. Thus, they cancel to each other in Gn)t with no prime number in

(2n)!
(3n)!

therangeof 2n2p >3— Referring to (2), I'. 2n>p> sn{ —= @’ T

(3n)! (3n) (3n)!
Thus, when n 2 84, I'3p,55,.5{ on )l} [3nsps2ond on )I} —>p>n{ ) }>1 — (14)

r (3n)! L (3n)!
Referring to (1), 3n>p>2n{ @) }>1and 3n>p n{ @) } > 1, from (14), at least one of these
two factors is greater than one when n > 84.
3
If n > 84 and F3n>p>2n{ E n;l } > 1, then referring to (3), there exists at least a prime number p
such that 2n <p < 3n. — (15)
(3n)! (3n)!
—>p>n{ (2n)! } 3- ( )=p>2- (—){ 2n)! }

(3n)! (B3n)!
If ; >42and I, (Dyzpo2(] n{——= )] } = 1, then from (14), the factor [3p5p.on{ > )] }>1.
Referring to (3), there exists at least a prime number p such that 2n < p < 3n. — (16)

(3n)!

n n .
If 72 42and I’ (Byzpr2(] ){ )] }>1, letm= Y then when m > 42, there exists at least a

prime number p such that 2m < p < 3m. Since n 2 84 > m > 42, the statement is also valid for n.

3 3
Thus, when n > 84, if [, yzpr (_){ EZ";' }> 1, then I3p5p.0n { Ezn; } > 1, and there exists at

least a prime number p such that 2n <p < 3n. —(17)
From (16) and (17), no matter F3n>p n{ n )| is equal to 1 or greater than 1, there exists at
least a prime number p such that 2n < p < 3n when n > 84. — (18)
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Table 1 shows that when 1 < n < 84, there is a prime number p such that 2n < p < 3n.

— (19)

Thus, the proposition is proven by combining (15), (18), and (19): For every positive integer n,
there exists at least a prime number p such that 2n <p < 3n.

Table 1: For 1 < n < 84, there is a prime number p such that 2n < p < 3n.

2n 2 4 6 8 10 12 14 16 18 20 22 24 26 28
p 3 5 7 11 13 17 17 19 23 29 29 31 31 37
3n 3 6 9 12 15 18 21 24 27 30 33 36 39 42
2n 30 32 34 36 38 40 42 44 46 48 50 52 54 56
p 37 41 41 43 43 47 47 53 53 59 59 61 61 67
3n 45 48 51 54 57 60 63 66 69 72 75 78 81 84
2n 58 60 62 64 66 68 70 72 74 76 78 80 82 84
p 67 71 71 73 73 79 79 83 83 89 89 97 97 101
3n 87 90 93 96 99 102 105 108 | 111 114 117 120 | 123 126
2n 86 88 90 92 94 96 98 100 | 102 104 106 108 110 | 112
p 101 103 103 107 | 107 | 109 109 | 113 113 127 127 131 131 137
3n 129 132 135 138 | 141 | 144 | 147 | 150 | 153 156 159 162 165 168
2n 114 | 116 | 118 | 120 | 122 | 124 | 126 | 128 | 130 132 134 | 136 138 140
p 137 139 139 149 149 | 151 151 157 | 157 163 163 167 167 173
3n 171 174 | 177 | 180 | 183 | 186 | 189 | 192 195 198 | 201 | 204 | 207 | 210
2n | 142 144 | 146 | 148 | 150 | 152 154 | 156 | 158 160 162 164 | 166 168
p 173 179 179 181 181 | 191 191 193 193 197 197 199 199 | 211
3n [ 213 | 216 | 219 |222 | 225 |228 |231 |234 |237 |240 | 243 | 246 | 249 | 252
References

[1] M. Aigner, G. Ziegler, Proofs from THE BOOK, Springer, 2014, 16-21

[2] P. ErdGs, Beweis eines Satzes von Tschebyschef, Acta Sci. Math. (Szeged) 5 (1930-1932),

194-198

[3] M. El Bachraoui, Prime in the Interval [2n, 3n], International Journal of Contemporary

Mathematical Sciences, Vol.1 (2006), no. 13, 617-621.

[4] Wikipedia, https://en.wikipedia.org/wiki/Proof _of Bertrand%27s_postulate, Lemma 4.

Page 5




