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Abstract 

The iteration that builds systematic forms for Hadamard matrices doubles the dimension each 

application equivalent to the Cayley-Dickson algebra doubling process. These systematic forms have a 

row or column composition rule where the composition of any two rows(columns) is closed for the 

matrix, such that for sequentially assigned column and row indexes from 0 up, the index of the result is 

the binary bit-wise exclusive or (xor) of the indexes for the two rows(columns) participating. The 

Exclusive Or Group of order 2n and all of its subgroups is isomorphic to the product tables for order 2n 

Cayley-Dickson algebra and all of its subalgebras when all resultant –1 signs are dropped. The Boolean 

xor operator thus forms the bridge between Cayley-Dickson algebras and Hadamard matrices, but only 

for the division algebra subset. The dimension 8 Hadamard matrix is ubiquitous within Octonion 

algebraic structure by specifying optimal enumerations of, and relationships between; basis elements, 

Quaternion subalgebra triplets, proper Octonion orientations, Octonion Algebraic Invariance and 

Variance. 

*** 

It is a known fact the resultant signs of basis element products for division algebras can be expressed 

by a table where the +1 and –1 sign results form a Hadamard matrix. A systematic construction for 

relevant order Hadamard matrices uses the following iteration defining Hn from the matrix Hn-1 starting 

with the single cell matrix [+1] = H0: 

Hn-1 Hn-1 

Hn-1 –Hn-1 

 

The dimension of these types of Hadamard matrices Hn are 2n by 2n matching the dimension of the 

basis element product table for the nth doubled Cayley-Dickson algebra, where both constructions 

continue beyond Octonion Algebra, the last division algebra. 

Attach integer labels for any systematic Hadamard matrix rows and columns sequentially from zero, 

left to right and top to bottom. Now consider the row or column composition where a row vector is 

formed from the product of like column entries for any two same or different rows, or additionally as a 

column vector formed from the product of like rows for any two same or different columns. The result 

for every composition of this type will be a row or column of the systematic Hadamard Matrix, this 

composition definition is closed for the table. In fact, with rows and columns enumerated as mentioned, 

the composition of any two rows(columns) indexed a and b results in the row(column) a^b, the bit-wise 

exclusive or (xor) of the binary represented indexes a and b. This composition rule on Hadamard 

matrices precisely matches Cayley-Dickson algebra basis element products ea * eb = ±ea^b when the 

basis element product/result indexes are optimally enumerated. 

While this composition is interesting and important when the table rows and columns are enumerated 

as mentioned, we are looking to represent the signs of Cayley-Dickson basis element products within 

systematic Hadamard matrices, so rows and columns need to be labeled with basis elements. The first 

row and first column of the systematic form are all +1 entries, making these the appropriate 

enumerations for the scalar basis element row and column labeled e0. The remaining diagonal members 
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of the systematic form are not always –1 as they would need to be if the row basis element enumeration 

is the same as the column enumeration, since all non-scalar basis elements square to –1. There is no 

loss of generality keeping a sequential basis index enumeration for row labels, respecting the 

composition rule correspondence with optimal basis element products at least for rows. Our task will 

then be to find permutations of the non-scalar row basis elements to use as labels for columns such that 

the Hadamard matrix –1 values properly identify all basis element squares and negated basis element 

results that are the outcome of anti-commutation if relevant.  

H0 has one element, and trivially covers the algebra of real numbers. For Complex (sub)algebra, H1 

spans its basis product structure in a singular fashion since there is only one non-scalar basis to 

permute, matching the fact Complex Algebra is singularly defined. We have for H1 

 e0 en 

e0 +1 +1 

en +1 –1 

 

Quaternion (sub)algebras will use H2, where the following row indexes {a, b, c} must be matched 

bijectively through non-identity permutations to define column indexes {x, y, z} 

 e0 ex ey ez 

e0 +1 +1 +1 +1 

ea +1 –1 +1 –1 

eb +1 +1 –1 –1 

ec +1 –1 –1 +1 

 

From the table above we have two choices assigning –1 for basis element squares: 

a = x or z 

b = y or z 

c = x or y 

If we choose x = a, this forces y = c which forces z = b. If we choose z = a, this forces y = b, which 

forces x = c. Thus, the connection to Hadamard matrices tells us there are two different permutation 

mappings possible, the exact number of orientation choices for Quaternion Algebra. Their basis 

element product tables are then 

 e0 ea ec eb 

 e0 +1 +1 +1 +1 

ea +1 –1 +1 –1 

eb +1 +1 –1 –1 

ec +1 –1 –1 +1 

 

 e0 ec eb ea 

e0 +1 +1 +1 +1 

ea +1 –1 +1 –1 

eb +1 +1 –1 –1 

ec +1 –1 –1 +1 
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The table on the left is represented by the Quaternion six product cyclic right (+) cyclic left (–) basis 

element product rules ( ec eb ea ) e.g. ec * eb = +ea and eb * ec = –ea, and the representation for the right 

side table is the Quaternion basis element product rule ( ea eb ec ), the negation or opposite chiral 

orientation of the former. 

Octonion (sub)algebras will use H3 and we must find within the next table all permutations on the fixed 

{a, b, c, d, e, f, g} bijectively placed within {t, u, v, w, x, y, z} that meet the following restrictions. As 

with Quaternion (sub)algebras above we must accommodate all subalgebras for Octonion Algebra with 

properly formed Hadamard matrices of appropriate order. Octonion Algebra has seven Quaternion 

subalgebras. Each of these must have proper 4x4 Hadamard matrix representations isomorphic to what 

we just went through for H2 but within the H3 structure. Once found, all Complex subalgebra H1 forms 

will be assured to be legitimate as subforms of H2. The following is the generic H3 table: 

 

 e0 et eu ev ew ex ey ez 

e0 +1 +1 +1 +1 +1 +1 +1 +1 

ea +1 –1 +1 –1 +1 –1 +1 –1 

eb +1 +1 –1 –1 +1 +1 –1 –1 

ec +1 –1 –1 +1 +1 –1 –1 +1 

ed +1 +1 +1 +1 –1 –1 –1 –1 

ee +1 –1 +1 –1 –1 +1 –1 +1 

ef +1 +1 –1 –1 –1 –1 +1 +1 

eg +1 –1 –1 +1 –1 +1 +1 –1 

 

There is no loss of generality representing {a, b, c, d, e, f, g} as {1, 2, 3, 4, 5, 6, 7}, a proper Octonion 

basis set index enumeration. The set of legitimate permutations of {1, 2, 3, 4, 5, 6, 7} bijectively 

assigned to {t, u, v, w, x, y, z} respecting the seven Quaternion subalgebra Hadamard connections can 

be easily extracted with a relatively simple computer program. The resultant orientations for each of the 

Quaternion subalgebras will determine which of the 16 Octonion Algebra orientations that permutation 

produces. There are only eight permutations of {1, 2, 3, 4, 5, 6, 7} that yield proper H2 forms for all 

Quaternion subalgebras, and the following table itemizes the results. The Octonion Algebras they 

represent are indicated by row entry in the first column: 

 t u v w x y z 

L0 7 6 5 4 1 3 2 

L1 5 3 2 6 1 4 7 

L2 1 3 6 7 4 5 2 

L3 1 7 2 5 6 3 4 

L4 5 7 6 4 3 2 1 

L5 3 2 5 7 6 4 1 

L6 3 6 1 5 4 2 7 

L7 7 2 1 6 3 5 4 

 

Notice all are Left Octonion, and the full complement of Left orientation Octonions are singularly 
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represented. Keeping within Right or Left and not producing both is a common occurrence for 

Octonion Algebra structural analysis. An important example is PSL(2,7), the automorphism group for 

the Fano Plane. Its members represent all possible Octonion non-scalar basis element permutations that 

respect both the partitions for its seven Quaternion subalgebra triplets, and all orientation choices that 

result in proper Octonion Algebras. PSL(2,7) maps Right Octonion to Right Octonion, and Left 

Octonion to Left Octonion. This clearly tells us that two separate directed Fano Plane representations 

are required to fully specify Octonion Algebra. If one would look at a directed Fano Plane 

representation straight on, then its mirror image, the arrow directions in the classical form following the 

three triangle sides and the one connecting the side midpoints all go clockwise one way and counter-

clockwise the other, yet nothing has changed with the inferred multiplication rules. On the other hand, 

the three arrows for the vertex bisectors have mirror symmetry. They can be represented two ways, all 

pointed out of the vertexes (representing all Right Octonion Algebras) or all pointed into the vertexes 

(representing all Left Octonion Algebras). While there are other arrow possibilities, why make it any 

more complicated than it has to be? 

Having only Left Octonion, and all Left is a good thing. The relationship between Left and Right 

Octonion Algebras is an anti-automorphism where the map between is the involution negating the 

orientation of every Quaternion subalgebra. Being an anti-automorphism, we can change the only Left 

H3 Octonion Algebra table above to only Right H3 by transposing the table. Since the systematic forms 

of Hadamard matrices are symmetric, we only need to swap column and row labels, maintaining order. 

We then have the following: 

 t u v w x y z 

L/R0 7 6 5 4 1 3 2 

L/R1 5 3 2 6 1 4 7 

L/R2 1 3 6 7 4 5 2 

L/R3 1 7 2 5 6 3 4 

L/R4 5 7 6 4 3 2 1 

L/R5 3 2 5 7 6 4 1 

L/R6 3 6 1 5 4 2 7 

L/R7 7 2 1 6 3 5 4 

 

 

 

 

 

 

 

 

 

 

 

L 
𝕆 

e0 et eu ev ew ex ey ez 

e0 +1 +1 +1 +1 +1 +1 +1 +1 

e1 +1 –1 +1 –1 +1 –1 +1 –1 

e2 +1 +1 –1 –1 +1 +1 –1 –1 

e3 +1 –1 –1 +1 +1 –1 –1 +1 

e4 +1 +1 +1 +1 –1 –1 –1 –1 

e5 +1 –1 +1 –1 –1 +1 –1 +1 

e6 +1 +1 –1 –1 –1 –1 +1 +1 

e7 +1 –1 –1 +1 –1 +1 +1 –1 

R 
𝕆 

e0 e1 e2 e3 e4 e5 e6 e7 

e0 +1 +1 +1 +1 +1 +1 +1 +1 

et +1 –1 +1 –1 +1 –1 +1 –1 

eu +1 +1 –1 –1 +1 +1 –1 –1 

ev +1 –1 –1 +1 +1 –1 –1 +1 

ew +1 +1 +1 +1 –1 –1 –1 –1 

ex +1 –1 +1 –1 –1 +1 –1 +1 

ey +1 +1 –1 –1 –1 –1 +1 +1 

ez +1 –1 –1 +1 –1 +1 +1 –1 
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So, what do we have now for Octonion Algebra? Requiring the algebraic basis element product result 

sign structure to be represented by a Hadamard matrix tells us we have only 16 different Octonion 

orientations. If we require Octonions to be a normed composition algebra where the product of the 

norms of two algebraic elements is the norm of their product, we also have only 16 orientations 

meeting this test. If we require the algebra of just two Octonion algebraic elements to be associative, 

i.e. a*(b*a) = (a*b)*a we have only 16 different orientations meeting this requirement. The beauty and 

consistency of Octonion algebraic structure is that all three requirements restrict Octonion Algebra to 

the same 16 orientations. So, we have lost nothing restricting {a, b c, d, e, f, g} to sequentially {1, 2, 3, 

4, 5, 6, 7}. The permutation on any other set would build an isomorphic alias to this restriction, but 

could be required for an Octonion subalgebra of a higher dimension algebra.  

Moving on now to Sedenion algebra, we would expect to build its product signage with H4 by 

permuting row indexes 1-15 for use as the indexes for the column basis elements. Interestingly, when 

we move beyond the division algebra portion of Cayley-Dickson algebras, the Hadamard matrix 

method stops working. No permutation will produce proper H2 forms for all 35 Quaternion subalgebras 

of Sedenion Algebra. If we first restrict consideration to those permutations that yield all 15 non-scalar 

basis element squares to –1, the best that can be done is 26 proper Quaternion H2 forms. Here, the 

improper forms show one of three non-scalar basis elements commutes with the other two instead of 

anti-commuting. If we remove the preliminary square to –1 restriction, the best that can be done then is 

32 of 35 proper H2 forms. The improper forms here will be combinations of commuting products that 

should anti-commute, and non-scalar basis element squaring to +1. None of these are proper Sedenion 

Algebra. Since Sedenion Algebra will be a subalgebra of every greater order Cayley-Dickson algebra, 

the Hadamard game is over after proper doubling to Octonion Algebra. 

While the above connection between Octonion Algebra and Hadamard matrices stands on its own, 

there is more structure within structure. This is a common occurrence for Octonion Algebra, and the 

immense structure embodied within its definition becomes more apparent when its Quaternion 

subalgebra triplets are enumerated by the full complement of three indexes that xor to zero. This is not 

a close call, notably here from the xor presence in Hadamard row/column compositions and thus 

division algebras through the earlier discussion, and moreover the correspondence between Exclusive 

Or Groups and any Cayley-Dickson algebra.  

Understanding is best achieved when the noise of unnecessary clutter is removed. The best realization 

of this begins with standardizing on the xor correspondence for the partitioning of Quaternion 

subalgebra non-scalar basis triplets, leaving the other 29 ways to do this behind. There is not much, and 

at the same time too much, to see considering 480 different Octonion Algebra multiplication tables. The 

meat on the bone is fully appreciated after choosing one of 30 ways to partition the seven Quaternion 

subalgebra triplets, then fully immersing thought in the resultant 480/30 = 16 Octonion Algebras. The 

30 ways are isomorphic representations, nothing more than aliases of each other.  

While on the subject, the oft used statement that all 480 Octonion Algebra representations are 

isomorphic is patently false. No automorphism exists between Left and Right Octonion orientations, 

the morph is anti-automorphism. Any non-symmetric basis element multiplication table and its 

transpose are distinctly different in structure. The group PSL(2,7) gives us the full complement of 

reversible automorphisms between any two Left orientations, and between any two Right orientations. 

Thus, all Left orientations are separately isomorphic, and all Right orientations are separately 

isomorphic. The fact that all are division algebras is neither here nor there, irrelevant to the question of 

isomorphism. 

Let’s look now at the optimal indexing for the seven optimally partitioned Quaternion subalgebra 

triplets for Octonion Algebra. Since at this point, we do not care about which orientation is used, the 
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orientation non-specific index set representation {a b c} is used instead of the orientation specifying 

ordered triplet rule (a b c) or (c b a). Itemize as follows: 

Triplet[1] = {2 4 6} 

Triplet[2] = {1 4 5} 

Triplet[3] = {3 4 7} 

Triplet[4] = {1 2 3} 

Triplet[5] = {2 5 7} 

Triplet[6] = {1 6 7} 

Triplet[7] = {3 5 6} 

 

The interesting thing about this enumeration is if we look at three selections from the sets Triplet[] 

indexed by integers matching the indexes for some Quaternion subalgebra triplet, there is a single index 

common to all three triplets, and it matches the enumeration n of Triplet[n] describing the three chosen 

values. For instance, looking at Triplet[1], Triplet[2] and Triplet[3], the common index is 4, and 

Triplet[4] = {1 2 3}. This works for any triple/triplet.  

With this in mind, examine the systematic form for H3 labeling the rows and columns with indexes 0 

through 7 sequentially top to bottom and left to right. For non 0 indexed row(column) n we will find 

the +1 entries show up in the three columns(rows) indexed in Triplet[n]. One could then say the 

Hadamard matrix form H3 sources the structures Triplet[n], relevant for both Right and Left Octonion 

Algebras due to the row/column symmetry. The connection between these triplets and Hadamard 

matrices will provide the segue to the Hadamard matrix relationship between Quaternion subalgebra 

triplet orientations and all possible Octonion Algebra orientations, leading then to the important next 

step consideration of Octonion Algebraic Invariance/Variance where sets of product terms from any 

complexity sequence of algebraic element products can be sorted such that all set members will either 

never change sign (algebraic invariants), or based on the particular Octonion Algebra change will either 

change sign or remain the same sign (algebraic variants), when the orientation of the applied Octonion 

Algebra is changed up. More on this later on. 

Now look again at the L 𝕆 table 

 

 

 

 

 

 

 

 

 

The row labeled e1 is a representation of all left products by e1, and the +1 values in columns eu, ew, and 

L 
𝕆 

e0 et eu ev ew ex ey ez 

e0 +1 +1 +1 +1 +1 +1 +1 +1 

e1 +1 –1 +1 –1 +1 –1 +1 –1 

e2 +1 +1 –1 –1 +1 +1 –1 –1 

e3 +1 –1 –1 +1 +1 –1 –1 +1 

e4 +1 +1 +1 +1 –1 –1 –1 –1 

e5 +1 –1 +1 –1 –1 +1 –1 +1 

e6 +1 +1 –1 –1 –1 –1 +1 +1 

e7 +1 –1 –1 +1 –1 +1 +1 –1 
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ey imply the ordered triplet product orientations ( eu^1 e1 eu ), ( ew^1 e1 ew ) and ( ey^1 e1 ey ). Since we 

know we are dealing with a Left Octonion Algebra, eu, ew, and ey do not form a Quaternion subalgebra 

triplet, and eu^1, ew^1, and ey^1 do. Therefore e1, eu, ew, and ey form a basic quad whose indexes xor to 

zero. From this, we have u^w^y = 1. The remaining four column entries with –1 must include e1 

specifying its square, and three more that are the Quaternion subalgebra triplet eu^1, ew^1, and ey^1 whose 

entries xor to 0. Therefore, we have t^v^x^z = 1. Doing the same on the other rows gives us seven 

restrictions: 

1 = u^w^y = t^v^x^z   1 is one of t, v, x, or y 

2 = t^w^x = u^v^y^z  2 is one of u, v, y or x 

3 = v^w^z = t^u^x^y  3 is one of t, u, x or y 

4 = t^u^v = w^x^y^z  4 is one of w, x, y or z 

5 = u^x^z = t^v^w^y  5 is one of t, v, w or y 

6 = t^y^z = u^v^w^x  6 is one of u, v, w or x 

7 = v^x^y = t^u^w^z  7 is one of t, u, w or z 

 

Assign t = 1. From t^v^x^z = 1 we have v^x^z = 0, a Quaternion subalgebra triplet, and the only one in 

which indexes v and z will appear. Then from u^v^y^z = 2, we can state that neither u or y can equal 2, 

and therefore either v or z = 2. Similarly, from w^x^y^z = 4, neither w or y can equal 4, and therefore 

either x or z = 4. From u^v^w^x = 6, neither u or w can equal 6, and therefore either v or x = 6. If we 

now pick one of two choices for index v, then x and z will be determined.  

If we assign v = 2 with t = 1, then x = 6 and z = 4. Then from t^w^x = 2, 1^w^6 = 2 thus w = 5. From 

t^u^v = 4 we have u = 7, and from t^y^z = 6 we have y = 3. So [t,u,v,w,x,y,z] = [1,7,2,5,6,3,4]. 

If we assign v = 6 with t = 1, then x = 4 and z = 2. Then from t^w^x = 2 we have w = 7. From t^u^v = 4 

we have u = 3, and from t^y^z = 6 we have y = 5. So [t,u,v,w,x,y,z] = [1,3,6,7,4,5,2]. 

Both of these [t,u,v,w,x,y,z] assignments are found in the table of eight above. Let’s continue with the 1 

= t^v^x^y restriction by assigning 1 to each of the other three possibilities in turn to generate the 

remaining assignments. 

Assign v = 1. From t^v^x^z = 1 we have t^x^z = 0. Then from t^u^x^y = 3, we can state that neither u 

or y can equal 3, and therefore either t or x = 3. Similarly, from w^x^y^z = 4, neither w or y can equal 

4, and therefore either x or z = 4. From t^u^w^z = 7, neither u or w can equal 7, and therefore either t 

or z = 7. 

Assign t = 3 for v = 1. Then z = 7 and x = 4. From v^w^z = 3, w = 5. From t^u^v = 4, u = 6. From 

v^x^y = 7, y = 2. Thus [t,u,v,w,x,y,z] = [3,6,1,5,4,2,7] 

Assign t = 7 for v = 1. Then z = 4 and x = 3. From v^w^z = 3, w = 6. From t^u^v = 4, u = 2. From 

v^x^y = 7, y = 5. Thus [t,u,v,w,x,y,z] = [7,2,1,6,3,5,4] 

Assign x = 1. From t^v^x^z = 1 we have t^v^z = 0. Then from u^v^y^z = 2, we can state that neither u 

or y can equal 2, and therefore either v or z = 2. Similarly, from t^v^w^y = 5, neither w or y can equal 

5, and therefore either t or v = 5. From t^u^w^z = 7, neither u or w can equal 7, and therefore either t or 

z = 7. 

Assign t = 5 for x = 1. Then z = 7 and v = 2. From t^w^x = 2, w = 6. From u^x^z = 5, u = 3. From 

v^x^y = 7, y = 4. Thus [t,u,v,w,x,y,z] = [5,3,2,6,1,4,7] 
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Assign t = 7 for x = 1. Then z = 2 and v = 5. From v^w^z = 3, w = 4. From u^x^z = 5, u = 6. From 

v^x^y = 7, y = 3. Thus [t,u,v,w,x,y,z] = [7,6,5,4,1,3,2] 

Assign z = 1. From t^v^x^z = 1 we have t^v^x = 0. Then from t^u^x^y = 3, we can state that neither u 

or y can equal 3, and therefore either t or x = 3. Similarly, from t^v^w^y = 5, neither w or y can equal 

5, and therefore either t or v = 5. From u^v^w^x = 6, neither u or w can equal 6, and therefore either v 

or x = 6. 

Assign t = 3 for z = 1. Then v = 5 and x = 6. From v^w^z = 3, w = 7. From u^x^z = 5, u = 2. From 

t^y^z = 6, y = 4. Thus [t,u,v,w,x,y,z] = [3,2,5,7,6,4,1] 

Assign t = 5 for z = 1. Then v = 6 and x = 3. From v^w^z = 3, w = 4. From u^x^z = 5, u = 7. From 

t^y^z = 6, y = 2. Thus [t,u,v,w,x,y,z] = [5,7,6,4,3,2,1] 

As can be seen, all eight assignments found by validating every permutation of [1,2,3,4,5,6,7] for 

[t,u,v,w,x,y,z] are produced through Boolean algebra expressions. I can’t imagine deriving this without 

the aid of the xor relationships, although it would be in theory possible using any of the other 29 

isomorphic Quaternion subalgebra partitioning schemes. 

There are additional puzzle piece tidbits of interesting information from all of this concerning Octonion 

Algebras. Go back and look at the {t, u, v, w, x, y, z} assignment table replacing {t, u, v, w, x, y, z} with 

{1, 2, 3, 4, 5, 6, 7} to express the basis element index permutations of {1, 2, 3, 4, 5, 6, 7} defining each 

Octonion orientation Hadamard matrix representation.  

 1 2 3 4 5 6 7 

L/R0 7 6 5 4 1 3 2 

L/R1 5 3 2 6 1 4 7 

L/R2 1 3 6 7 4 5 2 

L/R3 1 7 2 5 6 3 4 

L/R4 5 7 6 4 3 2 1 

L/R5 3 2 5 7 6 4 1 

L/R6 3 6 1 5 4 2 7 

L/R7 7 2 1 6 3 5 4 

 

Every column n does not include the indexes found in Triplet[n], it is 2 up on its basic quad indexes. 

With a little work one can see that within any single row, forming the xor of the indexes in the three 

columns found in each Triplet[n] results in the value n. 

This table also has an interesting connection to the notion of ordered 9-tuples defined and 

discussed/used in detail within reference [1]. Briefly for Left and Right Octonion orientations 

Left ordered 9-tuple 

  (ec ed eg)  

↓(eb ed ef)  specifies (ec eb ea), (ec ed eg), (eb ed ef), (ea ed ee), (ee ef ec), (ef eg ea), (eg ee eb) 

  (ea ed ee)  

 

Right ordered 9-tuple 

(ee ed ea)  

(ef ed eb)↓  specifies (ea eb ec), (ee ed ea), (ef ed eb), (eg ed ec), (eg ef ea), (ef ee ec), (ee eg eb) 

(eg ed ec)  
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From the Quaternion subalgebra triplet orientations one can see the map between is an anti-

automorphism, they are representations of Ln and Rn for some n. Centrally located basis element ed is 

referred to as the cardinal basis element, and the Quaternion subalgebra triplet on the down arrow side 

is referred to as the cardinal triplet. Each Octonion Algebra orientation has a bijective map pairing the 

seven Quaternion subalgebra triplets in cardinal triplet position to the seven non-scalar basis elements 

in cardinal basis element position, as shown in the following table 

 L/R0 L/R1 L/R2 L/R3 L/R4 L/R5 L/R6 L/R7 

{e6 e4 e2} e7 e5 e1 e1 e5 e3 e3 e7 

{e5 e4 e1} e6 e3 e3 e7 e7 e2 e6 e2 

{e7 e4 e3} e5 e2 e6 e2 e6 e5 e1 e1 

{e1 e2 e3} e4 e6 e7 e5 e4 e7 e5 e6 

{e5 e7 e2} e1 e1 e4 e6 e3 e6 e4 e3 

{e7 e6 e1} e3 e4 e5 e3 e2 e4 e2 e5 

{e6 e5 e3} e2 e7 e2 e4 e1 e1 e7 e4 

 

Within this table if we replace all Triplet[n] row labels with their n values, replace all table entry basis 

elements with just their indexes, then transpose the table, we reproduce the index permutation 

assignment table just above. 

The map between Octonion Algebras Lm and Ln as well as between Rm and Rn is the involution 

negating the orientations of all four Quaternion subalgebras that do not include the basis element em^n. 

Equivalently stated, all basis element product rules including em^n are unchanged. Not surprising then, 

if we look at two rows of the index permutation assignment table, L/Rm and L/Rn, the index m^n will 

appear in the same column. This would clearly depend on how the separate Octonion orientations are 

enumerated. Once again, the ubiquitous connection between Hadamard matrices and division algebras 

comes into play. 

We previously covered the Hadamard connection first to division algebra basis elements, then the 

Quaternion subalgebra triplets. Since the orientation of any Octonion Algebra is fully specified by the 

orientations of its Quaternion subalgebras, we might expect a Hadamard matrix correspondence 

between the triplets and the proper Octonion Algebra orientations. Review the following table 
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The last seven Hadamard matrix rows are labeled with Triplet[n] where n is sequentially top to bottom 

1 through 7. This allows a meaningful sequential indexing on the Octonion Algebra orientations. Since 

we have not declared meaning to any yet, the triplet labels are represented with the non-oriented 

standard {}. The first row is the representation of all products that will not change if the full algebra 

orientation is changed up, essentially those not governed by any triplet orientation choice. Hence all 

entries in its row are +1 across all possible Octonion Algebras. 

At this point, we have a free choice of what to call either R0 or L0, since choosing one defines the 

other. Then we can build a Left only or Right only Octonion table by changing the {} row labels to 

their oriented choices (ea eb ec) appropriate for our selection for L0 or R0, then removing one of L/R in 

the column labels. Now we can interpret the meaning of the Hadamard matrix ±1 entries for this 

connection. The L/R0 column contains all +1 entries, and this is stating the orientations we now have 

for row labels are those for L/R0 by virtue of this fact. For the remainder of the Hadamard matrix 

portion, for the algebra selected by the column label, in that algebra the orientation for the Quaternion 

subalgebra triplet labeling a row is the same as in either L/R0 if the intersection is +1, and is its 

negation if the intersection is –1. 

This Hadamard matrix correspondence between Quaternion subalgebra triplets and Octonion Left or 

Right Algebras builds all 16 proper Octonion orientations, once again separately for Left and Right 

algebras. They are given as follows 

 

 

 

 

 

 

 𝕆 L/R0 L/R1 L/R2 L/R3 L/R4 L/R5 L/R6 L/R7 

not {} +1 +1 +1 +1 +1 +1 +1 +1 

{e2 e4 e6} +1 –1 +1 –1 +1 –1 +1 –1 

{e1 e4 e5} +1 +1 –1 –1 +1 +1 –1 –1 

{e3 e4 e7} +1 –1 –1 +1 +1 –1 –1 +1 

{e1 e2 e3} +1 +1 +1 +1 –1 –1 –1 –1 

{e2 e5 e7} +1 –1 +1 –1 –1 +1 –1 +1 

{e1 e6 e7} +1 +1 –1 –1 –1 –1 +1 +1 

{e3 e5 e6} +1 –1 –1 +1 –1 +1 +1 –1 
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These two tables give clear visibility to the difference between Octonion orientations of like chirality. 

For any Lm(Rm) and Ln(Rn), the involution mapping between them negates the four Quaternion 

subalgebra triplets that do not include em^n. Within the Left or Right Octonion table, there are no maps 

between that negate only the three triplets that include a common basis element. This can however be 

generated by first negating all seven triplet orientations, thus popping between Left and Right tables, 

and then negating the four triplets that do not include a specified basis element. This gives us the 

involution map between Lm(Rm) and Rn(Ln) negating the three Quaternion subalgebra triplets that 

include em^n. For many years now, I have called this the 3:4 Morph Rule: any morph not one of these 

two involutions or composites thereof will produce an invalid Octonion Algebra. 

The final Hadamard Matrix connection to be discussed is the concept of Octonion Algebraic Invariance 

and Variance. This is discussed in detail within references [1] [3] [4] and its ultimate physics 

connection: the conservation of energy and momentum, is discussed reference [5]. Rather than 

repeating, I will just hit the highlights here. If we form the product of two different non-scalar basis 

elements we have ea * eb = ±ec. The result sign will be determined by the orientation choice used for the 

Quaternion subalgebra triplet {ea eb ec}. We could say that this product parks us on the triplet-L/R 

Hadamard table row with label {ea eb ec}. If we then multiply on the left by basis element ed we will 

have ed * (±ec) = ±ee. The sign of the final result will be the product of the sign from the first product 

and the sign provided by the orientation choice for {ec ed ee}. This sign product is precisely the 

Hadamard matrix row composition discussed above, so the second multiplication re-parks us on the 

row that is the composition of rows {ea eb ec} and {ec ed ee}, which will be the third and final row 

𝕆 L0 L1 L2 L3 L4 L5 L6 L7 

not {} +1 +1 +1 +1 +1 +1 +1 +1 

(e2 e4 e6) +1 –1 +1 –1 +1 –1 +1 –1 

(e1 e4 e5) +1 +1 –1 –1 +1 +1 –1 –1 

(e3 e4 e7) +1 –1 –1 +1 +1 –1 –1 +1 

(e3 e2 e1) +1 +1 +1 +1 –1 –1 –1 –1 

(e2 e7 e5) +1 –1 +1 –1 –1 +1 –1 +1 

(e1 e6 e7) +1 +1 –1 –1 –1 –1 +1 +1 

(e3 e5 e6) +1 –1 –1 +1 –1 +1 +1 –1 

𝕆 R0 R1 R2 R3 R4 R5 R6 R7 

not {} +1 +1 +1 +1 +1 +1 +1 +1 

(e6 e4 e2) +1 –1 +1 –1 +1 –1 +1 –1 

(e5 e4 e1) +1 +1 –1 –1 +1 +1 –1 –1 

(e7 e4 e3) +1 –1 –1 +1 +1 –1 –1 +1 

(e1 e2 e3) +1 +1 +1 +1 –1 –1 –1 –1 

(e5 e7 e2) +1 –1 +1 –1 –1 +1 –1 +1 

(e7 e6 e1) +1 +1 –1 –1 –1 –1 +1 +1 

(e6 e5 e3) +1 –1 –1 +1 –1 +1 +1 –1 
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including ec. This row tells us precisely within Left or within Right Octonion Algebra what will happen 

to the sign of the expression ed * (ea * eb) = ±ee when we change up the algebra. Since we must include 

the possibility that a change may be between Left and Right orientations, and this is the map negating 

all triplet orientations, if we used an odd number of triplet rules in a basis element product string the 

final result will change sign moving between Left and Right, and will remain the same sign if an even 

number was used. This process yields 16 different endpoints, the one row labeled not {} and the seven 

labeled {ex ey ez} doubled by the parity of the triplet rule application count. Since the row composition 

is closed, any number of basis element products may be included in the creation of the final result. 

Every different string of products (product histories) ending up on the same final row/parity will either 

all change sign or all not change sign when the orientation of the applied Octonion Algebra is changed 

up. If we end up on the not {} row through an even number of triplet rule applications, the result will 

not change sign for any Octonion orientation change. These product histories are algebraic invariants. 

All other terminal states are algebraic variants that may or may not change sign when the Octonion 

orientation is changed, but all in a given state will change or not in unison. 

If we individually assign a value of zero to the sum of all product terms in each variant final state, the 

full Octonion Algebra result for any number of algebraic element products and sums of algebraic 

element products will be an algebraic invariant since +0 = –0. Each populated variant final state will 

then yield a homogeneous equation of algebraic constraint describing non-observable phenomenon. 

The members of the intrinsic algebraic invariant final state will describe all observable phenomenon 

since it just would not do to allow a sign change for an observation solely based on a choice of proper 

Octonion orientation. 

 

 

 

 

 

 

 

  



© Richard Lockyer February 2022                     All Rights Reserved                       page 13 

References 

[1] Richard D. Lockyer, December 2020 An Algebraic proof Sedenions are not a division algebra and 

other consequences of Cayley-Dickson Algebra definition variation 

https://vixra.org/pdf/2010.0086v3.pdf 

[2] Richard D. Lockyer, January 2022 The Exclusive Or Group X(n) Correspondence With Cayley-

Dickson Algebras 

https://vixra.org/pdf/2201.0095v1.pdf 

 

[3] Richard D. Lockyer, 2012 FQXi Essay The Algebra of “Everything”, August 31, 2012 

https://fqxi.org/data/essay-contest-files/Lockyer_fqxi_essay_RickLock.pdf 

 

[4] Richard D. Lockyer, 2018 FQXi Essay Truth, February 5, 2018 

https://fqxi.org/data/essay-contest-files/Lockyer_Truth_RickLockyer_F.pdf 

 

[5] Richard D. Lockyer, FQXi Forum post Conservation of Octonion Energy and Momentum, March 

30, 2018 

https://fqxi.org/data/forum-attachments/chapter_10.pdf 

 

[6] Geoffrey M. Dixon, Division Algebras: Octonions, Quaternions, Complex Numbers and the 

Algebraic Design of Physics, Kluwer Academic Publishers, 1994  

[7] Geoffrey M. Dixon, Division Algebras, Lattices, Physics, Windmill Tilting, 2011. ISBN: 978-

1463730802 

  

 

https://vixra.org/pdf/2010.0086v3.pdf
https://vixra.org/pdf/2201.0095v1.pdf
https://fqxi.org/data/essay-contest-files/Lockyer_fqxi_essay_RickLock.pdf
https://fqxi.org/data/essay-contest-files/Lockyer_Truth_RickLockyer_F.pdf
https://fqxi.org/data/forum-attachments/chapter_10.pdf

