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Solving the geodesic equation on a relativistic manifold is possible numerically step by
step. This process can be transposed into a quantisation. We study here the effect of this
quantisation on the Schwarzschild spacetime, more precisely in the Kruskal-Szekeres
map.

1 From digitization to quantification
The geodesics are obtained using the Euler-Lagrange varia-
tional method, with the Lagrangian L = gµνx′µx′ν which leads
to the well known equation [1](8.26)

x′′α + Γαµνx′µx′µ = 0

The goal is to obtain the extremal solutions for

τ =

∫ λ1

λ0

√
Ldλ

which happens to be the proper time for a test particle sub-
jected to the field g. Except for the mass of the particle, which
is in fact an energy, this proper time is an action.

Finding solutions digitally is extremely simple. Given a
digitisation step δλ and an initial state (x, x′) of the mobile,
the position x is incremented by x′δλ. The geodesic equation
gives x′′ = −Γαµνx′µx′ν and the velocity x′ is incremented by
x′′δλ. The process is then iterated.

Fig. 1: A test-particle moves from a geodesic γ0(λ0) to a geodesic
γ2(λ2) by a trajectory element γ1(λ1) on an interval δλ. This is a
straight line in the tangent space. We use the fact that the tangent
spaces TxR

n are in fact canonically included in Rn

The choice of the affine step will be made here by keeping
the time step constant ðτ which gives

δλ = ðτ/
√

L

This time step can be physically equated with the quantum of
action in the following interpretation.

At each step, the mobile requests a quantum according
to the chosen coordinate system x. It uses this quantum to
continue its trajectory in its local context, which is the tangent
space to the space-time manifold at the current point. Then
the new state is considered as such in global space-time. An
observer placed on the particle moves during the quantum of
time according to a trajectory linearised by the choice of its
map.

Some remarkable facts emerge.
First, the coordinate system selected by the observer is es-

sential. The linearisation of the trajectory during ðτ depends
on the map x and makes the interaction between space-time
and the observer contextual. There is an effect of the obser-
vation on the trajectory.

Second, it cannot be excluded that the quantisation step
involves speeds higher than those of light. This phenomenon
can be related to certain quantum effects, such as the possi-
bility for a particle to tunnel through a potential barrier, or to
violate the conservation of energy law for a time short enough
to be allowed by Heisenberg’s uncertainty relations.

Third, in the particular case of the Schwarzschild model
with a radius rS it becomes possible to be in the forbidden
zone beyond the naked singularity described below.

2 From Schwarzschild to Kruskal and
Szekeres

Karl Schwarzschild was one of the first to find a solution to
the gravitational equations of Einstein’s general relativity in
1916. This solution, which describes the field created by a
point mass, is expressed by the following metric in polar co-
ordinates, with a speed of light c = 1 and a Schwarzschild
radius rS :

dτ2 = (1 −
rS

r
)dt2 − (1 −

rS

r
)−1dr2 − r2(dθ2 + sin2 θdϕ2)

Two peculiar radiuses were observed immediately. The first
one, r = rS gives the horizon beyond which a particle cannot
escape, giving the name of a black hole to this zone. The sec-
ond one, r = 0, is a singularity of the metric, known as naked,
where any particle entering the black hole ends its trajectory
in a finite time.
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The Kruskal-Szekeres coordinate transformation leads to
a formulation in terms of the variables (T, X, θ, φ) [2] :

dτ2 =
4r3

s

r
e−

r
rS (dT 2 − dX2) − r2(dθ2 + sin2 θdϕ2)

The parameter r = rS (W0( 1
e (X2 − T 2)) + 1) is given by the

branch 0 of the Lambert functionW.

Fig. 2: Real branches of the Lambert function

Fig. 3: Kruskal-Szekeres map

The diagram in the figure 3 shows the following regions:
I space-time outside the black hole
II black hole
III other component of space-tim
IV white hole
S+ inside of the naked singularity
S- other component inside the naked singularity

This map shows that the Schwarzschild horizon is not a
physical singularity, but only an artefact due to the choice of
the map.

The diagonal lines represent the Schwarzschild horizon,
and the two boundary branches of the sing+ and sing- hyper-
bola the entrance and exit of the naked singularity.

A particle from region II ends its trajectory on sing+,
without being able to exit. Conversely, a particle in region
IV cannot do anything else, but exit; hence the name of the
white hole. One also finds the expressions sink and source for
these two regions.

S- and S+ are inaccessible, or forbidden, because they are
outside the map domain. These two regions and their bound-
aries are associated with a single point, the zero of the polar
coordinates, and can be considered as collapsed.

At least in the hypothesis of a strictly continuous world...

3 Appearance of tachyons
Traditionally, the term tachyon has been applied to a hypo-
thetical particle with a speed greater than the speed of light.
The exit of the speed of the future light cone is identified by
the fact that L < 0 and thus an imaginary quantisation step.
Here, we propose using a complex proper time:

τ = τr + iτi ∈ C

This time is measured by two clocks, one real and the other
imaginary. The increase in the affine parameter becomes δλ =

ðτr/
√

L if L > 0 or δλ = iðτi/
√
−L if L < 0. In this way, the

trajectory remains real in the map x. For a tachyon, it is the
imaginary clock that works, the other one remains fixed, and
the opposite is true for a standard particle.

For any coordinate system on space-time, the notions of
time and space are found locally by placing an orthonormal
basis in the tangent space which diagonalizes the metric. Af-
terwards, thanks to a possible permutation of the axes and a
calibration of the units, we can obtain the diagonal metric of
Minkowski Diag(1,−1,−1,−1). The zero coordinate is then
time and the others define the space. The base obtained in this
manner is generally referred to as a tetrad.

The proper speed ẋ = δλ
ðτ

x′ is transformed into a quad-

speed u = γ

(
1
u

)
where u is the space velocity of the mobile.

Let v be its Euclidean norm and nG be the unit vector u/v, the
so-called slip vector. We easily obtain γ = (1 − v2)−1/2.

If v < 1, it is possible to put the mobile at rest with a
Lorentz boost Λ(u) such as

Λ(u)u =

(
1
0

)
If v > 1, γ becomes purely imaginary. Nevertheless, it is
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possible to extend this boost by

Λ(u) = Λ

( nG

v

)
R(nG,

π

2
)

where R(n, θ) is the rotation of angle θ and axis n. It can

be seen that Λ(u)u =

(
0

inG

)
. The ”putting at rest” with this

extended boost makes a particle appear in the direction nG

with a proper time marked by its imaginary clock. As 1/v <
1, this transformation is physically feasible for an external
observer, and the tachyon could be visible. One can notice
that the factor i in front of nG is consistent, as it implies a
quadrivector of Minkowskian norm one.

4 Transition from black hole to white
hole

The appearance of a state in a zone forbidden by the singu-
larity poses a more delicate problem. Indeed, the Christoffel
coefficients involve the parameter

r = rs

(
W0

(
1
e

(X2 − T 2)
)

+ 1
)

This critical zone is defined by X2−T 2 < −1 which is outside
the domain ofW0.

The solution proposed here is to use the other part of this
function on the real line, namely

r = rs

(
W−1

(
1
e

(X2 − T 2)−1
)

+ 1
)

by reversing the term X2−T 2 which enters the domain of W−1.
The trajectory is then continued by changing the signs of T
and X, which moves the mobile from the black hole to the
white hole. This idea is supported by the hyperbolic character
of the Kruskal map.

5 Cost of quantification
The evolution of the trajectory during the time quantum is no
longer geodesic, and therefore requires some work. The force
that appears during this displacement is given by

f α = x′′α + Γαµνx′µx′ν

and its work on the affine segment δλ is given by

δW =

∫ λ1

λ0

gµν f µx′νdλ

A quick calculation shows that

δW = 1
2δλx′µx′νx′ρ

∫ 1
0

∂gµν
∂xρ (x + x′ξδλ)dξ

= δλx′µx′νx′ρ
∫ 1

0 Γρµν(x + x′ξδλ)dξ

This expression makes it possible to estimate the energy
needed to quantify the movement.

6 Refutability of the model

Given a time quantum, one can ask which mass M0 corre-
sponds to a quantum of action equal to Planck’s constant.
Thus, M0c2δτ = ~.

Clearly, the finer the digitisation, the closer the trajecto-
ries to the unquantized geodesics, thus deferring the quantum
effects mentioned above.

The smaller the quantum, the later the effect, the longer
the calculation time. The calculations carried out here al-
lowed us to aim for a time quantum of approximately 10−13s
which corresponds to a mass of 10−2eV/c2. For example,
reaching the mass of the neutrino, which is currently esti-
mated at 1.1eV/c2, would require a temporal resolution two
orders of magnitude lower, resulting in calculation times that
are approximately 100 times longer. As the calculations per-
formed here require several days, it is not impossible to think
that an optimisation could be achieved up to the level of actu-
ally observable particles.

Fig. 4: Mass - time quantum relationship

7 Two typical trajectories

In general, the trajectories end either with the limiting veloc-
ity 1 or at the singularity. Tachyons are short-lived, and return
to standard space-time with a final velocity of 1. Two exam-
ples are given in the figures 5 and 6.
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Fig. 5: Trajectory evolving towards the singularity. The variable
Atau is simply the addition of the two real and imaginary clocks.
The imaginary time is identified by a negative Lagrangian. The start
of the trajectory is in red and its end in dark blue. The passages
through the singularity are located at the points where X2 − T 2 < −1

8 Calculation tools

The digital tracking of trajectories requires over several mil-
lion steps. The standard precision of the current computers
(double precision) is 53 bits, which is totally insufficient. The
MPFR library [4] implements the calculation with an arbi-
trary precision, which is only limited by the machine’s mem-
ory. An interface written by P. Holoborodko [3] then allows
the use of the Eigen vector calculation library [6]. The very
complete study of F. Johansson [5] on the Lambert function
finally makes it possible to carry out the calculation of tra-
jectories, which becomes stable with a precision of 4096 bits
(approximately 1200 decimal places).

The exploration of the various trajectories is programmed
in C++ and uses a 128 processors machine running in the
Gnu-Linux Ubuntu 20.4 environment.

The trajectories presented here generally require several
days of parallel CPU.

Fig. 6: Trajectory leading to a tachyon, before ending on the singu-
larity. The colouring of the top two graphs is given by the imaginary
clock from the black part. The calculation was redone by increasing
the precision from 4096 to 8192 bits, with no significant difference

9 Quantum measurement analogy

As we have seen, some of the effects emerging in a time
quantum ðτ of a relativistic motion are due to the presence
of the observer. In summary, the motion naturally follows
a geodesic; then during the time of observation, it follows a
tangent, and it resumes its natural trajectory, but on another,
neighbouring geodesic.

This sequence is similar to the Copenhagen version of
quantum measurement, in which two types of evolution coex-
ist in a quantum system. The first, known as unitary (U-type),
is governed by the Schroedinger or Dirac equation. The sec-
ond, which appears when the system is measured, is called
wave packet reduction (type R), and consists of projecting
the wave function onto an eigenspace associated with the ob-
servable to be measured.

Let Â be the self-adjoint operator translating an observ-
able. To measure A according to Geneva’s school [8], the
observer asks a series of questions whose answers are yes or
no. A question about A is for example: ”Will the value of A
appear in a certain interval ∆ of the real line ?”.
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Let SpÂ be the spectrum of the operator Â. This question
is represented by the projection operator J∆ =

∑
a∈∆∩SpÂ JA

a

where JA
a is the projector onto the eigenspace of eigenvalue a.

The result of the measurement, i.e. the answer to the question,
will be yes with probability p1 = 〈ψ|J∆|ψ〉 and the system will
then be in the state |1〉 =

J∆ψ
‖J∆ψ‖

. The answer no is treated in
the same way, but with the projector J{∆ and gives the final
state |0〉.

One can imagine that the measurement lasts for a time
interval ðτ and, after the response has been randomly chosen,
the wave function evolves ”linearly” towards its final state.

Fig. 7: Evolution of the quantum probability amplitude in R mode

For example, the path in the figure 7

t 7→ ψt = cos
(
θ
(
1 −

t
ðτ

))
|1〉 + sin

(
θ
(
1 −

t
ðτ

))
|0〉

where cos θ =
√

p1, moves in a uniform and unitary manner
from ψ to |1〉 in case of a yes answer.

For the Schroedinger equation, this evolution is governed
in the (|1〉, |0〉) basis by the Hamiltonian operator

Ĥ1 =
θ~

ðτ
σ2 θ = arccos

√
p1

where σ2 is the second Pauli matrix. It can be seen that
〈Ĥ1〉 = 0, and that we have

ψt = e
θt

iðτσ2ψ = e
θt
ðτ (|1〉〈0|−|0〉〈1|)ψ

Initially, the wave function follows a trajectory U given by
a Hamiltonian Ĥ. During the measurement, the reduction R
is replaced by a trajectory U with a Hamiltonian proportional
to σ2. It then resumes the trajectory U given by Ĥ.

10 From the quantum to the infinitesi-
mal

The infinitesimals of Leibnitz and Newton were only recently
given a consistent axiomatic basis. They have been used sys-
tematically by mathematicians such as Euler, Lagrange or

Wallis with success and without rigorous justification. Physi-
cists use thes devices without further adoes on a daily basis.
The axiomatization of continuity by d’Alembert, Cauchy and
Weierstrass almost sounded the death knell of these quanti-
ties, as small as one likes, but nonzero...

Nevertheless, they have made a surprising reappearance
through topos, equipped with their not necessarily Boolean
logic. For smooth infinitesimal analysis, for example, they
are defined by the subset of the line ∆ = {ε|ε2 = 0} which is
no longer reduced to {0}. One then speaks of nilpotent real
numbers. This has the effect of eliminating all powers greater
than or equal to 2 in the Taylor developments on this set. In
other words, any function becomes linear on ∆ or : ∆ is a
representation of the tangent space in zero which is included
in the real line.

The above analysis performs this integration with the idea
that the time quantum could ideally be understood from the
nilpotents.

The quantum effects in the vicinity of singularities are
reminiscent of John Lane Bell’s formula:

Vale ict, ave iε ! [7]

as an extension of the discussion of the introduction of
imaginary time by Minkowski [1] (Box 2.1 p51).
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