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Abstract

In this paper, we find a curious and simple possible solution to the critical line of nontrivial zeros
in the strip {s ∈ C : 0 < <(s) < 1} of Riemann zeta function ζ(s). We show that exists sσ ∈ C such
that if {sσ = σ + it : (σ ∈ R, 0 < σ < 1); (∀t ∈ R)} with i as the imaginary unit, then exactly satisfy:

lim
s→sσ

ζ(s) = ζ(sσ) = 0 ⇒ sσ =
1

2
+ it

Therefore, all the nontrivial zeros lie on the critical line {s ∈ C : <(s) = 1

2
} consisting of the set

complex numbers 1

2
+ it, thus confirming Riemann’s hypothesis.

1 Introduction.

There is a large and extensive bibliography on the Riemann zeta function and its zeros, so we will not
go into further details of it. Basically, Riemann zeta function is defined for s ∈ C with <(s) > 1 by the
absolutely convergent infinite series:

ζ(s) =

∞
∑

n=1

1

ns
(1)

Leonhard Euler already considered this series for real values of s. He also proved that it equals the Euler
product:

ζ(s) =
∏

p prime

1

1 − p−s

where the infinite product extends over all prime numbers p. However, we can also define the Riemann
zeta function Eq.(1) as:

ζ(s) =

∞
∑

n=1

1

(2n)s
+

∞
∑

n=1

1

(2n − 1)s
⇒ ζ(s) =

1

2s

(

∞
∑

n=1

1

ns
+

∞
∑

n=1

1

(n − 1
2 )s

)

Which can also be expressed as:

ζ(s) =
1

2s
[ζ(s) + B(s)] ⇐⇒ B(s) =

∞
∑

n=1

1

(n − 1
2 )s

(2)

Thus, by Eq.(2) we can definitely express the Riemann zeta function as:

ζ(s) = (2s − 1)−1B(s) (3)
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As is well known, the Riemann zeta function ζ(s) and the Dirichlet eta function η(s) satisfy the relation:

η(s) =
(

1 − 21−s
)

ζ(s) (4)

Thus, by Eq.(3) we can now express the Dirichlet eta function as:

η(s) =

(

1− 21−s

2s − 1

)

B(s) (5)

2 Proof.

By Eq.(2), Eq.(4) and Eq.(5) we can obtain:

21−s = 1 −
η(s)

ζ(s)
= 2s ·

ζ(s) − η(s)

ζ(s) + B(s)
⇒ 21−2s =

ζ(s) +
(

21−s

−1
2s

−1

)

B(s)

ζ(s) + B(s)
(6)

However, exists sσ ∈ C such that {sσ = σ+ it : (σ, t) ∈ R} with i as the imaginary unit, such that exactly
satisfy:

lim
s→sσ

ζ(s) = ζ(sσ) = 0

Therefore, calculating (lims→sσ
) in Eq.(6), we obtain:

lim
s→sσ

(

21−2s
)

= lim
s→sσ

ζ(s) +
(

21−s

−1
2s

−1

)

B(s)

ζ(s) + B(s)
⇒ 21−2sσ =

(

21−sσ
−1

2sσ−1

)

B(sσ)

B(sσ)

However, since [B(sσ) → 0 ⇐⇒ ζ(sσ) → 0] by Eq.(3), we obtain an indeterminacy of the type 0
0
. Then

by successive applications of the L’hôpital rule until any nth derivative B(n)(sσ) 6= 0, that is: (∀j < n :
B(j)(sσ) = 0), we obtain:

21−2sσ =

(

21−sσ
−1

2sσ−1

)

B(n)(sσ)

B(n)(sσ)
⇒ 21−2sσ =

21−sσ − 1

2sσ − 1

As sσ = σ + it then obtaining common factor 2−it in numerator and 2it in denominator of the fraction,
we can express:

21−2sσ = 2−2it ·
21−σ − 2it

2σ − 2−it

Now, defining s0 ∈ C such that s0 = 1
2 + it, we can express previous equation as:

22(sσ−s0) =
2σ − 2−it

21−σ − 2it
(7)

Since by definition sσ = σ+it and s0 = 1
2 +it then 2(sσ −s0) = 2σ−1. Thus, developing in trigonometric

form 2it = eitln2 and 2−it = e−itln2, we obtain:

2(2σ−1) =
2σ − cos(tln2) + isen(tln2)

21−σ − cos(tln2) − isen(tln2)
(8)

since obviously as we know cos(−x) = cos(x). Thus, by simplifying we have:

2(2σ−1) =
cos(tln2) − isen(tln2)

cos(tln2) + isen(tln2)
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which by application of modulus, that is:

∣

∣

∣
2(2σ−1)

∣

∣

∣
=

∣

∣

∣

∣

cos(tln2) − isen(tln2)

cos(tln2) + isen(tln2)

∣

∣

∣

∣

⇒
∣

∣

∣
2(2σ−1)

∣

∣

∣
=

|cos(tln2) − isen(tln2)|

|cos(tln2) + isen(tln2)|

since for any {z ∈ C : |z| = |z|} we definitely obtain:

∣

∣

∣
2(2σ−1)

∣

∣

∣
= 1 ⇒ 2σ − 1 = 0 ⇒ σ =

1

2

Therefore, since by definition sσ = σ + it, we obtain that for :

ζ(sσ) = 0 ⇒ sσ =
1

2
+ it

Exactly, by Eq.(7) and Eq.(8) for σ = 1
2 we can verify:

∣

∣

∣
22(sσ−s0)

∣

∣

∣
=

∣

∣

∣

(

2
1

2 − cos(tln2)
)

+ isen(tln2)
∣

∣

∣

∣

∣

∣

(

2
1

2 − cos(tln2)
)

− isen(tln2)
∣

∣

∣

= 1

Thus, since by definition s0 = 1
2

+ it, we have:

2(sσ − s0) = 0 ⇒ sσ = s0 ⇒ sσ =
1

2
+ it

Thus, all the nontrivial zeros lie on the critical line {s ∈ C : <(s) = 1
2
} consisting of the set complex

numbers 1
2

+ it, thus confirming Riemann’s hypothesis.
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