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The refractive index-curvature relation is formulated using the second rank tensor of Ricci curvature as a
consequence of a scalar refractive index. A scalar refractive index describes linear optics. In a topological
space, the linear refractive index is related to the Euler-Poincare characteristic. Because the Euler-Poincare
characteristic is a topological invariant then the linear refractive index is also a topological invariant.
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In the geometrical optics, the refractive index-
curvature relation which describes ray propagation in a
steady (time-independent) state can be derived from the
Fermat’s principle1–4. The refractive index-curvature re-
lation can be written as

1

R
= N̂ . ~∇ ln n(r) (1)

where 1/R is a 1-dimensional space curvature, R is a ra-

dius of curvature, N̂ is an unit vector along the principal

normal or has the same direction with ~∇ ln n(r) and
n(r) is a 1-dimensional space refractive index. Eq.(1)
tells us that the rays are therefore bent in the direction
of increasing refractive index1.

The dimension of the curvature in eq.(1) can be ex-
tended to any arbitrary number of dimensions5. In a
(3 + 1)-dimensional space-time, eq.(1) can be written as

Rµν = g Nµ ∂ν lnn (2)

where Rµν is the second rank tensor of Ricci curvature5,6,
a function of the metric tensor gµν , g = |(det gµν)|, is a
scalar, a real number. Why do we need to formulate the
curvature in eq.(2) as the second rank tensor of Ricci
curvature? It is because of the related refractive index
in eq.(2) is the zeroth rank tensor, a scalar i.e. a real
number.

The zeroth rank tensor (a scalar) of the refractive index
describes an isotropic linear optics7. But, the refractive
index can be not simply a scalar8. The refractive index
can also be a second rank tensor which describes that the
electric field component along one axis may be affected
by the electric field component along another axis8. The
second rank tensor of the refractive index describes an
anisotropic linear optics7. Eq.(2) implies that the zeroth
rank tensor of the refractive index related to the Ricci
curvature describes naturally (an isotropic) linear optics.

We will formulate a curvature in a fibre bundle and we
treat the geometical optics as a gauge theory4. Is there
a relationship between a fibre bundle and a gauge theory?
Why do we need to formulate a curvature in a fibre bun-
dle? Originally, the fibre bundle and the gauge theory
are developed independently. Until it was realized that

the curvature (in the fibre bundle) and the field strength
(in Yang-Mills theory) are identical9. Simply speaking,
the curvature in the fibre bundle is the field strength in
the gauge theory.

Because the geometrical optics can be treated as the
Abelian U(1) gauge theory4, so we need to formulate
the curvature in the refractive index-curvature relation
as an Abelian curvature form in a fibre bundle. Prob-
ably, this is another reason why we really need to for-
mulate a curvature in a curvature form instead of the
Riemann-Christoffel curvature tensor. A curvature form
in a fibre bundle can be an Abelian (or a non-Abelian)
which the Riemann-Christoffel curvature tensor can not
be an Abelian10.

The curvature form, Ωρσ, can be written as11,12

Ωρσ =
∑

Rρσµν du
µ ∧ duν (3)

where Rµνρσ is the fourth rank tensor of Riemann-
Christoffel curvature, uµ, uν are local coordinates and
∧ is a notation of the exterior (wedge) product (it
satisfies the distributive, anti-commutative and associa-
tive laws)11,12. The curvature form, Ωρσ, is an anti-
symmetric matrix of 2-forms13,14. The relation between
the Ricci curvature tensor and the Riemann-Christoffel
curvature tensor, we call the Ricci-Riemann relation, is
Rµν = gρσRρσµν .

If we reformulate eq.(3) using eq.(2) and the Ricci-
Riemann relation, we obtain

Ωρσ =
∑

g gρσ Nµ ∂ν lnn duµ ∧ duν (4)

Eq.(4) shows the relationship between the scalar refrac-
tive index and the curvature form in a (3+1)-dimensional
space-time. Here, the scalar refractive index is a function
of coordinates only (a smooth continuous function of the
position15) which ”lives” in a (3 + 1)-dimensional space-
time4.

Let us introduce the general form of the curvature
matrix, Ω, which is a matrix of exterior two-forms as
below11

Ω = dω − ω ∧ ω (5)



where ω is the connection matrix. We see that eq.(5) is
a non-Abelian, a non-linear equation.

Can the curvature matrix, Ω, in eq.(5) be an Abelian,
a linear equation? An Abelian curvature matrix means
that the second term in the right hand side of eq.(5),
ω ∧ ω, vanish. It can be done if the isometry group,
G = U(1), then the Killing vector fields, ξi ∈ u(1) (the
Lie algebra of U(1))4. So in case of G = U(1)16, we have

Ω = dω (6)

We see that eq.(6) is an Abelian, a linear equation.
Is there a relationship between the curvature matrix, Ω

(5), and the curvature form, Ωρσ (3)? Yes (there is)17.
If Ωρσ and ωρσ denote the components of curvature and
connection matrices, Ω and ω, respectively then we can
write11

Ω = (Ωρσ), ω = (ωρσ) (7)

So, the curvature matrix (5) can be written using the
curvature form12 as below

Ωρσ = dωρσ − ω τ
ρ ∧ ωτσ (8)

In case of the Killing vector fields, ξi ∈ u(1), the curva-
ture form (8) becomes

Ωρσ = dωρσ (9)

Eq.(9) is the equation of an Abelian curvature form. By
substituting eq.(9) into eq.(4), we obtain

dωρσ =
∑

g gρσ Nµ ∂ν lnn duµ ∧ duν (10)

We call eq.(10) as the Abelian curvature form-scalar re-
fractive index relation.

Let us define the pfaffian of the curvature matrix Ω as
below11,18

pf Ω ≡
∑

ερ1σ1...ρ2qσ2q Ωρ1σ1 ∧ ... ∧ Ωρ2qσ2q (11)

where Ω is any even-size complex 2q×2q anti-symmetric
matrix (if Ω is an odd size complex anti-symmetric ma-
trix, the corresponding pfaffian is defined to be zero),
ερ1σ1...ρ2qσ2q

is the 2q-th rank Levi-Civita tensor which
has value +1 or -1 according as its indices form an even or
odd permutation of 1, ..., 2q, and its otherwise zero, and
the sum is extended over all indices from 1 to 2q. Here,
ρ1 < σ1, ... , ρ2q < σ2q and ρ1 < ρ2 < ... < ρ2q

11,18.
Shortly, the pfaffian of Ω (11) can be rewritten as

pf Ω =
∑

ερσ Ωρσ (12)

By substituting eqs.(9), (10) into (12) we obtain

pf Ω =
∑

ερσ
∑

g gρσ Nµ ∂ν lnn duµ ∧ duν (13)

Using the pfaffian of Ω, the Gauss-Bonnet-Chern the-
orem19–21 says that11,20

(−1)q
1

22qπqq!

∫
M2q

pf Ω = χ(M2q) (14)

where q is a natural number, χ(M2q) is the Euler-
Poincare characteristic22,23 of the even dimensional ori-
ented compact Riemannian manifold, M2q. The Euler-
Poincare characteristic is a topological invariant11. By
substituting (13) into (14), the Gauss-Bonnet-Chern the-
orem (14) becomes

χ(M2q) = (−1)q
1

22qπqq!

∫
M2q

∑
ερσ∑

g gρσ Nµ ∂ν lnn duµ ∧ duν (15)

We see from eq.(15), the scalar refractive index is related
to the Euler-Poincare characteristic. Because the Euler-
Poincare characteristic is a topological invariant24,25

then the scalar refractive index should be a topological
invariant.

The pfaffian of the curvature matrices (11) are defined
to be zero and non-zero if the curvature matrices are an
odd-size and an even size complex antisymmetric ma-
trices respectively. The zero and non-zero pfaffian of
the curvature matrices have consequences that the re-
lated curvature forms are zero and non-zero respectively.
We see from eq.(3) that the zero and non-zero curva-
ture forms in turn have consequences that the Riemann-
Christoffel curvature tensors are vanish and not vanish
respectively. The vanishing Riemann-Christoffel curva-
ture tensor means that space-time is vacuum. In other
words, the Riemann-Christoffel curvature tensor must
vanish in vacuum space-time. So does it mean that the
zero and non-zero curvature forms are related to vacuum
and non-vacuum space-time (in turn a vanishing and a
non-vanishing field strengths or vacuum and non-vacuum
gauge potentials)?

We see from eq.(14) that the zero and non-zero Euler-
Poincare characteristics are consequences of the zero
and non-zero pfaffian of an odd-size and an even-size of
complex antisymmetric curvature matrices respectively.
Does it mean that the zero and non-zero Euler-Poincare
characteristics are related to vacuum and non-vacuum
space-time (in turn a vanishing and a non-vanishing field
strengths or vacuum and non-vacuum gauge potentials)?

We see from eq.(15), the zero and non-zero Euler-
Poincare characteristics have consequences that the
scalar refractive indices are zero and non-zero respec-
tively. Physically, does it mean that the zero and
non-zero scalar refractive indices are related to vacuum
and non-vacuum space-time? (in turn a vanishing and a
non-vanishing field strengths or vacuum and non-vacuum
gauge potentials)?
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