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Abstract

With the method of establishing a clear connection between deterministics and associated stochastics in
terms of an ensemble theory Maxwell's equations are theoretically derived and a Geometrodynamics of collective
turbulent motions is developed. This in turn leads to a uni�cation of Maxwell's and Gravitational �eld as well
as the explanation and emergence of photons.
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1 Introduction

Basically deterministic processes can at best be represented stochastically in terms of an ensemble theory.This is the
case, for example, in �uid-dynamic considerations of turbulence, whose motions are partly composed of molecular
collective motions and additionally stochastic molecular motions.

The electrodynamic equations of the vacuum were developed in the 19th century after successful uni�cation of
electric and magnetic �eld. They are derived with the presented ensemble method solely from the assumption of
continuously di�erentiable �eld quantities and a constant propagation velocity. The generalized Maxwell equations
developed in this way correspond to equations of motion of general continuously di�erentiable vector �elds and in
the special case of elastic deformation to a generalization of non-linear phenomena.

In the context of general relativity, the �uctuations of the Einstein hypersurface can be interpreted as deformation
�uctuations of a corresponding Euclidean observation space. For the deformation �uctuation equations to be applied
then, a constant propagation velocity, the speed of light, must be assumed. Thus, alternative gravitational waves are
found immediately. By using Einstein's equations, one is led to a uni�cation of maxwell �eld and gravitational �eld.
This connection is quantitative and shows the correspondence of space deformation �uctuation and electromagnetic
wave.

Based on these considerations, the emergence of photon and gamma quanta can be understood, which is not
possible within the framework of quantum �eld theory.

2 Stochastic and Deterministic General Vector Fields

ftε(~x, t,
~E, ~B) =

∫
~B

∫
~E

Wtε(~x, t,
~E,~B, ~E

′
, ~B
′
) · ftε(~x−∆~x, t− tε, ~E

′
, ~B
′
)d~E

′
d~B
′

m
∂

∂t
~B− ~∇× ~E = 0

∂

∂t

(
B2

E2
· ~E
)

+ ~∇× ~B = 0
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2.1 Introduction

Subsequently continuum �uctuations of general 3 dimensional vector �elds ~A(~x, t) with ~∇ × ~A 6= 0 are analysed.

They have to be su�ciently often continuously di�erentiable. De�ning the vector �elds ~E and ~B by

~E =∂ ~A/∂t 6= 0

~B = ~∇× ~A 6= 0
(1)

and owing to the exchangeability of the operators ∂/∂t und ~∇×

∂~B

∂t
= ~∇× ~E (2)

follows. This is a necessary consequence of the condition of the continuous di�erentiability of ~A(~x, t). This relation
is known according to the Maxwell Equations. The for this purpose dual equation is subsequently beeing looked
for. In an analogous approach derivating the turbulence equations a stochastic continuum process in the frame of an
ensemble theory is formulated such that according to a deterministic theory the already known as well as the related
dual equation arise with �uctuating quantities ~E und ~B.

2.2 The Transition: Stochastic Theory ←→ Deterministic Theory

In the following the accuracies of the considered motion quantities are determined by tε-measurement processes.
tε characterising the accuracy. Every space-time-point(~x, t) a continuously di�erentiable distribution density ftε is

assigned to the motion quantities ~Etε = ∂ ~Atε/∂t and
~Btε = ~∇× ~Atε with

ftε = ftε(~x, t,
~E, ~B). (3)

In the with tε or ε indexed functions ftε it is automatically assumed that the included motion quantities (~E, ~B)
are assigned to a tε-measurement accuracy. The indexing of the motion quantities may be omitted in functions
appropriately indexed themselves.

After the execution of a lim tε → 0-process

lim
tε→0

ftε(~x, t,
~E, ~B) = f(~x, t, ~E, ~B) (4)

f and (~E, ~B) are understood in the sense of an exact measurement process.

The stochastic transport of the �uctuation quantities(
~E
′
tε(~x−∆~x, t− tε), ~B

′
tε(~x−∆~x, t− tε)

)
−→

(
~Etε(~x, t),

~Btε(~x, t)

)
happens by the transition probability density Wtε = Wtε(~x, t,

~E, ~B, ~E
′
, ~B
′
) with

lim
tε→0

Wtε =δ(~E, ~B; ~E
′
, ~B
′
)

ftε(~x, t,
~E, ~B) =

∫
~B′

∫
~E
′

Wtε(~x, t,
~E, ~B, ~E

′
, ~B
′
) · ftε(~x−∆~x, t− tε, ~E

′
, ~B
′
)d~E

′
d~B
′

∆~x =tε · ~E
′
×

~B
′

B′2
and ~E

′
×

~B′

B′2
= velocity of propagation.

(5)

These equations de�ne stochastic continuum �uctuations of the quantities ~E und ~B in the sense of an ensemble-
theory and represent a Markov Process of natural causality.
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1

The test-functions of distribution theory obtain by this formulation of a transition probability density Wtε an
immediate physical meaning.
ftε is developed until the 1st order about (~x,t) =⇒

ftε(t− tε, ~x−4~x, ~E
′
, ~B
′
) = f ′tε −

∂f ′tε
∂t
· tε −4~x · ~∇f ′tε +O(tε

2)

f ′tε = ftε(~x, t,
~E
′
, ~B
′
)

(8)

und one gets∫
~E

∫
~B

Wtε

[
∂f ′tε
∂t

+ ~E′ ×
~B′

B′2
· ~∇f ′tε

]
d ~E′d ~B′ +O(tε

2) =

∫
~B

∫
~E
Wtεf

′
tεd

~E′d~B
′
− ftε

tε
. (9)

By the process tε → 0 Wtε degenerates to a δ-function:

lim
tε→0

Wtε = δ(~E, ~B; ~E′, ~B′) (10)

lim tε → 0 applied leads to

∂f

∂t
+ ~E×

~B

B2
· ~∇f = lim

tε→0

∫
~E

∫
~B
Wtεf

′
tεd
~E
′
d~B
′
− ftε

tε
. (11)

Recovering equation (2) after the transition to deterministic consideration the exchange term has to vanish, in this
case.

lim
tε→0

∫
~B

∫
~E
Wtεf

′
tεd
~E
′
d~B
′
− ftε

tε
= 0. (12)

This link is an integral part of the considered stochastic process.
Limiting ourselves to one system ν of the ensemble the function f(~x, t, ~E, ~B) in the space-time-point (~x, t) degenerates
to a δ−function

f(~x, t, ~E, ~B) −→ δ(~E(~x,t,ν), ~B(~x,t,ν); ~E, ~B)-function. (13)

From equation (11) arises the key-equation

∂

∂t
δ + ~E(~x,t,ν) ×

~B(~x,t,ν)

B2
(~x,t,ν)

· ~∇δ = 0 . (14)

Respectively subsection 3.2.2 the Ξ[...]-operator is inserted as follows

Ξ

[∫
~E

∫
~B

δ(~B(~x,t,ν), ~E(~x,t,ν); ~B, ~E)~Bd~Bd~E

]
= Ξ[~B(~x,t,ν)] = ~B(~x, t)

Ξ

[∫
~E

∫
~B

δ(~B(~x,t,ν), ~E(~x,t,ν); ~B, ~E)~Ed~Bd~E

]
= Ξ

[
~E(~x,t,ν)

]
= ~E(~x, t)

(15)

1The usual Markov process is used analogously to

ρ(~x, t) =

∫
V ′
G(~x, t;~x′, t′)ρ(~x′, t′)d~x′ (6)

and the Green function

G(~x, t;~x′, t′) =

(
1

4πD(t− t′)

) 3
2

e
− (~x−~x′)2

4πD(t−t′) . (7)

A movement process from (~x′, t′) to (~x, t) is unknown and can therefore lead to inconsistencies.
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or

Ξ

[∫
~E

∫
~B

δ(~B(~x,t,ν), ~E(~x,t,ν); ~b, ~E)

(
B2

E2
· ~E
)
d~Bd~E

]
= Ξ

[
B2

(~x,t,ν)

E2
(~x,t,ν)

· ~E(~x,t,ν)

]
=
B2(~x, t)

E2(~x, t)
· ~E(~x, t), (16)

developing the deterministic equations from the key equation.

2.3 The Deterministic Fluctuation-Equations

The key-equation (14) represents the interface for the transition of stochastic to deterministic consideration. From
the perspective of statistics over the states of movement of the parallelly assumed deterministic processes in the
respective point (~x, t) one is con�ned to a single system and such to a single state of motion (~E(~x,t), ~B(~x,t)). In this
situation the vectors of the motion quantities may be pushed before and behind the di�erential operators

~E(~x,t,ν) ×
~B(~x,t,ν)

B2
(~x,t,ν)

· ~∇δ = −
~B(~x,t,ν)

B2
(~x,t,ν)

× ~E(~x,t,ν) · ~∇δ

= −
~B(~x,t,ν)

B2
(~x,t,ν)

· ~∇× ~E(~x,t,ν)δ

Further more there is

∂

∂t
(
~B(~x,t,ν) · ~B(~x,t,ν)

B2
(~x,t,ν)

δ)−
~B(~x,t,ν)

B2
(~x,t,ν)

· ~∇× (~E(~x,t,ν)δ) = 0

=⇒
~B(~x,t,ν)

B2
(~x,t,ν)

· [ ∂
∂t

(~B(~x,t,ν)δ)− ~∇× (~E(~x,t,ν)δ)] = 0

=⇒ ∂

∂t
(~B(~x,t,ν)δ)− ~∇× (~E(~x,t,ν)δ) = 0.

(17)

Now the vector �elds of the motion quantities (~E(~x,t,ν), ~B(~x,t,ν)) of the one determinstic system are created about
the point (~x, t) and such the transition to the deterministic equations of the one system has succeeded.
One obtains

Ξ

[∫
~B

∫
~E

[
∂

∂t
(~B(~x,t,ν)δ)− ~∇× (~E(~x,t,ν)δ) = 0

]
d~Ed~B

]
. (18)

As integration and di�erentiation are exchangeable =⇒

∂

∂t
Ξ[~B(~x,t,ν)]− ~∇×Ξ[~E(~x,t,ν)] = 0 (19)

and it results in the 1.st of the dual �uctuation equations

∂

∂t
~B− ~∇× ~E = 0. (20)

Hereby the stochastic-deterministic connection is established.
Back to the key-equation (14)

∂

∂t
δ + ~E(~x,t,ν) ×

~B(~x,t,ν)

B2
(~x,t,ν)

· ~∇δ = 0

one obtains by simple conversion

∂

∂t

(
~E(~x,t,ν) ·

~E(~x,t,ν)

E2
(~x,t,ν)

δ

)
+ ~E(~x,t,ν) · ~∇×

( ~B(~x,t,ν)

B2
(~x,t,ν)

δ

)
= 0

∂

∂t

(
B2

(~x,t,ν)

E2
(~x,t,ν)

· ~E(~x,t,ν)δ

)
+ ~∇× (~B(~x,t,ν)δ) = 0

(21)
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and

Ξ

[∫
~B

∫
~E

[
∂

∂t

(
B2

(~x,t,ν)

E2
(~x,t,ν)

· ~E(~x,t,ν)δ

)
+ ~∇× (~B(~x,t,ν)δ) = 0

]
d~Ed~B

]
(22)

respectively

∂

∂t
Ξ

[
B2

(~x,t,ν)

E2
(~x,t,ν)

· ~E(~x,t,ν)

]
+ ~∇×Ξ[~B(~x,t,ν)] = 0. (23)

So we have the second of the two dual equations

∂

∂t
(
B2

E2
· ~E) + ~∇× (~B) = 0. (24)

The result is recapitulated by the following equation system:

∂

∂t
~B− ~∇× ~E = 0

∂

∂t

(
B2

E2
· ~E
)

+ ~∇× ~B = 0

~E×
~B

B2
= propagation speed

(25)

with |~E × ~B
B2 | ≤ |~E| · |

~B
B2 |. I.e. E2

B2 is not the quadratic propagation speed. Interestingly, this only becomes clear
after the involvement of the stochastic ensemble theory.

The equation system (25) is in such general terms that the physical signi�cance depends on the interpretation of the

starting �eld ~A, the boundary conditions as well as on the initial conditions. Hereunder, a deformation vector �eld,
the velocity vector �eld of turbulence motions or the �uctuations of any other continuously di�erentiable vector �eld
may be understood. These equations possess with boundary- and suitable initial conditions exactly one solution
after the theorem of Cauchy-Kowalewskaja [6]. This statement is at �rst restricted to the calculation of the �elds ~E

and ~B. Calculating the �eld ~A with the mere knowledge of

∂ ~A

∂t
= ~E (26)

is not possible in all cases. A negative example is the calculation of ~v with the knowledge of ∂~v
∂t related to

turbulent velocity �uctuations as shown in section 3.4. However, in this case these relations are applied completing
the turbulence equations.

2.3.1 Surfacelike Deformation-Fluctuations in 3-Dimensional Space

Let ~d be a continuously di�erentiable deformation vector �eld de�ning an area and ~b und ~e the derived �elds

~e =
∂

∂t
~d, ~b = ~∇× ~d (27)

with

~d(x, y, t) =

(
dx(x, y, t),dy(x, y, t),dz(x, y, t)

)
~e(x, y, t) =

(
ex(x, y, t), ey(x, y, t), ez(x, y, t)

)
~b(x, y, t) =

(
bx(x, y, t),by(x, y, t),bz(x, y, t)

)
.

(28)
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Then the deformation is without loss of generality seen as deformation of the x − y-area. The equations of motion
formally equal the equations of 3-dimensional �uctuations

∂

∂t
~b− ~∇× ~e = 0

∂

∂t

(
b2

e2
· ~e
)

+ ~∇× ~b = 0

~e×
~b

b2
= propagation speed,

(29)

only, the operator ~∇× corresponds to

~∇× ~d =

 ∂dz/∂y
−∂dz/∂x

∂dy/∂x− ∂dx∂y

 . (30)

The solution uniquely succeeds by the initial conditions ~b(x, y, t0) and ~e(x, y, t0) according to the theorem of
Cauchy-Kowalewskaya [6]. The solution for this area corresponds to a partial solution of a 3-dimensional complete
solution. Physical material properties are not explicitly included in these equations. They have to be implicitly
considered by initial and boundary conditions. Sole precondition is that the appropriate materials act continuously.
It also means that the physical process has to be clari�ed enabling the corresponding initial and border conditions.

2.3.2 1-Dimensional Deformation-Fluctuations in 3-Dimensional Space

Let ~d be a continuously di�erentiable deformation vector �eld de�ning a trajectory and ~b und ~e the derived �elds

~e =
∂

∂t
~d, ~b = ~∇× ~d (31)

with

~d(x, t) =(dx(x, t),dy(x, t),dz(x, t))

~e(x, t) =(ex(x, t), ey(x, t), ez(x, t))

~b(x, t) =(bx(x, t),by(x, t),bz(x, t)).

(32)

Then the deformation is without loss of generality seen as deformation of the x-coordinate. The equations of motion
formally equal the equations of 3-dimensional �uctuations

∂

∂t
~b− ~∇× ~e = 0

∂

∂t

(
b2

e2
· ~e
)

+ ~∇× ~b = 0

~e×
~b

b2
= propagation speed,

(33)

only, the operator ~∇× corresponds to

~∇× ~d =

 0
− ∂dz/∂x

∂dy/∂x

 . (34)

This leads to the component equations

∂by/∂t =− ∂ez/∂x

∂bz/∂x =∂ey/∂x

∂[(b2/e2) · ey)]∂t =− ∂bz/∂x
∂[(b2/e2) · ez)]∂t =∂by/∂x

~e× ~b/b2 =propagation speed.

(35)
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The x-component remains constant. The solution uniquely results from the initial conditions ~b(x, t0) and ~e(x, t0)
according to the theorem of Cauchy-Kowalewskaya [6]. The solution for this 1-dimensional trajectory corresponds
to a partial solution of a 3-dimensional complete solution. Physical material properties are not explicitly included in
these equations. They have to be implicitly considered by initial and boundary conditions. Sole precondition is that
the appropriate materials act continuously. It also means that the physical process has to be clari�ed enabling the
corresponding initial and border conditions.

2.4 Derivation of the Vacuum Maxwell Equation

The propagation speed having the constant amount of light velocity one obtains the known equations of vacuum-
electrodynamics in the coordinate system of the observer:

∂

∂t
~B− ~∇× ~E = 0

1

c2
∂

∂t
~E + ~∇× ~B = 0 mit ~E ⊥ ~B

~E×
~B

B2
= ~c = propagation speed of light.

(36)

So the electrodynamic equations of vacuum are generally derived, too. Usually, they are seen in the above equations
with −~E. It is more than pure supposition, that they describe properties of space-time without a uni�cation of
General Relativity and electromagnetic �eld in vacuum having succeeded, though many physicists not least Einstein
[8], Jordan [15] and many others having endeavoured.

There is still the explanation of the associated initial �eld ~A it generally happening in the frame of vector
potential considerations, without recognizing ~A as de�nite physical object. Only by a direct comprehension of the
vector potential the electromagnetic �eld may be explained without means of mechanical quantities.2

2.5 Summary

The �rst application of the ensemble method cumulates in the derivation of the vacuum maxwell equations solely
from the assumption of the continuous di�erentiability of the maxwell �eld and a constant propagation velocity. So
far, they have only been experimentally proven, but with very successful applications in many �elds of physics. The
hypothesis-free equations, except for the assumption of a continuum �eld and its constant propagation velocity, make
the maxwell equations the most reliable equations in physics at present.

3 Deterministic Turbulent Mass-Transport

3.1 Introduction

Here a probabilistic theory of turbulent particle transport is considered from a stochastic ensemble consideration
of an unlimited number of parallelly existent, deterministic continuum �uctuations. In 2 the relation of partial
di�erential equations of deterministic continuum �uctuations to the stochastic ensemble-counterpart is established.
The causal Markov Process matters, essentially. Its local description leads to two vector �elds with a dual pair of
coupled partial, quasilinear di�erential vector equations distinguishing between mass transport and transport of
pure motion quantities ∂ ~A/∂t and ~∇× ~A of �uctuating vector �elds ~A.

section 3.2: Turbulent motions have the local velocities ~v = ~ω × ~r resulting in a dual equation system of a vortex
�eld ~ω and a curvature vector �eld ~b. Including the underlying momentum equations (not Navier-Stokes-equations)
this system is not yet complete.

section 2: The deterministic transport of pure motion quantities of su�ciently often continuously di�erentiable �elds
∂ ~A/∂t and ~∇ × ~A is examined leading to a pair of dual coupled vector equations. Depending on interpretation
they may be viewed as deformation �uctuation-equations, as generalisations of the Maxwell Equations of vacuum

2Electrodynamics is introduced in physics via mechanical e�ects.
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or applied as equations of ∂~v/∂t and ~∇× ~v of the turbulent velocity �eld ~v.

section 3.4: After a discussion of possible momentum equations as foundation for turbulence-calculations the results
of section 3.2 and 2 are combined to a complete turbulence-equation system. This system consists of 12 equations
with 12 unknowns.3 From an initial velocity �eld ~v(~x, t0) and its partial, temporal derivation ∂

∂t
~v(~x, t)|t0 the further

evolution of the velocity �eld, its related vortex- and curvature �elds as well as the accelleration �eld ~q operating in
the turbulence �eld may be calculated.4 The accelleration �eld generally is not conservative meaning ~∇ × ~q 6= 0.
Matter density distributions may be determined via the continuum-equation in the frame of a subsequent evaluation
in consequence of thermodynamic state quantities beeing computable (as far as a local thermodynamic equilibrium
is existent, which, however, is questionable in the case of turbulence).

3.2 The Connection of Deterministic Turbulence and its Stochastic Interpretation in

Terms of an Ensemble Theory

ftε(t, ~x, ~ω,~r) =

∫
~ω′

∫
~r′

Wtε(t, ~x, ~ω,~r, ~ω
′, ~r′) · ftε(~x−∆~x, t− tε, ~ω′, ~r′)d ~ω′d~r′

m
∂

∂t
~ω− ~∇× ~a−1

2
~∇× ~q = 0

∂

∂t
~b + ~∇× ~ω− 1

2
~b

[
~ω

ω2
· ~∇× ~q

]
= 0

3.2.1 Introduction

A stochastical ensemble-consideration of deterministic �elds is understood as the examination of an unlimited number
of comparable, parallelly existent systems, analogously to section 2.2. In this case turbulently moved �uids are
examined considering statistical deliberations and its deterministic counterparts. That a linking of deterministic and
stochastic theory may be available and further more that out of this connection additionally important (sometimes
otherwise not known) relations arise for deterministic formulations, is shown in the following. This is discussed for
a turbulent mass transport.

3.2.2 The Transition: Stochastic Theory ←→ Deterministic Theory

Every space-time-point (~x, t) a continuously di�erentiable �uid element distribution over the motion quantities ~ωtε
and ~rtε is assigned according to

ftε = ftε(~x, t, ~ω,~r). (37)

Indexing functions with tε it is automatically assumed that the included motion quantities (~ω,~r) are assigned to
a tε-measurement accuracy. The indexing of the motion quantities may be omitted in the functions if the functions
are accordingly indexed.

After an execution of a lim tε → 0 process, such as

lim
tε→0

ftε(~x, t, ~ω, ~r) = f(~x, t, ~ω, ~r) (38)

f and (~ω,~r) are understood as results of an exact measuring process.
The change of motion quantities in point (~x, t)(

~ω′tε(~x−∆~x, t− tε), ~r
′
tε(~x−∆~x, t− tε)

)
−→

(
~ωtε(~x, t), ~rtε(~x, t)

)
3The Einstein Equations of General Relativity consist of 10 equations. Suitable evolution equations with initial- and possibly boundary

conditions remain troublesome in a 3+1-geometry.
4As there are only motion quantities in this equation system, it is successfully used for evolution problems in General Relativity.
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is controlled by the transition probability density Wtε = Wtε(~x, t, ~ω, ~r, ~ω
′, ~r′). 5 with

lim
tε→0

Wtε =δ(~ω,~r; ~ω′,~r′)

ftε(~x, t, ~ω,~r) =

∫
~r

∫
~ω

Wtε(~x, t, ~ω,~r, ~ω
′,~r′) · ftε(~x−∆~x, t− tε, ~ω′,~r′)d~ω′d~r′

∆~x =tε · ~ω′ ×~r′

. (39)

These equations characterize stochastic turbulence of the continuum in the frame of an ensemble theory and
represent a Markov Process with natural causality.
ftε is developed in (39) until the 1st order around (~x,t) =⇒

ftε(~x−4~x, t− tε, ~ω
′,~r′) = ftε(~x, t, ~ω

′,~r′)−
∂f ′tε
∂t
· tε −4~x · ~∇ftε(~x, t, ~ω

′,~r′) +O(tε
2) (40)

with f ′tε = ftε(~x, t, ~ω
′,~r′) and one obtains∫

~r

∫
~ω

Wtε [
∂f ′tε
∂t

+ ~ω′ ×~r′ · ~∇f ′tε ]d~ω
′d~r′ +O(tε

2) =

∫
~r

∫
~ω
Wtεf

′
tεd~ω

′d~r′ − ftε
tε

. (41)

lim tε → 0 applied to (41) leads to

∂f

∂t
+ ~ω ×~r · ~∇f = lim

tε→0

∫
~r

∫
~ω
Wtεf

′
tεd~ω

′d~r′ − ftε
tε

. (42)

The right side must contain the characteristics of the turbulent �uid.

lim
tε→0

∫
~r

∫
~ω
Wtεf

′
tεd~ω

′d~r′ − ftε
tε

= F (43)

F has to be chosen such, that the deterministic vortex equations result under the in�uence of the assumed
acceleration �eld. Further on the ansatz

F =
1

2

[
~ω

ω2
· ~∇× ~q

]
f (44)

is shown precisely ful�lling this condition. Thus one obtains

∂f

∂t
+ ~ω ×~r · ~∇f =

1

2

[
~ω

ω2
· ~∇× ~q

]
f. (45)

Limiting ourselves to one system of the ensemble the distribution function f degenerates to a δ-function.

f → δ(~ω(~x,t,ν),~r(~x,t,ν); ~ω,~r) (46)

The indexing of quantities like ~ω(~x,t,ν) by (~x, t) means the vector ~ω in the space-time point (~x, t) 6 whereas
~ω(~x, t) represents the spatiotemporal �eld ~ω in dependence on (~x, t).

It results in the key equation for the transition stochastic-deterministic

∂

∂t
δ + ~ω(~x,t,ν) ×~r(~x,t,ν) · ~∇δ =

1

2

[
~ω(~x,t,ν)

ω2
(~x,t,ν)

· ~∇× ~q(~x,t,ν)

]
δ . (47)

De�nition of the operator Ξ[...]:

From the vector ~A(~x,t,ν) respectively the scalar function value f (~x,t,ν) existing in the space-time-point (~x, t) of the
system ν a vector function respectively a scalar function arises by the operator Ξ

Ξ

[
~A(~x,t,ν)

]
= ~A(~x, t) (48)

5The otherwise in distribution theory used test functions in this connection have an immediate physical meaning with the formulation
of the transition probability density.

6That is the situation considering stochastically.
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respectively

Ξ

[
f (~x,t,ν)

]
= f(~x, t) (49)

an appropriate �eld existing around the point (~x, t). The Operator Ξ[...] evokes this functionality to �life�.
Accordingly the following relationships are noted:

Ξ

[∫
~r

∫
~ω

δ(~ω(~x,t,ν),~r(~x,t,ν); ~ω,~r)d~ωd~r

]
= 1

Ξ

[∫
~r

∫
~ω

δ(~ω(~x,t,ν),~r(~x,t,ν); ~ω,~r)~ωd~ωd~r

]
= Ξ

[
~ω(~x,t,ν)

]
= ~ω(~x, t)

Ξ

[∫
~r

∫
~ω

δ(~ω(~x,t,ν),~r(~x,t,ν); ~ω,~r)~rd~ωd~r

]
= Ξ

[
~r(~x,t,ν)

]
= ~r(~x, t)

(50)

or

Ξ

[∫
~r

∫
~ω

δ(~ω(~x,t,ν),~r(~x,t,ν); ~ω,~r)ω2~rd~ωd~r

]
= Ξ

[
ω2

(~x,t,ν)~r(~x,t,ν)

]
= ω2(~x, t)~r(~x, t). (51)

3.3 Deterministic Equations of Turbulence

From the general momentum equation
∂~v

∂t
+ (~v · ~∇)~v = ~q (52)

the vortex equation may be developed using the ~∇×-operator

∂

∂t
~ω− ~∇× (~v × ~ω)− 1

2
~∇× ~q = 0. (53)

The relations of deterministic and stochastic description are established the same vortex equation opening up
from the above key equation. In the following the method is presented designing the dual pair of deterministic vector
equations from the key equation

∂

∂t
δ + ~ω(~x,t,ν) ×~r(~x,t,ν) · ~∇δ =

1

2

[
~ω(~x,t,ν)

ω2
(~x,t,ν)

· ~∇× ~q(~x,t,ν)

]
δ. (54)

In this situation the vectors of the motion quantities may be pushed before and behind the di�erential operators.
The Term

1

2

[
~ω(~x,t,ν)

ω2
(~x,t,ν)

· ~∇× ~q(~x,t,ν)

]
δ (55)

guarantees the �nding of equation (53) and its dual one. It is

~v ⊥ ~ω ⊥ ~r. (56)

and setting
~a = ~v × ~ω (57)

this results in
~r ‖ ~a. (58)

Such ~a and ~r are linked as follows7

~r =
~a

ω2
. (59)

=⇒
with δ = δ(~ω(~x,t,ν),~r(~x,t,ν); ~ω,~r)

7Symbols as ω, r, a, v etc. always mean amounts of the corresponding vectors.
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~ω(~x,t,ν) ×~r(~x,t,ν) · ~∇δ = −~r(~x,t,ν) × ~ω(~x,t,ν) · ~∇δ

= −~ω(~x,t,ν) · ~∇×~r(~x,t,ν)δ

= −
~ω(~x,t,ν)

ω2
(~x,t,ν)

· ~∇× ~a(~x,t,ν)δ.

Inserting in (54) gives

∂

∂t
(
~ω(~x,t,ν) · ~ω(~x,t,ν)

ω2
(~x,t,ν)

δ)−
~ω(~x,t,ν)

ω2
(~x,t,ν)

· ~∇× (~a(~x,t,ν)δ)−
1

2

[
~ω(~x,t,ν)

ω2
(~x,t,ν)

· ~∇× ~q(~x,t,ν)

]
δ = 0

=⇒
~ω(~x,t,ν)

ω2
(~x,t,ν)

·
[
∂

∂t
(~ω(~x,t,ν)δ)− ~∇× (~a(~x,t,ν)δ)−

1

2

[
· ~∇× ~q(~x,t,ν)

]
δ

]
= 0

=⇒ ∂

∂t
(~ω(~x,t,ν)δ)− ~∇× (~a(~x,t,ν)δ)−

1

2

[
· ~∇× ~q(~x,t,ν)

]
δ = 0

(60)

One obtains

Ξ

[∫
~r

∫
~ω

[
∂

∂t
(~ω(~x,t,ν)δ)− ~∇× (~a(~x,t,ν)δ)−

1

2

[
~∇× ~q(~x,t,ν)

]
δ = 0

]
d~ωd~r

]
(61)

because integration and di�erentiation are interchangeable, it follows that[
∂

∂t
Ξ

[
~ω(~x,t,ν)

]
− ~∇×Ξ

[
~a(~x,t,ν)

]
− 1

2
~∇×Ξ

[
~q(~x,t,ν)

]
= 0 (62)

and we have the �rst of the dual turbulence equations

∂

∂t
~ω− ~∇× ~a− 1

2
~∇× ~q = 0 (63)

accordingly
∂

∂t
~ω− ~∇× (~v × ~ω)− 1

2
~∇× ~q = 0.

Hereby the connection of stochastics and deterministics is achieved. From the key-equation above a second
equation, the dual one, may be derived.
Back to the initial equation (54)

∂

∂t
δ + ~ω(~x,t,ν) ×~r(~x,t,ν) · ~∇δ =

1

2

[
~ω(~x,t,ν)

ω2
(~x,t,ν)

· ~∇× ~q(~x,t,ν)

]
δ

Simple conversions give

∂

∂t

(
~r(~x,t,ν) ·

~r(~x,t,ν)

r2(~x,t,ν)
δ

)
+~r(~x,t,ν) · ~∇× (~ω(~x,t,ν)δ)−

~r(~x,t,ν) ·~r(~x,t,ν)
r2(~x,t,ν)

1

2

[
~ω(~x,t,ν)

ω2
(~x,t,ν)

· ~∇× ~q(~x,t,ν)

]
δ = 0

−→ ~r(~x,t,ν)

[
∂

∂t

~r(~x,t,ν)

r2(~x,t,ν)
δ + ~∇× (~ω(~x,t,ν)δ)−

~r(~x,t,ν)

r2(~x,t,ν)

1

2

[
~ω(~x,t,ν)

ω2
(~x,t,ν)

· ~∇× ~q(~x,t,ν)

]
δ

]
= 0

(64)

Using the curvature vector �eld of the �uid trajectories ~b = ~r
r2 the equation is written

∂

∂t
(~b(~x,t,ν)δ) + ~∇× (~ω(~x,t,ν)δ)−

1

2
~b(~x,t,ν)

~ω(~x,t,ν)

ω2
(~x,t,ν)

· ~∇× ~q(~x,t,ν)δ = 0 (65)

and applying the operators Ξ arises

Ξ

[∫
~r

∫
~ω

[
∂

∂t
(~b(~x,t,ν)δ) + ~∇× (~ω(~x,t,ν)δ)−

1

2
~b(~x,t,ν)

~ω(~x,t,ν)

ω2
(~x,t,ν)

· ~∇× ~q(~x,t,ν)δ = 0

]
d~ωd~r

]
(66)
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respectively

∂

∂t
Ξ[~b(~x,t,ν)] + ~∇×Ξ[~ω(~x,t,ν)]−

1

2
Ξ

[(
~b
~ω

ω2
· ~∇× ~q

)
(~x,t,ν)

]
= 0. (67)

Such the second of the dual turbulence equations is approached

∂

∂t
~b + ~∇× ~ω− 1

2
~b

[
~ω

ω2
· ~∇× ~q

]
= 0. (68)

Closing this dual equation system

∂

∂t
~ω− ~∇× ~a− 1

2
~∇× ~q = 0

∂

∂t
~b + ~∇× ~ω− 1

2
~b

[
~ω

ω2
· ~∇× ~q

]
= 0

~v = ~ω ×
~b

b2
, ~a = ~v × ~ω

(69)

further equations are necessary besides the momentum equations. In the case of the Navier-Stokes-equations

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇p +~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

i.e.

~q = −1

ρ
~∇p +~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

this could happen by simultaneously using the known continuity, energy as well as state equation. But this
proves not to be expedient. In section 3.4 the complete equation system is presented and it is shown that the usual
Navier-Stokes-equations are not warranting the correct momentum balancing in turbulence.
The term

−1

2
~b

[
~ω

ω2
· ~∇× ~q

]
may lead to removable singularities in space-time-points (~x, t) when turning points occur in the �uid element trajec-
tories ~ω = 0 and ~b = 0 arising simultaneously. In this case the whole term is calculated from its surroundings. The
same shall apply for the calculation of the velocity ~v. In such cases there is an alternative way shown in section 3.4,
too.

3.4 Geometrodynamics of Turbulence

~E +
1

2
~∇~v2 − 2~v × ~ω = ~q

����������������

∂

∂t
~ω− ~∇× ~a =

1

2
~∇× ~q

∂

∂t
~b + ~∇× ~ω =

1

2
~b

[
~ω

ω2
· ~∇× ~q

]
∂

∂t
~F = −2 ~∇× ~ω mit ~F =

4ω2

E2
· ~E
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3.4.1 Introduction

For a �uctuating continuum �eld
d

dt
~v(~x, t) =

∂~v

∂t
+ (~v · ~∇)~v = ~q(~x, t) (70)

may be formally comprehended as a momentum equation. As soon as hydrodynamics is involved where a local
thermodynamic balance is assumed, the Eulerian equations

~q
?
= −1

ρ
~∇p (71)

are noted with the indication of the 2nd Newtonian law. They are only justi�ed under restrictive rules like incom-
pressibility of �uids or 1

ρ
~∇p = ~∇h (h=spec. enthalpy) and or negligible rubbing viscosity. So only limiting cases of

�uid dynamics are characterized.
But generally, ~∇ × ~q 6= 0 is to be presumed. ~q is in contrast to Newtonian mechanics a non-conservative

acceleration �eld. ~q has transversal and longitudinal parts

~q = ~q⊥ + ~q‖. (72)

The same applies for the velocity �eld ~v

~v = ~v⊥ + ~v‖ = ~ω × ~R. (73)

The disassembly of the velocity �eld is adequately taken into account by the development of the dual turbulence
equation system. In the momentum equation (70) 12 unknowns are �hiddenly� contained and with the turbulence
equation only 9 coupled equations are available. For the �eld ρ~q a disassembly in longitudinal und transversal part
has to be considered, too.

ρ
d

dt
~v(~x, t) = ρ~q = (ρ~q)⊥ + (ρ~q)‖ (74)

Using the Navier-Stokes-equations leads to

ρ~q = (ρ~q)⊥ + (ρ~q)‖
?
= − ~∇p + ρ ·~g + η∆~v + (ξ +

η

3
) ~∇ ( ~∇ · ~v)

=⇒ 8

(ρ~q)⊥
?
= −η ~∇× ~∇× ~v (75)

and

(ρ~q)‖
?
=− ~∇p + ρ · ~g + (ξ + η

4

3
) ~∇ ( ~∇ · ~v).

~g =earth acceleration
(76)

As turbulent motions of su�ciently high reynolds number create negligible viscosity e�ects and on the other
hand ~q⊥ represents the decisive propulsion of the vortex motions turbulences are not correctly calculated by the
usual equation system consisting of Navier-Stokes-equations, equation of continuity and energy equation. Equation
(75) can not be correct. ~q‖ contributes nothing to the propulsion of the vortex motions. The turbulent dissipation
can not be attributed to viscosity but to the matter exchange of the �uid elements and involved thermodynamic
changes of state, if a local thermodynamic state is possible. Then the turbulent dissipation decisively decomposes
the kinetic energy. =⇒

ρ~q = (ρ~q)⊥ + (ρ~q)‖ 6= − ~∇p + ρ ·~g + η∆~v + (ξ +
η

3
) ~∇ ( ~∇ · ~v) (77)

The equations, often called conservation laws [3]( Navier-Stokes-equations, equation of continuity and energy
equation), do not meet these requirements for turbulence with the exception of the equation of continuity.

8∆~v = ~∇ ( ~∇ · ~v)− ~∇× ~∇× ~v
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3.4.2 The Complete Set of Turbulence-Equations

In the turbulence equations (69) the viscous terms according to high reynolds numbers may be omitted whereas for
su�cienly small reynolds numbers (laminar motions) they obtain signi�cance.
The equation system

∂~v

∂t
+

1

2
~∇~v2 − 2~v × ~ω = ~q (78)

∂

∂t
~ω− ~∇× ~a =

1

2
~∇× ~q (79)

∂

∂t
~b + ~∇× ~ω =

1

2
~b

[
~ω

ω2
· ~∇× ~q

]
(80)

with

~v = ~ω ×
~b

b2 , ~a = ~v × ~ω, ~∇× ~v ⊥ ~v (81)

is not complete and as the Navier-Stokes-equations as momentum balance are refuted, the usual energy equation,
derived from Navier-Stokes-equations and equation of continuity, is rejected, too. So the customarily for completion
used energy equation, equation of continuity and state equation can not �ll this gap.

There is the possibility observing the evolution of the velocity �eld not only by mass transport via the equations
(78), (79) and (80) but via the progress of their �uctuation quantities ∂~v

∂t and ~∇ × ~v, too. Assuming the equation
system (25)

∂

∂t
~B− ~∇× ~E = 0 (82)

∂

∂t

(
B2

E2
· ~E
)

+ ~∇× ~B = 0 (83)

~E×
~B

B2
= propagationspeed (84)

with

|~E×
~B

B2
| ≤ |~E| · |

~B

B2
|

and

~E =
∂~v

∂t
and ~B = ~∇× ~v, as well as~F =

B2

E2
· ~E,

one obtains the further equation

∂

∂t
~F + 2 ~∇× ~ω = 0 . (85)

Equation 82 with ~B = ~∇× ~v = 2~ω results in

∂

∂t
2~ω− ~∇× ∂~v

∂t
= 0.

It corresponds to (79) on account of

~∇× ∂~v

∂t
= 2 ·

(
~∇× ~a +

1

2
~∇× ~q

)
= 2 · ∂

~ω

∂t

with

~v = ~ω ×
~b

b2
,

~a = ~v × ~ω,

~v ⊥ ~∇× ~v

~E =
∂~v

∂t

~E = 4ω2~F
−1
.
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The invers vector respectively the scalar product means ~F
−1

= ~F/~F
2

=⇒ ~F
−1
· ~F = 1.

This corresponds to the relation of a curvature vector ~b and its associated radius vector ~r of a continuously
di�erentiable trajectory in one point (~x, t) with ~b ·~r = 1.

The motion of a turbulence �eld is characterised by a vortex �eld ~ω(~x, t) and a curvature vector �eld9 ~b(~x, t).

So one obtains the complete equation system

~E +
1

2
~∇~v2 − 2~v × ~ω = ~q

����������������

∂

∂t
~ω− ~∇× ~a =

1

2
~∇× ~q

∂

∂t
~b + ~∇× ~ω =

1

2
~b

[
~ω

ω2
· ~∇× ~q

]
∂

∂t
~F = −2 ~∇× ~ω with ~F =

4ω2

E2
· ~E

. (86)

At this a pairwise orthogonality of the vectors (~v, ~ω, ~b) i.e.: ~v ⊥ ~ω , ~v ⊥ ~b , ~b ⊥ ~ω exists. Pursueing the
trajectory of a �uid element beeing possible only after the calculation of the deterministic turbulence
�eld the trajectory is accompanied by a frame of ~v, ~ω and ~b except in points where ~ω = 0 and ~b = 0 (turning
points). This is the situation in physics, where the trajectory is sensibly considered in dependence of the time as
a path parameter. In mathematics (di�erential geometry) the path length is chosen as parameter, which leads to
another accompanying triplet.Nevertheless, in this case ~v 6= 0 has to be otherwise the turbulence has come to an end.

3.4.3 Comments on the Application of the Complete Equation System

On account of the theorem of Cauchy-Kowalewskaja [6] a unique solution is existing. The equation system may be

numerically solved for the �elds ~ω, ~b, ~q and ~E = ∂~v
∂t (this is treated as an independent �eld as well as ~ω,b und ~q)

simultaneously obtaining the �elds ~a and ~v. The special approach of [29] enables 2 times continuously di�erentiable
solutions not meaning analytical results. The order of di�erentiability may be principally driven forward. This
particularly goes at the expense of the calculation e�ort.
Numerically solving this equation system [29] in�exible di�erence schemes are forbidden as beeing usual according
to DNS-calculations (Direct Numerical Simulations related to Navier-Stokes-, continuum- and energy equation), as

in the above equation system from the �eld environment removable singularities of ~v = ~ω × ~b
b2 ,

1
2
~b

[
~ω
ω2 · ~∇ × ~q

]
and (2~ω)2~F

−1
= ∂~v

∂t in di�erent space-time-points (~x, t) are to be recognized. This outcome is a result of possible

turning points of the �uid element trajectories leading to simultaneous values of ~ω = 0 and ~b = 0. Die �neness of
the time discretisations is determined by the vortex �eld ~ω.
The in some turbulence models mentioned space- and time-scaling in this theory is led back to the �uctuations of
curvature �elds ~b and vortex �elds ~ω. Quantitative dependencies become accessible through numerical calculations.
Though friction losses according to heavy turbulent motions (high reynolds numbers) may be omitted the kinetic
energy density may signi�cantly decrease. Thus a part has to be converted into inner energy of thermodynamics
if a local thermodynamic balance is existent. It is recalled, that turbulent �uid motions are characterized the
surroundings of �uid elements continuously exchanging their matter and thus their thermodynamic state quantities,
too, if they exist. But this can be doubted.
The equation system (86) stands out only consisting of motion quantities, i.e. velocities and their temporal and
spatial di�erentiations, a vector curvature �eld, its assigned vortex �eld and an abstract accelleration �eld ~q. Mass
distributions respectively densities and thermodynamic quantities as pressure and inner energy do not appear. This
fact �nds its application in the general-relativistic considerations, too. The density distributions may be calculated

9Generally, one meets in physics curvature tensor �elds at least of 2nd degree as in deformation theory or General Relativity.
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by subsequent evaluation via the known velocity �elds and the equation of continuity

∂

∂t
ρ = −~∇ · (ρ~v). (87)

The complete turbulence equation system may be solved even if no local thermodynamics is existent. Then the
subsequent evaluation is limited to density calculations. One obtains the thermodynamic pressure distribution if
existent by the subsequently calculated density �eld ρ and the accelleration �eld ~q assuming

(ρ~q)‖ = − ~∇p + ρ~g + (ξ + η
4

3
) ~∇ ( ~∇ · ~v). (88)

via Poisson-equation 10 :

∆p = −~∇ · (ρ~q) + ~∇ · ρ~g + ~∇ · (ξ + η
4

3
) ~∇ ( ~∇ · ~v). (89)

At high reynolds numbers
∆p = −~∇ · (ρ~q) + ~∇ · ρ~g (90)

is certainly su�cient. But it is not obvious, whether (ρ~q)‖ may be represented this way. Upon positive comparison
density- and pressure evolution are determined without knowledge of a related state equation. Knowing the state
equation all desired thermodynamic state quantities of a single-phase system result. On the other hand a physical
process is to be found to create the used inital conditions.

The Turbulence depends on an initially assumed motion �eld(
~ω(~x, t0), ~b(~x, t0),

∂~v

∂t
|t0
)

=⇒ ~q(~x, t0), 11 (91)

determining the further course, alone. Evaluating ~q(~x, t0) happens by summation of the terms in the momentum
equation. An interaction of geometrodynamics and thermodynamics, maybe assumed in accordance with the
Navier-Stokes-equations, does not apply.

3.4.4 The Impossibility of Calculating Turbulence Fields Only Knowing ∂~v
∂t (~x, t)

The impression may arise applying turbulence calculations that it is su�cient to use the equation system

∂

∂t
~B− ~∇× ~E = 0

∂

∂t

(
B2

E2
· ~E
)

+ ~∇× ~B = 0

~E×
~B

B2
= propagation speed,

|~E×
~B

B2
| ≤ |~E| · |

~B

B2
|

and

~E =
∂~v

∂t
und ~B = ~∇× ~v, sowie ~F =

B2

E2
· ~E

to determinate the velocity �eld numerically from the knowledge of ∂~v∂t |i by

~v(~x, t)i+1 =
∂~v(~x, t)

∂t
|i∆ti + ~v(~x, t0)i. (92)

Usually numerical time-integrations via ∆~v = ∂~v
∂t · ∆t lead in relation to turbulence calculations �rstly to

10The transversal part (ρ~q)⊥ disappears with divergence formation
11Inserting in equation (78)
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error accumulation for a ~v(~x, t) evaluation (re�ned methods of numerical mathematics integrating such vector

functions do not help) and secondly achieve ~∇ × ~v 6⊥ ~v with progressing time evolution. 1st is one reason why
weather forecasts at meteorology are di�cult (besides the principally faults of the used momentum equations).
The forcasts are limited to few days. The choice of shorter time steps does not help. This di�culty does not
exist regarding laminar �uid dynamics. The reason for this fundamental problem of turbulence is explained as follows:

Solving the equation system (86) numerically the pairwise orthogonality of the vectors ~v, ~ω, ~b (~v ⊥ ~ω , ~v ⊥ ~b

, ~b ⊥ ~ω) has to be considered as constraint. For analytic solutions, which cannot be formulated, these conditions
should be ful�lled by the initial values.
Calculating ~v(~x, t) by ~ω and ~r

~v(~x, t) = ~ω(~x, t)×~r(~x, t) with ~r(~x, t) =
~b(~x, t)

b2

there is a time integration of the velocity �eld of higher accuracy. It holds

∂~v

∂t
=
∂~ω

∂t
×~r + ~ω× ∂~r

∂t
.

The numerical time evolution of ~vi =⇒ ~vi+1 arises calculating ~vi = ~ωi ×~ri by means of

~ωi+1 =
∂~ω

∂t
|i ·∆ti + ~ωi + ...

and

~ri+1 =
∂~r

∂t
|i ·∆ti +~ri + ...

to

~vi+1 =

(
∂~ω

∂t
|i ·∆ti + ~ωi

)
×
(
∂~r

∂t
|i ·∆ti +~ri

)
+ ...

i.e.

~vi+1 =

(
~ωi ×~ri

)
+

(
∂~ω

∂t
|i ·∆ti ×~ri + ~ωi ×

∂~r

∂t
|i ·∆ti

)
+

(
∂~ω

∂t
|i ·∆ti ×

∂~r

∂t
|i ·∆ti

)
+ ...

respectively

~vi+1 = ~vi +
∂~v

∂t
|i ·∆ti +

(
∂~ω

∂t
|i ×

∂~r

∂t
|i
)
· (∆ti)2+... (93)

∂~r
∂t is derived as follows:

~b = ~r · (~b · ~b) (94)

=⇒
∂~b

∂t
= b2 ∂~r

∂t
+ 2~r

(
∂~b

∂t
· ~b
)

=⇒
∂~r

∂t
=

[
∂~b

∂t
− 2

~b

b2

(
∂~b

∂t
· ~b
)]
/b2.

In particular space-time points (~x, t) �uid elements may be in the proximity or direct in a turning point, in which

~ω(~x, t) = 0 as well as ~b(~x, t) = 0 and such ~r(~x, t) = ~b/b2 = ∞ holds. So the temporal evolution term of 2nd
order is vital for turbulence calculations. That is why the with (92) mentioned velocity integration is not expedient.
Considering the complete turbulence equation set the temporal velocity integration automatically results in the
desired order.

This also disproves all so-called DNS methods (direct numerical simulation), regardless of whether
one accepts the Navier Stokes equations or not. .
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3.5 Summary

With the installation of the equation system (86) a geometrodynamics of turbulence is expressed only obtaining
motion quantities i.e. it only consists of velocities and their time and space derivatives. A corresponding statement
is made for their initial- and boundary conditions. This is a theory of turbulent collective motions in which the
stochastic part of the molecular motions is not included. In the usual �uid dynamics, it is assumed that this part is
su�ciently taken into account by a local thermodynamic equilibrium, which, if it should ever exist, is repeatedly dis-
turbed by �uctuating collective motions. Thus, also corresponding measurements of thermodynamic state variables
(apart from density) prove to be questionable.
Laminar �uid dynamics consists of a velocity �eld of �uid dynamic collective motions whose accelerations are de-
termined by thermodynamic state variables and a linear strain stress tensor of the velocity �eld. However, even
the equations of motion of laminar �uid dynamics are inaccurate, as a check of the experimental coe�cients of this
tensor shows. This is in contrast to the linear elasticity theory with the same tensor acting on a deformation vector
�eld and well proven coe�cients in the engineering �eld. This di�erence is to be understood physically as follows: In
linear elasticity theory, external deformations are not only largely reversible macroscopically, but also the molecular
composition of previously identi�ed molecules. In �uid dynamics, previously identi�ed molecules shift against each
other, which can be interpreted approximately as a distortion of the �uid as a whole only in very simple cases.
Otherwise, it is assumed that the molecules behave in the sense of a local thermodynamic equilibrium. In a gas, this
would mean that the equipartition law is to be assumed for the velocity distribution. However, this can never be
exactly the case in a �uid.
Thus, the presented turbulence theory of the �uid consists of a continuum of deterministically turbulent moving
collective motions, in which the stochastic molecular motions are not explicitly included. In this sense, the theory
can also be seen as exact, since it does not contain any hypotheses The subsequent calculation of the thermodynamic
state variables, with the exception of density, is questionable because they obviously cannot exist. Measurement
results of these state variables can do nothing prove. The situation here is that there must �rst be clear ideas about
the quantities that can be measured and not vice versa.

Turbulence cannot occur with conservative acceleration �elds.

4 Uni�cation of Maxwell Field and Gravitational Field

Rµν = 8π ·GN
(

Tµν −
1

2
gµνT

)
Electrodynamics with its Maxwell Equations is the only �eld theory of classical physics students of physics are

generally faced with in the frame of theoretical physics (at least in Germany). The Maxwell Equations above are
shown formally beeing a limiting case of classical continuum physics. Because of the constant velocity of light they
were the reason for setting up the Einsteinian Special Relativity. The adjustment of the electrodynamic �eld to
Space-Time caused many physicists including Albert Einstein to try an identi�cation of these �elds with Space-Time
�uctuations. Obviously, electromagnetic �uctuations are properties of Space-Time itself, though a prove is missing.

In section 2 continuum �uctuations of general vector �elds are discussed. Now we consider deformation vector �elds
~d(~x, t) with ~∇× ~d 6= 0. They are su�ciently often continuously di�erentiable. De�ning ~e und ~b by

~e = ∂~d/∂t 6= 0

~b = ~∇× ~d 6= 0
(95)

and interchanging the sequence of the operators ∂/∂t and ~∇×

∂~b

∂t
= ~∇× ~e (96)

directly follows. So this equation is a necessary consequence of the continuous di�erentiability of ~d(~x, t). The hereto
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dual equation is found according to section 2 with

∂

∂t
~b− ~∇× ~e = 0

∂

∂t

(
b2

e2
· ~e
)

+ ~∇× ~b = 0

~e×
~b

b2
= propagation speed

(97)

Assuming the constant speed of light the Maxwell Equations of vacuum12are obtained:

∂

∂t
~b− ~∇× ~e = 0

1

c2
∂

∂t
~e + ~∇× ~b = 0

~e×
~b

b2
= ~c = propagation speed of light.

(98)

4.1 Space-Time of General Relativity and its Riemannian Hypersurface

First, the Riemannian hypersurface of Space-Time is considered as deformation of an Euclidian space. For a precise
mathematical de�nition of the Riemannian space [24] is noted.

The Riemannian space is generally de�ned by a manifold, which consists of a point set, charts or coordinate
systems and a symmetrical metric tensor �eld. Riemannian space and a suitable Euclidian space are one to one
linked by the coordinate system. The according mapping is in mathematics not explicitly used as all considerations
are abstractly concerned with the connections of the Riemannian space itself not interesting what kind of picture
succeeds in the observational coordinate space. The metric tensor arises in the point P (~x)∈M with ~x∈E (Euclidian
space) by scalar products of the tangential vectors ~gi.

gij(P (~x)) = ~gi(P (~x)) · ~gj(P (~x)) (99)

By free choice of the coordinate system gij(P (~x)) may be determined in one point (P (~x)). But this does not
simultaneously hold for the neighborhood of this point.

The isomorphic mapping from Euclidian space into the Riemannian hypersurface is brought to physical life
when interpreted as deformation of the Euclidian space, both spaces, Euclidian and Riemannian space, tangentially
merging in one point. Here the deformation vector �eld ~d = ~d(~x, t) vanishes. These time dependent mappings can
be interpreted as gravitational waves. The Riemannian hypersurface arises from

~y(~x, t) = ~d(~x, t) + ~x . (100)

The gradient on the deformed �eld is described by

covariant Tensor Elements

(
~∇~y
)

=

(
∂iyj

)
(101)

and detailed

(
∂iyj

)
=

 ∂1y1 ∂1y2 ∂1y3

∂2y1 ∂2y2 ∂2y3

∂3y1 ∂3y2 ∂3y3

 i, j = 1, 2, 3. (102)

De�ning the spatially tangential vector ~ti with

~ti = ∂i~y = (∂iy1,∂iy2,∂iy3) , (103)

12The Maxwell Equations are usually presented by ~e→−~e
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one obtains the spatial metric tensor tij = ~ti ·~tj by(
tij

)
=

(
∂iyj

)
·
(
∂iyj

)T
(104)

and

tij = ∂iy1 · ∂jy1 + ∂iy2 · ∂jy2 + ∂iy3 · ∂jy3 (105)

as part of the metric tensors of Space-Time

(
gµν

)
=


g00 g01 g02 g03

g10 t11 t12 t13
g20 t21 t22 t23
g30 t31 t32 t33

 µ, ν = 0, 1, 2, 3 . (106)

The metric-tensor elements tij of the spatial hypersurface are components of the metric-tensor element set gµν of
Space-Time. The corresponding statement does not hold for the Ricci Curvature Tensor. The Ricci Tensor elements
rij of the Riemannian hypersurface as subspace of Space-Time are not part of the Ricci Tensor element set Rµν of
the overall space.

(
Rµν

)
=


R00 R01 R02 R03

R10 R11 R12 R13

R20 R21 R22 R23

R30 R31 R32 R33

 6=


R00 R01 R02 R03

R10 r11 r12 r13
R20 r21 r22 r23
R30 r31 r32 r33

 (107)

i.e. rij 6= Rij i, j = 1, 2, 3

Initially, it is the plan to express the Ricci Tensor of Space Time by the Ricci Tensor of the spatial hypersurface and
its time dependent metric tensor

Rij = Rij(rij , tij) i, j = 1, 2, 3. (108)

Formulating the energy momentum tensor of the right side of the Einstein equations

Rµν −
1

2
gµνR = 8π ·GNTµν µ, ν = 0, 1, 2, 3

by the related deformation �uctuations using its electromagnetic interpretation the uni�cation of gravitational and
electromagnetic �eld is outlined in the following section.
Originating from the Einstein equations

Rµν −
1

2
gµνR = 8π ·GNTµν (109)

one obtains by contraction

trace

(
Rµν −

1

2
gµνR

)
= gµµ

(
Rµµ −

1

2
gµµR

)
= −R = 8π ·GNTµ

µ = 8π ·GNT (110)

an alternative form of the Einstein Equations

Rµν = 8π ·GN
(

Tµν −
1

2
gµνT

)
. (111)

4.2 The Ricci Tensor in the Origin of a Local Inertial-System

The Riemannian curvature tensor Rµ
.ναβ is described in any coordinate system by the Christo�el symbols

Γµνα =

{
µ
ν α

}
=

1

2
gµλ

[
∂νgαλ + ∂αgλν − ∂λgνα

]
(112)

Rµ
.ναβ =

∂Γµνβ
∂xα

− ∂Γµνα
∂xβ

+ ΓµραΓρνβ − ΓµρβΓρνα. (113)
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In the origin ~x0 of a local inertial system [1] the partial derivatives with respect to coordinates of the metric tensor
gλν vanish such that

Γµνα( ~x0) = 0 (114)

and

Rµ
.ναβ( ~x0) =

∂Γµνβ
∂xα

− ∂Γµνα
∂xβ

. (115)

In the origin of the coordinate system the metric tensor itself equals the Minkowski tensor.

gµν( ~x0) = ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (116)

Written out one obtains

Rµ
.ναβ( ~x0) =

1

2
ηµλ

∂

∂xα

[
∂νgβλ + ∂βgλν − ∂λgνβ

]
− 1

2
ηµλ

∂

∂xβ

[
∂νgαλ + ∂αgλν − ∂λgνα

]
(117)

=⇒
Rµ

.ναβ( ~x0) =
1

2
ηµλ
[
∂α∂νgβλ + ∂α∂βgλν − ∂α∂λgνβ

]
− 1

2
ηµλ
[
∂β∂νgαλ + ∂β∂αgλν − ∂β∂λgνα

]
(118)

=⇒

Rµ
.ναβ( ~x0) =

1

2
ηµλ
[
∂α∂νgβλ + ∂β∂λgνα − ∂α∂λgνβ − ∂β∂νgαλ

]
(119)

=⇒

Rµναβ( ~x0) =
1

2

[
∂α∂νgβλ + ∂β∂λgνα − ∂α∂λgνβ − ∂β∂νgαλ

]
. (120)

After contraction there is the associated Ricci Tensor

Rµν( ~x0) =
1

2

[
∂µ∂αgαν + ∂ν∂

αgµα − ∂α∂
αgµν − ∂ν∂µgαα

]
(121)

and as ∂α∂
α = � means the D'Alembert-Operator =⇒

Rµν( ~x0) =
1

2

[
∂µ∂αgαν + ∂ν∂αgαµ −�gµν − ∂ν∂µg

]
. (122)

This result may be obtained by linearization of the Riemannian curvature tensor, too. Choosing point ( ~x0) as
the origin of a local inertial system, linearization is not necessary.

4.3 The Ricci Tensor of the Einstein Space in Dependence of Temporal Fluctuations

of its Riemannian Hypersurface

The following relations correspond to [18] Landau Lifschitz volume 2 page.308-309. A time orthogonal coordinate
system is always possible. In contrary to [18], we do not equate the velocity of light with 1.

Def: κij =
∂gij

∂(ct)
(123)

rij means the Ricci Tensor of the Riemannian hypersurface.
=⇒
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R00 =− 1

2

∂κii
∂(ct)

− 1

4
κjiκ

i
j

R0i =
1

2

(
κji;j − κjj;i

)
Rij =rij +

1

2

∂κij
∂(ct)

+
1

4

(
κijκkk − 2κki κjk

) (124)

i, j, k pass through 1, 2, 3. �;� means partial derivation, here.

Thus the geometry of Space-Time may be opened up from geometrodynamics of space. Gravitational waves
existing the energy momentum tensor Tµν 6= 0 is given in the considered Space-Time area even if there is no matter.
13

4.4 Gravitational Waves Corresponding to Electromagnetic Fluctuations

The deformation �uctuations of space and its as electromagnetic �uctuations noticed phenomena are subsequently
faced to each other in a limited volume area as fourier developments . The considerations are performed based on
treatments of natural vibrations of the electomagnetic �eld in vacuum in accordance to [18]. The usual electric

�eld ~E is replaced by −~E, without loss of generality. An explicit dependency of the viewed overall volume in the
canonical variables and such in the resulting energy density and the electromagnetic �elds is avoided by modi�ed
normalisation of the canonical variables, in contrast to [18].
In pure �eld theories energy densities and accellerations should occur as primary quantities not energies and forces.
The energy in one point (~x, t) is always zero but not the energy density. Analogically, the same is true for the
relation of accelleration and force.

deformation �uctuations electromagnetic �uctuations

From
~d = deformation vector�eld ~A = vector potential
∂
∂t
~b− ~∇× ~e = 0 ∂

∂t
~B− ~∇× ~E = 0

1
c2

∂
∂t
~e + ~∇× ~b = 0 1

c2
∂
∂t
~E + ~∇× ~B = 0

and

~e = ∂~d/∂t 6= 0 ~E = ∂ ~A/∂t 6= 0
~b = ~∇× ~d 6= 0 ~B = ~∇× ~A 6= 0

one obtains

1
c2

∂2~d
∂t2 = ∆~d 1

c2
∂2 ~A
∂t2 = ∆~A

Deformation �eld and according vector potential �eld are formally described by

~d =
∑
~k
~d~k =

∑
~k
~a~ke

i~k~r + ~a∗~ke
−i~k~r ~A =

∑
~k
~A~k =

∑
~k
~A~ke

i~k~r + ~A
∗
~ke
−i~k~r

and it follows

~̈d~k + c2k2~d~k = 0 ~̈A~k + c2k2 ~A~k = 0

with

13in contrary to Penrose [?] page 467 �The energy-momentum tensor in empty space is zero.�
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deformation �uctuations electromagnetic �uctuations

~e = ~̇d =
∑
~k
~̇d~k =

∑
~k

(
~̇a~ke

i~k~r + ~̇a∗~k
e−i

~k~r

)
~E = ~̇A =

∑
~k
~̇A~k

=
∑
~k

(
~̇A~ke

i~k~r + ~̇A
∗
~ke
−i~k~r

)

and

~b = −i
∑
~k
~k×

(
~a~ke

i~k~r + ~a∗~ke
−i~k~r

)
~B = −i

∑
~k
~k×

(
~A~ke

i~k~r + ~A
∗
~ke
−i~k~r

)
k1 = 2π·nx

Lx
, k2 =

2π·ny
Ly

, k3 = 2π·nz
Lz

; ~k =

(k1,k2,k3)

aki ∼ e−iωki
t, ωki = cki A ~ki

∼ e−iωki
t, ωki = cki

The wave vectors are calculated in a su�ciently great volume V = Lx ·Ly ·Lz.
E = 1

8π

∫
V0

(E2/c2 +B2)dV means the energy of the �eld in volume V0.

The energy density of the �eld is E = 1
8π

∑
~k(E2

~k
/c2 +B2

~k
)

Now, the following vectorial quantities (canonical variables) are de�ned:

~q~k =
√

1
4πc2 (~a~k + ~a∗~k) ~Q~k =

√
1

4πc2 (~A~k + ~A∗~k)

~p~k = −iω~k
√

1
4πc2 (~a~k − ~a

∗
~k
) = ~̇q~k

~P~k = −iω~k
√

1
4πc2 (~A~k − ~A∗~k) =

.

~Q~k

~qki ∼ cos(ωkit), ~pki ∼ sin(ωkit)
~Qki ∼ cos(ωkit),

~P ki ∼ sin(ωkit)

Obviously, they are real and resolved according to complex quantities they give

~akj = i
kj

√
π(~pkj − iω ~kj

~qkj)
~Akj = i

kj

√
π(~Pkj − iωkj

~Qkj)

~a∗kj
= − i

kj

√
π(~pkj + iωkj

~qkj)
~A∗kj

= − i
kj

√
π(~Pkj + iωkj

~Qkj).

Thus one obtains as expansion by characteristic vibrations (in concise presentation):

~d =
√
4π
∑
~k

1
k

(
ck~q~kcos(

~k ·~r)− ~p~ksin(~k ·~r)
)

~A =
√
4π
∑
~k

1
k

(
ck~Q~kcos(

~k ·~r)− ~P~ksin(
~k ·~r)

)
~e =

√
4π
∑
~k
c
(
ck~q~ksin(

~k ·~r) + ~p~kcos(
~k ·~r)

)
~E =

√
4π
∑
~k
c
(
ck~Q~ksin(

~k ·~r) + ~P~kcos(
~k ·~r)

)
~b = −

√
4π
∑
~k

1
k
~k× [ck~q~ksin(

~k ·~r) + ~p~kcos(
~k ·~r)] ~B = −

√
4π
∑
~k

1
k
~k× [ck~Q~ksin(

~k ·~r) + ~P~kcos(
~k ·~r)]

respectively noted for the single modes:

~dkj =
√
4π 1

kj

(
ckj~qkj

cos( ~kj ·~r)− ~pkj
sin( ~kj ·~r)

)
~Akj

=
√
4π 1

kj

(
ckj ~Qkj

cos( ~kj ·~r)− ~Pkj
sin( ~kj ·~r)

)
~ekj =

√
4πc

(
ckj~qkj

sin( ~kj ·~r) + ~pkj
cos( ~kj ·~r)

)
~Ekj =

√
4πc

(
ckj ~Qkj

sin( ~kj ·~r) + ~Pkj
cos( ~kj ·~r)

)
~bkj = −

√
4π 1

kj
~kj × [ckj~qkj

sin( ~kj ·~r) + ~pkj
cos( ~kj ·~r)] ~Bkj = −

√
4π 1

kj
~kj × [ckj ~Qkj

sin( ~kj ·~r) + ~Pkj
cos( ~kj ·~r)]

with E =
∑
~k
E~k = 1

2

∑
~k

(E2
~k
/c2 +B2

~k
) and E =

∑
~k
E~k = 1

2

∑
~k

∫
V0

(E2
~k
/c2 +B2

~k
)dV .

respectively E ~kj
= 1

2
(E2

~kj
/c2 +B2

~kj
) and E ~kj

= 1
2

∫
V0

(E2
~kj
/c2 +B2

~kj
)dV .

They may formally considered as running waves moving discrete quantities of harmonic oscillators with the
Hamilton Functions

H =
∑
~k

H~k =
∑
~k

1

2
(p2
~k

+ ω2
~k
q2
~k
), H =

∑
~k

H~k =
∑
~k

1

2
(P2

~k
+ ω2

~k
Q2
~k
) (125)

and the oscillator equations

~̈q~k + ω2
~k
~q~k = 0, ~̈Q~k + ω2

~k
~Q~k = 0 (126)
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.

H =
∑
~k

H~k H~k =
1

2
(p2
~k

+ ω2
~k
q2
~k
), H =

∑
~k

H~k H~k =
1

2
(P2

~k
+ ω2

~k
Q2
~k
) (127)

4.5 The Energy-Momentum-Tensor of the Electromagnetic Field

The energy momentum density tensor for the electromagnetic �eld (generally called Energy momentum tensor) in
covariant components [27] is written with the choosen signature (−1, 1, 1, 1)

Tµν =
1

4π

(
FαµFαν −

1

4
gµνFαβFαβ

)
(128)

It is symmetric: Tµν = Tνµ.
One obtains the Faraday-tensor of the electromagnetic �eld from

Fµν = ∂µAν − ∂νAµ µ,ν = 0,1,2,3 (129)

and detailed (they are chosen respectively the form of the above Maxwell Equations)

F0i =∂0Ai − ∂iA0 = Ei/c, i = 1,2,3

Fi0 =∂iA0 − ∂0Ai = −Ei/c, i = 1,2,3

F12 =∂1A2 − ∂2A1 = B3

F13 =∂1A3 − ∂3A1 = −B2

F23 =∂2A3 − ∂3A2 = B1

(130)

=⇒ Fµν = −Fνµ

∂ρFµν + ∂µFνρ + ∂νFρµ = 0

and in greater detail

∂1F23 + ∂3F12 + ∂2F31 = 0

∂2F30 + ∂0F23 + ∂3F02 = 0

∂3F01 + ∂1F30 + ∂0F13 = 0

∂0F12 + ∂2F01 + ∂1F20 = 0

.

The indices correspond to 0 → ct, 1 → x, 2 → y, 3 → z complying with the following electrodynamic equations of
vacuum14

div ~B = 0 and
∂

∂t
~B− ~∇× ~E = 0.

The expressions of the covariant and contravariant Faraday-tensors considering the minkowski tensor

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (131)

lead to

Fµν =


0 E1/c E2/c E3/c

−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0

 Fµν =


0 −E1/c −E2/c −E3/c

E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0

 (132)

14the polarity reversal ~E −→−~E recognised

25



Fµν =


0 −E1/c −E2/c −E3/c

−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0

 . (133)

Thus the covariant components of the electromagnetic energy momentum tensor are written

Tµν =
1

4π


Q (

~E
c
× ~B)1 (

~E
c
× ~B)2 (

~E
c
× ~B)3

(
~E
c
× ~B)1 −[

E2
1

c2
+ B2

1 −Q] −E1E2
c2

−B1B2 −E1E3
c2

−B1B3

(
~E
c
× ~B)2 −E1E2

c2
−B1B2 −[

E2
2

c2
+ B2

2 −Q] −E2E3
c2

−B2B3

(
~E
c
× ~B)3 −E1E3

c2
−B1B3 −E2E3

c2
−B2B3 −[

E2
3

c2
+ B2

3 −Q]

 (134)

with Q =
1

2
(
E2

c2
+ B2)

The trace of the electromagnetic energy momentum tensors vanishes

T = 0 (135)

and the Einstein Equations simplify to

Rij = 8π ·GNTij . (136)

For further considerations the following eigenwave is choosen:

E2 = E3 = B1 = B3 = 0, E1 6= 0, B2 6= 0. (137)

=⇒

T00 =
1

8π

(
E2

1

c2
+ B2

2

)
, T01 = T02 = 0, T03 =

1

4π
(
~E1

c
× ~B2) (138)

Tik = 0 für i 6= k i,k = 1,2,3 (139)

T11 =
−1

8π

(
E2

1

c2
−B2

2

)
, T22 =

1

8π

(
E2

1

c2
−B2

2

)
(140)

T33 =
1

8π

(
E2

1

c2
+ B2

2

)
(141)

4.6 The Quantitative Relation of Electromagnetic and Gravitational Waves

The quantitative connection is achieved via the Einstein Equations

Rµν = 8π ·GNTµν .

The description of a natural oscillation takes place using deformation interpretation by

~dki =
√

4π
1

ki

(
cki~qkicos(

~ki · ~r)− ~pkisin( ~ki · ~r)
)

~eki =
√

4πc
(
cki~q ~kisin( ~ki · ~r) + ~p ~kicos(

~ki · ~r)
)

~bki =−
√

4π
1

ki
~ki ×

[
cki~q ~kisin( ~ki · ~r) + ~p ~kicos(

~ki · ~r)
]
,

(142)

and using the electromagnetic �eld interpretation by
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~Aki =
√

4π
1

k

(
cki ~Q ~ki

cos( ~ki ·~)− ~P ~ki
sin( ~ki · ~r)

)
~Eki =

√
4πc

(
cki ~Q ~ki

sin( ~ki · ~r) + ~P ~ki
cos( ~ki · ~r)

)
~Bki =−

√
4π

1

k
~ki ×

[
cki ~Q ~ki

sin( ~ki · ~r) + ~P ~ki
cos( ~ki · ~r)

] (143)

with their corresponding energy density and energy in a volume surrounding the coordinate origin ( ~x0).

Eki =
1

2

(
E2
ki

c2
+B2

ki

)
Energiedichte

Eki =
1

2

∫
V0

(
E2
ki

c2
+B2

ki

)
dV Energie

(144)

.
The metric tensor of an elementary wave with ~q~k ‖ ~ex, ~p~k ‖ ~ey and ~k ‖ ~ez, ~k× ~q~k ‖ ~ey is given by the tangential

vectors:

~ti = ∂i~y = (∂iy1,∂iy2,∂iy3) , ~y = ~d + ~x

=⇒
~tz = ∂z~y = (∂zdx,0,1) .

With ~k ·~r = k · z = ωk/c · z one obtains

~tz =

(
−
√

4πωk~q~ksin(ωk/c · z),−
√

4π~p~kcos(ωk/c · z), 1

)
. (145)

As searched spatial metric tensor element remains

tzz = 4π

(
ω2
kq

2
~k
sin2(ωk/c · z) + p2

~k
cos2(ωk/c · z)

)
+ 1 (146)

with
qk = ukcos(ωkt), pk = vksin(ωkt). (147)

The purpose is the evaluation of the equation

Rzz = 8π ·GNTzz. (148)

It is appropriate to note, that

Tzz =
1

8π

(
E2

x

c2
+ B2

y

)
=

Ek

4π
. (149)

Starting from the Riemannian curvature tensor

Rσ
.ναβ = ∂αΓσνβ − ∂βΓσνα + ΓσραΓρνβ − ΓσρβΓρνα. (150)

with

Γµνα =
1

2
gµλ

[
∂νgαλ + ∂αgλν − ∂λgνα

]
(151)

leads by contraction to the Ricci tensor

Rµν = Rσ
.µνσ = ∂νΓ

σ
µσ − ∂σΓσµν + ΓσρνΓ

ρ
µσ − ΓσρσΓρµν . (152)

The metric tensor after the deformation by the above elementary wave is used in the time orthogonal coordinate
system.
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ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (153)

gµν( ~x0) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 tzz

 gµν( ~x0) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1/tzz

 (154)

gµν ≈ ηµν + hµν , gµν ≈ ηµν − hµν

|hµν |,|hµν | � 1
(155)

The Ricci tensor is typically written in a linear and non-linear proportion with respect to the Christo�el symbols
stripped down.

R(1)
µν ( ~x0) = ∂νΓ

σ
µσ − ∂σΓσµν , R(2)

µν ( ~x0) = ΓσρνΓ
ρ
µσ − ΓσρσΓρµν (156)

Detailed examination of the Christo�el symbols

Γσµσ =
1

2

∑
σ

∑
ρ

gσρ∂σgµρ +
1

2

∑
σ

∑
ρ

gσρ∂µgµρ −
1

2

∑
σ

∑
ρ

gσρ∂ρgµρ (157)

1

2

∑
σ

∑
ρ

gσρ∂σgzρ =
1

2
g00∂0gz0︸ ︷︷ ︸

=0

+
1

2
gzz∂zgzz

1

2

∑
σ

∑
ρ

gσρ∂zgρσ =
1

2
g00∂zg00︸ ︷︷ ︸

=0

+
1

2
gzz∂zgzz

1

2

∑
σ

∑
ρ

gσρ∂ρgσz =
1

2
g00∂0g00︸ ︷︷ ︸

=0

+
1

2
gzz∂zgzz

(158)

∂zΓ
σ
zσ =

1

2
∂zg

zz∂zgzz (159)

∂σΓσzz =
1

2
∂0g

00[∂z gz0︸︷︷︸
=0

+∂z g0z︸︷︷︸
=0

−∂0gzz] +
1

2
∂zg

zz[∂zgzz + ∂zgzz − ∂zgzz]

= +
1

2
∂20gzz +

1

2
∂zg

zz∂zgzz

(160)

lead for the linear part to

R(1)
zz ( ~x0) = ∂zΓ

σ
zσ − ∂σΓσzz = −1

2
∂20gzz. (161)

The nonlinear part is determined for the considered elementary wave by

R(2)
zz ( ~x0) = ΓσρzΓ

ρ
zσ − ΓσρσΓρzz (162)

with

Γσρz =
1

2
gσσ

[
∂ρgzσ + ∂zgσρ − ∂σgρz

]
(163)

Γρzσ =
1

2
gρρ
[
∂zgσρ + ∂zgρz − ∂ρgzσ

]
(164)

Considering the asumed elementary wave the single partial di�erentiaions ∂0, ∂z of the metric tensor vanish in the
space-time point (0, 0, 0, 0).
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Thus one gets

Rzz( ~x0) = R(1)
zz ( ~x0) = −1

2
∂20gzz( ~x0). (165)

Now using
Rzz = 8π ·GNTzz.

and concerning

∂0 =
1

ic
∂t

the amplitude of the elementary gravitational wave (electromagnetic wave) gives the quantitative
deformation of space by an electrodynamic elementary wave. Such the importance of the Einstein-
Equations for microphysics is proved.

dk =
2

ω2
k

√
πγEk . (166)

with the constant of gravitation γ = 6.67 · 10−11m3kg−1s−2 and Ek = as energy density. In these considerations
the light velocity c does not occur explicitly.

Setting Ek = 1Wsec/m3 and using ω2
k = (2π · ν)2 with ν = 50 this results in dk = 2.933 · 10−10m. In

comparison, the measured atomic radius of H1 is given by ≈ 2.5 · 10−11m. Obviously, that e�ect has to be
considered in practice.

As Spin 1 is assigned to photons the same has to be assumed for the graviton. (A photon of
giant wavelength from an other perspective, if it is existent.)
The Einstein Equations maybe achieve much more than describing cosmological processes!

4.7 Summary

Until today, electromagnetism is not directly understood. It is described with detours via mechanical e�ects, and
appears to physicists after more than a century of successful handling as a matter of course. With the uni�cation
described, electromagnetism is directly attributed to basic concepts of physics, space and time. The commonly
discussed gauge transformations are de�ned by the observation space or the coordinate space. The vector potential
attains an absolute meaning.

5 Explanation of the Photon and the Creation of Photon Quanta in a

Maxwell Field

5.1 Introduction

For quantum electrodynamics, photon and electron are central observation objects. But for both quantum particles
there are no clear descriptions of their size and structure, including their states of motion. The uncertainty relation
of quantum theory does not allow the simultaneous exact positioning of momentum and location.

However, they are at the centre of any discussion of quantum electrodynamics (in particular their interactions).
Also the quantization of the electromagnetic �eld, which should produce photons, appears unsatisfactory. In the
textbook of Landau-Lifschitz Volume IV [18], for example, the derivation of the quantization of the electromagnetic
�eld results in inconsistencies, which are explained by remarks like �... we meet with one of the divergences which
are due to the fact that the present theory is not logically complete and consistent�. And Albert Einstein expressed
it particularly drastically shortly before his death: �Jeder Hinz und Kunz meint heute, er habe verstanden, was ein
Photon ist, aber sie irren sich.�

On the whole, attempts are made to represent photons by spherical waves or even plane waves, which leads
to contradictions. But photons propagate 1-dimensional, as it is not known in classical physics for elastic wave
propagation in a 3-dimensional medium. In the following the photon turns out to be a �particle�, which is
de�ned in a point and due to the initial conditions of a 1-dimensional wave equation, unambiguously determins its
detailed motion in space and time. The derivation avoids hypotheses and is based on a physics with natural causality.
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5.2 Stochastic Fluctuation Movements with Presribed Velovity Direction

The following considerations comply with a special case of section 2.

Subsequently, continuum �uctuation vector �elds of deformation ~d(z, t)⊥~iz are assumed orthogonal to the z-direction
of propagation without loss of generality

~iz∂/∂z × ~d 6= 0. (167)

The vector �elds ~e and ~b de�ned by

~e =∂~d/∂t 6= 0

~b =~iz∂/∂z × ~d 6= 0, ~iz = unit vector in z-direction
(168)

are expected to be continuously di�erentiable, su�ciently often. According to interchangeability of the operators
∂/∂t und ~iz∂/∂z× follows

∂~b

∂t
=~iz∂/∂z × ~e (169)

immediately. The dual equation for this is searched as follows:

In an analogous approach to the derivation of continuum �utuation equations of general 3-dimensional vector
�elds an stochastic ensemble theory is formulated leading over to the deterministic theory and resulting in a pair of
dual deterministic equations for the �uctuation quantities ~e und ~b.
A continuously di�erentiable distribution density

ftε = ftε(z, t,~e,
~b) (170)

of the motion quantities ~etε = ∂~dtε/∂t,
~btε =~iz∂/∂z× ~dtε with ~dtε⊥~iz as well as ~etε⊥~iz and ~btε⊥~iz is allocated

every-space-time point (z, t). For the with tε or ε indexed functions is automatically assumed, that the incorporated

motion quantities (~e, ~b) are assigned to a tε measurement accuracy. That is the indexing of the motion quantities
may be omitted if the functions themselves are indexed.

Only after execution of the limiting process

lim
tε→0

ftε(z, t,~e,
~b) = f(z, t,~e, ~b) (171)

f and (~e, ~b) are understood in the sense of an exact measuring process.
The stochastic transport of the �uctuation quantities(

~e′tε(z−∆z, t− tε)~b′tε(z−∆z, t− tε)
)
−→

(
~etε(z, t),

~btε(z, t)

)
takes place by the transition probabillity density Wtε = Wtε(z, t,~e,

~b,~e′, ~b′)
with

lim
tε→0

Wtε =δ(~e, ~b;~e′, ~b
′
)

ftε(z, t,~e,
~b) =

∫
~b′

∫
~e′

Wtε(z, t,~e,
~b,~e′, ~b′) · ftε(z−∆z, t− tε,~e′, ~b′)d~e′d~b′

∆z =tε · ~e′ ×
~b′

b′2
·~iz und ~e′ ×

~b′

b′2
·~iz = Ausbreitungsgeschwindigkeit

(172)

These equations de�ne stochastic transport continuum �uctuations of the quantities ~e and ~b in the sense of an
ensemble theory and represent a Markov process with natural causality.
ftε is developed until the �rst order about (z,t) =⇒
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ftε(z−4z, t− tε,~e
′, ~b′) = ftε −

∂f ′tε
∂t
· tε −∆z ·

∂

∂z
f ′tε +O(tε

2) (173)

and one gets ∫ ∫
Wtε

[
∂f ′tε
∂t

+ ~e′ ×
~b′

b′2
·~iz

∂

∂z
f ′tε

]
d~e′d~b′ +O(tε

2) =

∫ ∫
Wtεf

′
tεd~e

′d~b′ − ftε
tε

. (174)

Executing the limiting process tε → 0 Wtε degenerates to a δ-function:

lim
tε→0

Wtε = δ(~e, ~b; ~e′, ~b′) (175)

and
∂f

∂t
+ ~e×

~b

b2
·~iz

∂

∂z
f = lim

tε→0

∫
~r

∫
~ω
Wtεf

′
tεd~e

′d~b′ − ftε
tε

. (176)

Rediscovering equation (169) the exchange term

lim
tε→0

∫
~b

∫
~e
Wtεf

′
tεd~e

′d~b′ − ftε
tε

= 0. (177)

has to vanish after the transition to the deterministic consideration. This link is part of the viewed stochastic
process.
Limiting ourselves to one system of the ensemble the function f(z, t,~e, ~b) degenerates in the space-time point (z, t)
to

f(z, t,~e, ~b) −→ δ(~e(z,t), ~b(z,t);~e
′, ~b′)-function (178)

so that the key equation

∂

∂t
δ + ~e(z,t) ×

~b(z,t)

b2(z,t)
·~iz

∂

∂z
δ = 0 (179)

develops from equation (176).

5.3 The Deterministic Fluctuation Equations for Fluctuations with Prescribed Veloc-

ity Direction

Equation (179) shows the interface for the transition from stochastic to deterministic consideration. From the view

of the ensemble theory one is limited to the motion quantities (~e(z,t), ~b(z,t)) of one deterministic system at the space-
time-point (z, t). In this situation the vectorial motion quantities may be shifted before and behind the di�erential
operators They are seen as constant vectors.

~e(z,t) ×
~b(z,t)

b2(z,t)
·~iz

∂

∂z
δ = −

~b(z,t)

b2(z,t)
× ~e(z,t) ·~iz

∂

∂z
δ

= −
~b(z,t)

b2(z,t)
·~iz

∂

∂z
× ~e(z,t)δ.

It applies

∂

∂t
(
~b(z,t) · ~b(z,t)

b2(z,t)
δ)−

~b(z,t)

b2(z,t)
·~iz

∂

∂z
× (~e(z,t)δ) = 0

=⇒
~b(z,t)

b2(z,t)
· [ ∂
∂t

(~b(z,t)δ)−~iz
∂

∂z
× (~e(z,t)δ)] = 0

=⇒ ∂

∂t
(~b(z,t)δ)−~iz

∂

∂z
× (~e(z,t)δ) = 0 .

(180)
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Using the following relations

Ξ

[∫
~e

∫
~b

δ(~b(z,t),~e(z,t); ~b,~e)~bd~bd~e

]
= Ξ[~b(z,t)] = ~b(z, t)

Ξ

[∫
~E

∫
~b

δ(~b(z,t),~e(z,t); ~b, ~e′)~ed~bd~e

]
= Ξ

[
~e(z,t)

]
= ~e(z, t)

(181)

or

Ξ

[∫
~e

∫
~b

δ(~b(z,t),~e(z,t); ~b,~e)

(
b2

e2
· ~e
)
d~bd~e

]
= Ξ

[
b2(z,t)

e2(z,t)
· ~e(z,t)

]
=

b2(z, t)

e2(z, t)
· ~e(z, t) (182)

the existing environments of the movement sizes (~e(z,t), ~b(z,t)) of the individual deterministic systems around the
point (z, t) are generated. This executes the transition to the deterministic system of equations:

Ξ

[∫
~b

∫
~e

[
∂

∂t
(~bδ)−~iz

∂

∂z
× (~eδ) = 0

]
d~ed~b

]
. (183)

Integration and di�erentiation beeing exchangeable =⇒

∂

∂t
Ξ[~b(z,t)]−~iz

∂

∂z
×Ξ[~e(z,t)] = 0 . (184)

So we have the �rst of the dual deterministic �uktuation equations

∂

∂t
~b−~iz

∂

∂z
× ~e = 0. (185)

Back to the key equation (179)

∂

∂t
δ + ~e(z,t) ×

~b(z,t)

b2(z,t)
·~iz

∂

∂z
δ = 0

one gets by simple transformations

∂

∂t
~e(z,t) ·

~e(z,t)

e2(z,t)
δ + ~e(z,t) ·~iz

∂

∂z
×
(~b(z,t)

b2(z,t)
δ

)
= 0

∂

∂t

(
b2(z,t)

e2(z,t)
· ~e(z,t)δ

)
+~iz

∂

∂z
× (~b(z,t)δ) = 0

(186)

Ξ

[∫
~b

∫
~e

[
∂

∂t

(
b2(z,t)

e2(z,t)
· ~e(z,t)δ

)
+~iz

∂

∂z
× (~b(z,t)δ) = 0

]
d~ed~b

]
(187)

or rather

∂

∂t
Ξ

[
b2(z,t)

e2(z,t)
· ~e(z,t)

]
+~iz

∂

∂z
×Ξ[~b(z,t)] = 0 (188)

a second, a dual equation

∂

∂t
(
b2

e2
· ~e) +~iz

∂

∂z
× ~b = 0. (189)

In sum the deterministic theory is represented by the following equation system:

32



∂

∂t
~b−~iz

∂

∂z
× ~e = 0

∂

∂t

(
b2

e2
· ~e
)

+~iz
∂

∂z
× ~b = 0

~e×
~b

b2
= propagation speed

(190)

with |~e× ~b
b2 | ≤ |~e| · |

~b
b2 |. Viz.

e2

b2 is not the square propagation speed. Interestingly, this becomes apparent after the
enlistment of the stochastic ensemble theory. Stochastic and deterministic theory form one unit.

5.4 An Equation for a Photon or a Graviton from a Classical Viewpoint

If the deformation �uctuations are identi�ed as space-time �uctuations, the constant propagation velocity c must be
assumed. This results in the set of equations

∂

∂t
~b−~iz

∂

∂z
× ~e = 0

1

c2
∂

∂t
~e +~iz

∂

∂z
× ~b = 0

c = propagation speed

(191)

for the determined coordinate direction z. Obviously, one gets these equations at once making disappear the
di�erentiation by coordinates in the equations (98), beeing perpendicular to the direction of propagation. It is,
however, usefull to describe the related deformation process, in detail.

1

c2
∂2

∂t2
~d(z, t) =

∂2

∂z2
~d(z, t) (192)

may be understood as equation for gravitons or photons. From this results the above-mentioned elementary
solution

~dki =
√

4π
1

ki

(
cki~qkicos(ki · z)− ~pkisin(ki · z)

)
~eki =

√
4πc

(
ck~qkisin(ki · z) + ~pkicos(ki · z)

)
~bki =−

√
4π

1

ki
ki~iz ×

[
ck~qkisin(ki · z) + ~pkicos(ki · z)

]
~qki ∼ cos(ωkit) ~pki ∼ sin(ωkit).

(193)

Graviton and Photon are di�erent interpretations of one and the same object. This always applies on
the assumption that a graviton exists at all, which is far from being self-evident. But it is conceivable that photons
have a low energetic limit to their existence. They spiral in one direction through space.
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5.5 The Quantization Process within Classical Physics

This process is activated by a deformation thrust that ful�ls the appropriate initial conditions

~dki0 = ~dki(z0, t0) ⊥~iz

~bki0 = ~bki(z0, t0) =~iz
∂

∂z
× ~dki |(z0,t0)

~eki0 = ~eki(z0, t0) =
∂~dki
∂t
|(z0,t0)

(194)

for the equations (191). These initial conditions de�ne the photon in one point with all known properties of the
quantum object photon. This process then presents the quantization of the electromagnetic �eld in more detail.
This formal description is of course lacking the explanation of how such a detailed process can come about. 15If
the electromagnetic �eld in a vacuum is directly properties of space-time, this also applies to the photon. It has
properties of deformation that are unimaginable in known elastic matter. The mathematical described propagation
is 1-dimensional. The photon at point ( ~x0, t0) is represented by the initial conditions

~bki(z0, t0) and ~eki(z0, t0)

for the equation set

∂

∂t
~b−~iz

∂

∂z
× ~e = 0

1

c2
∂

∂t
~e +~iz

∂

∂z
× ~b = 0

c = propagation speed

The deformation vector spirals like a helix with the experimentally determined frequency ν of the photon. The
�uctuations posses the energy

EPhoton = ~ · ω (195)

where the motion quantities ~iz
∂
∂z × ~d and ∂~d

∂t propagate in the z-direction (without loss of generality) at the
speed of light according to the above system of equations.

If the existence of a photon can be assumed at a space-time point, its momentum is also auto-
matically known at this point! The next question would be: What generates the disturbances ~e and ~b or what
creates spatial deformations? Deformation �uctuations of space are now explained by electromagnetic �uctuations.

5.6 Summary

The explanation of the photon is connected with a more detailed description of the quantization of electromagnetic
�elds. These are deformation impulses, which spread out in 1-dimensional space. Such deformation impulses cannot
be realized in elastic bodies. Space proves to be a reality that can still hold some �surprises�, perhaps the explanation
of what matter means. A more precise analysis of the electron could lead to corresponding advances.
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