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Abstract 

DLSGAN proposed a learning-based GAN 

inversion method with maximum likelihood 

estimation. In this paper, I propose a method 

for out-of-distribution detection using the 

encoder of DLSGAN. Simply, the log-likelihood 

of the predicted latent code of input data can 

be used for out-of-distribution (OOD) detection. 

 

1. OOD detection DLSGAN 

DLSGAN [4] proposed a learning-based GAN 

inversion method with maximum likelihood 

estimation of the encoder. The encoder of 

DLSGAN maps input data to predicted latent 

code.  

When the DLSGAN converged, one can know 

the true distribution of DLSGAN encoder 

output. Therefore, the log-likelihood of input 

data can be simply calculated through the 

DLSGAN encoder. The following equation 

shows the log-likelihood of the predicted latent 

code of input data. 

𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑢𝑚(log 𝑓(𝐸(𝑥)|𝜇, 𝑣)) 

In the above equation, 𝑥  and 𝐸  represent 

input data and DLSGAN encoder, respectively. 

𝐸(𝑥)  represents 𝑑_𝑧 -dimensional predicted 

latent code of input data 𝑥 . 𝑓  represents 

probability density function of the i.i.d. latent 

random variable 𝑍. 𝜇 and 𝑣 represents mean 

and variance vector for the probability density 

function 𝑓. 𝜇 is mean vector of latent random 

variable 𝑍 . 𝑣  is the same vector as traced 

variance vector of DLSGAN.  

 The 𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒 is simply the log-likelihood of 

the predicted latent code 𝐸(𝑥). If the 𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒 

is smaller than the threshold, the input data is 

classified as OOD data. Otherwise, it is classified 

as in-distribution data. 

 

2. Experiments 

2.1 Experiments settings 

I used MNIST handwritten digits dataset [1] as 

an in-distribution dataset and corrupted MNIST 

dataset [2] as an OOD dataset. The following 

figure shows samples of in-distribution data 

and OOD data. 
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Figure 1. Samples of the dataset. The first image 

shows in-distribution data. Other images show 

OOD data. 

 

 I trained DLSGAN to generate in-distribution 

data with an MNIST handwritten digits training 

dataset, then measured the OOD detection 

performance of the proposed method. 10k test 

dataset of the MNIST dataset was used as the 

in-distribution dataset, and 10k test dataset of 

corrupted MNIST was used as OOD dataset. 

AUROC was used for OOD detection 

performance evaluation. 

For the threshold value, 100 intervals from 0 

to 1000 were used. 

Following hyperparameters was used for 

DLSGAN training. 

 

𝜆𝑒𝑛𝑐 = 1 

𝜆𝑟1 = 10 

𝑍 = (𝑍𝑖)𝑖=1
256 ~

𝑖.𝑖.𝑑.
 𝑁(0,12) 

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32 

 

Also, an exponential moving average with 

𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 = 0.999  was used to approximate 

the element-wise variance of the predicted 

latent vector. NSGAN with R1 regularization [3] 

was used for DLSGAN training. DLSGAN was 

trained with 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 10−3 for the first 

30 epochs and then trained with 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 10−5 for the next 30 epochs. 

The following table shows the performance of 

trained DLSGAN. 

FID [5] 11.2907 

Precision [6] 0.6465 

Recall [6] 0.5571 

Fake PSNR 25.8172 

Fake SSIM 0.8901 

Real PSNR 17.8839 

Real SSIM 0.6848 

Figure 2. Performance of trained DLSGAN 

10k generated images and 10k test images 

were used for DLSGAN performance evaluation. 

2.2 Experiments results 

 AUROC 

Shot noise 0.8961 

Impulse noise 1.0000 

Glass blur 0.9914 

Motion blur 0.9995 

Stripe 1.0000 

Fog 1.0000 

Spatter 0.9785 

Dotted line 0.9958 

Zigzag 0.9989 

Canny edges 0.9999 

Figure 3. OOD detection performance 

 



Figure 3 shows the OOD detection 

performance of the proposed method. Each 

row of the table shows the AUROC performance 

according to the OOD dataset. One can see that 

the proposed method almost perfectly 

detected OOD data.  

 

3. Conclusion 

 In this paper, I found that the encoder of 

DLSGAN can be used to estimate the likelihood 

of input data. The proposed method shows 

high detection performance even for the OOD 

data very close to the in-distribution data.  
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