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Abstract. If m divides n then sin(nπ/m) = 0. By counting number of zeros of sin(nπ/m) for
a given n ∈ Z and m ∈ Z, we can find the total number of divisors that n has and in this way,
we can construct a series representation of the Number-of-divisors function, S(n). Similarly, we
can find a closed-form of another important integer-valued function in Number Theory, Sum-

of-divisors function, σ(n). After constructing series representation of these functions we can
resolve a well known conjectures in Number Theory – the Riemann Conjecture. To conclude the
Riemann conjecture we use Robin’s inequality which sets an upper-limit of σ(n) for n > 5040,
if Riemann conjecture is true. This method can be trivially extended to the other higher-
order divisor functions. To construct these series representations we have explored Matsubara

technique which is commonly used in Condensed Matter Physics to perform various sum over
integer index with a contour integral.

1. Introduction

m|n =⇒ sin(nπ
m
) = 0 ∀n,m ∈ Z (1)

A magical journey started from the observation in Eq 1. Using this property we can construct
a series representation of all divisor functions. Here our main focus is two of them – Sum of

divisor function σ(n) and Divisor function S(n). Ironically we will start with the most difficult
one, σ(n). This effort can be easily extended to other divisor functions, which we will mention
briefly. Once these are available in our disposal we can address a well known conjecture in
Number Theory – the Riemann Conjecture. For neatness we will leave most of the elaborate
details in Appendices. Except for the Robin’s inequality we have not mentioned any references
deliberately, since they were all learned from online sources like Wikipedia, Mathematics Stack
Exchange and seems to be standard academic topic.

2. Series Representation of the Sum-of-divisors Function

Formally, one can express the sum-of-divisors function σ(n) in the following manner:

σ(n) ≡
∑

m|n

m (2)

⇒ σ(n) = 2
n

∑

m=1

mΘ
[

sin2(nπ/m)
]

(3)

where the flipped Heaviside step function Θ(x) is defined below.

Θ(x) =







1 if x < 0
1/2 if x = 0
0 if x > 0

(4)

1
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An integral representation of this step function usually given by:

Θ(x) =

∞
∫

−∞

dψ

2πi

eiψ

ψ + ix
(5)

The above improper integral has to be considered as the Cauchy principal value. Instead of
this conventional form, we will use the following form with an added factor which is inevitably
needed for the future purpose.

Θ
[

sin2(nπ/m)
]

=

∞
∫

−∞

dψ

2πi

eiψ

ψ + i(2mπ)6 sin2(nπ/m)
(6)

where the contour is closed in the upper half of complex plane. Now we will analyse behaviour
of the poles. There are three types of poles for different values of m. When m < n and m|n
the pole is at the origin and when m does not divides n the pole is on the negative imaginary
axis. Also, when m > n the pole is again on the negative imaginary axis and its behaviour in
the limit m goes to infinity is:

lim
m→∞

(2mπ)2 sin2(nπ/m) (7)

= lim
x→0

(2π)2
sin2(nπx)

x2
(8)

= 4π4n2 lim
x→0

sin2(nπx)

(nπx)2
(9)

= 4π4n2 (10)

⇒ lim
m→∞

(2mπ)6 sin2(nπ/m) = 4π4n2 lim
m→∞

(2mπ)4 (11)

So the pole moves toward negative infinity on the imaginary axis asm goes to positive or negative
infinity and hence it is safe to use the contour as the pole will never come back to the origin and
we will not end up miss-counting total number of divisors. Not only that in this way there is no
messy crowd of poles near the origin.

Since eventually we are going to extend the sum over m in Eq 3 to {[−n, n]\0} and to restrict
it to only positive values, we introduce Heaviside step H(x) function as:

H(x) =







0 if x < 0
1/2 if x = 0
1 if x > 0

(12)

For our need we are going to use following integral representation of the step function:

H(2mπ) = lim
ǫ→0+

∞
∫

−∞

dτ

2πi

eiτ

2mπiτ + ǫ(2mπ)2 + iτ + ǫ
(13)

It has poles at

τ = iǫ
1 + (2mπ)2

1 + 2mπ
(14)

Since sign(1+ 2mπ) = sign(m) ∀m ∈ {Z\0}, only m > 0 term will contribute to the integration
in Eq 13 after closing the contour in the upper-half of complex plane. The primary reason for
choosing this non-trivial representation is, its real part of the denominator is always greater than
zero. It is worthy mentioning that the integrand is well defined on the interval (−∞,∞).
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From Eq 3, Eq 6 and Eq 13 we have

σ(n) = 2
n

∑

m=−n

′
∞
∫

−∞

dψ

2πi

mH(2mπ) eiψ

ψ + i(2mπ)6 sin2(nπ/m)
(15)

where
∑′

m means m 6= 0. Now we will perform many manipulations on Eq 15 and to maintain
the uninterrupted flow of understanding we will leave explanations in the Appendix A.

σ(n) =

∞
∫

−∞

dψ

πi
eiψ

n
∑

m=−n

′ mH(2mπ)

ψ + i(2mπ)6 sin2(nπ/m)
[see Note 1] (16)

⇒ σ(n) =

∞
∫

−∞

dψ

πi
eiψ

n
∑

m=−n

′
lim
ǫ→0+

∞
∫

−∞

dτ

2πi

eiτ

2mπiτ + ǫ(2mπ)2 + iτ + ǫ
×

m

ψ + i(2mπ)6 sin2(nπ/m)
(17)

⇒ σ(n) = −

∞
∫

−∞

dψ

π
eiψ lim

ǫ→0+

∞
∫

−∞

dτ

2πi
eiτ

n
∑

m=−n

′ 1

2mπiτ + ǫ(2mπ)2 + iτ + ǫ
×

m

−iψ + (2mπ)6 sin2(nπ/m)
(18)

⇒ σ(n) = −

∞
∫

−∞

dψ

π
eiψ lim

ǫ→0+

∞
∫

−∞

dτ

2πi
eiτ

∞
∑

m=−∞

′ 1

2mπiτ + ǫ(2mπ)2 + iτ + ǫ
× (19)

m

−iψ + (2mπ)6 sin2(nπ/m)
[see Note 2] (20)

Now we look at the sum over m separately
∞
∑

m=−∞

′ 1

2mπiτ + ǫ(2mπ)2 + iτ + ǫ
×

m

−iψ + (2mπ)6 sin2(nπ/m)
(21)

Since the real part of denominator in the first fraction is always greater than zero we can
exponentiate it in the following way:

∞
∑

m=−∞

′
∞
∫

0

dy e−y[2mπiτ+ǫ(2mπ)
2+iτ+ǫ] m

−iψ + (2mπ)6 sin2(nπ/m)
(22)

⇒

∞
∫

0

dy e−y(ǫ+iτ)
∞
∑

m=−∞

′ me−y[ǫ(2mπ)
2+2mπiτ]

−iψ + (2mπ)6 sin2(nπ/m)
[see Appendix B] (23)

⇒

∞
∫

0

dy e−y(ǫ+iτ) lim
δ→0+

∞
∑

m=−∞

′ me−y[ǫ(2mπ)
2+2mπiτ] sech[(2mπδ)6]

−iψ + (2mπ)6 sin2(nπ/m) + δ
(24)

The sum over m is evidently convergent. But while applying Matsubara technique to perform
this sum, we need to extend this expression to the entire complex plane where divergence may
appear in certain directions. To remediate this artificial divergence we introduce a suitable
convergence factor sech [(2mπδ)6]. The term in the numerator may diverge as ez

2

. But the

denominator after exponentiation may contribute to the divergence as ez
4

(see Eq 11) whereas

sech(z6) goes to zero as ez
6

in every direction of the complex plane.
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Again positive definiteness of real part of the denominator allows exponentiation

Figure 1. C is the contour to evaluate the sum in Eq 27 over real frequency with
the Matsubara technique. Since zero is excluded in the sum we take a detour to
avoid the origin. The clockwise big circle is the contour being added to it and
then it becomes a contour C ′ around the origin.

∞
∫

0

dy e−y(ǫ+iτ) lim
δ→0+

∞
∑

m=−∞

′
me−y[ǫ(2mπ)

2+2mπiτ] sech[(2mπδ)6]

∫ ∞

0

dx e−x[−iψ+(2mπ)6 sin2(nπm )+δ] (25)

⇒

∞
∫

0

dy e−y(ǫ+iτ) lim
δ→0+

∫ ∞

0

dx e−x(δ−iψ)

∞
∑

m=−∞

′
me−y[ǫ(2mπ)

2+2mπiτ] sech[(2mπδ)6]e−x(2mπ)
6 sin2(nπm ) (26)

See Appendix B for the last step. Now we separate out the summation part and perform it using
the Matsubara technique and it fulfils all the required conditions [see Appendix C].

F (n) =
∞
∑

m=−∞

′
me−y[ǫ(2mπ)

2+2mπiτ] sech[(2mπδ)6]e−x(2mπ)
6 sin2(nπm ) (27)

⇒ F (n) =
∞
∑

m=−∞

′ 2mπ

2π
e−y[ǫ(2mπ)

2+2mπiτ] sech
[

(2mπδ)6
]

e−x(2mπ)
6 sin2(nπm ) (28)

To perform the sum, the factor that we are going to use is:

1

eiz − 1
(29)

since it has poles on the real axis, particularly at z = 2mπ. Residue at z = 2mπ is:

lim
z→2mπ

z − 2mπ

eiz − 1
= lim

z→2mπ

z − 2mπ

ei(z−2mπ)e2mπi − 1
= lim

u→0

u

eiu − 1
= lim

u→0

1

ieiu
= −i (30)
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In the last step we have used the L’Hospital rule. Now we rewrite Eq 28, for clarity as:

F (n) =
i

2π

∞
∑

m=−∞

′
(−i) 2mπ e−y[ǫ(2mπ)

2+2mπiτ] sech
[

(2mπδ)6
]

e
−x(2mπ)6 sin2

(

2nπ2

2πm

)

(31)

⇒ F (n) =
i

2π

∮

C

dz

2πi

z

eiz − 1
e−y[ǫz

2+iτz] sech(z6δ6)e−xz
6 sin2(θ/z) (32)

where θ = 2nπ2. The contour used in Eq 32 is shown in the Fig 1. After adding a contour
integral over a large circle of radius r and r → ∞, which evaluates to be zero, the contour
integral (C ′) becomes a contour integral around the origin.

F (n) = −
1

2π

∮

C′

dz

2πi

iz

eiz − 1
e−y[ǫz

2+iτz] sech(z6δ6)e−xz
6 sin2(θ/z) (33)

The extra negative sign appears because of the clock-wise contour C ′ around the origin. So to
evaluate this contour integral we have to find residue at the origin and we find it by the Laurrent
expansion of individual factors around the origin and they are given below consecutively. It is
worth mentioning that there are another contributions from the sech(z6δ6) factor, but it can be
shown (see Appendix D) that in the limit δ → 0+ it vanishes.

2.1. Residue. For the first factor we have:

iz

eiz − 1
=

∞
∑

r=0

Br
(iz)r

r!
(34)

The above expansion follows from the exponential generating function definition of Bernoulli
number and radius of convergence is |z| < π. Here r = 0, 1, 2, 4, 6, . . . and B1 = −1/2 (According
to the convention in Wikipedia this is B−r ). For the second factor we have:

e−y[ǫz
2+iτz] =

∞
∑

s=0

(−y)s

s!

[

ǫz2 + iτz
]s

(35)

⇒ e−y[ǫz
2+iτz] =

∞
∑

s=0

s
∑

t=0

(−y)s

s!

(

s

t

)

(ǫz2)s−t(iτz)t (36)

For the third factor, using the known expansion of sech(z) around the origin we have:

sech(z6δ6) =
∞
∑

u=0

E2u

(2u)!
(zδ)6u,

∣

∣z6δ6
∣

∣ < π/2 (37)

For sufficiently small δ both the radius convergence in Eq 34 and Eq 44 can be satisfied without
any contradiction.
Now we find expansion of the last factor in the following manner:

e−xz
6 sin2(θ/z) =

∞
∑

m=0

(−x)m

m!
z6m sin2m(θ/z) (38)

=
∞
∑

m=0

(−x)m

m!
z6m

[

1
2i
(eiθ/z − e−iθ/z)

]2m
(39)

=
∞
∑

m=0

(−x)m

m!

z6m

(2i)2m

2m
∑

p=0

(−1)pei(2m−p)θ/ze−ipθ/z
(

2m

p

)

(40)



ON THE SERIES REPRESENTATION OF SUM OF POSITIVE DIVISORS FUNCTION 6

⇒ e−xz
6 sin2(θ/z) =

∞
∑

m=0

2m
∑

p=0

xmz6m(−1)p

4m m!
ei(2m−2p)θ/z

(

2m

p

)

(41)

⇒ e−xz
6 sin2(θ/z) =

∞
∑

m,q=0

2m
∑

p=0

xmz6m(−1)p

4m m!

iqθq(2m− 2p)q

zq q!

(

2m

p

)

(42)

In the last line we have interchanged the order of p and q sum since terms in the sum are
individually convergent. But the order of the sum over m and q can not be interchanged because
of the same reason of convergence. Here we introduce a polynomial G(q,m) to compactly express
the above expression and its definition is given below (for more details and properties of this
polynomial see Appendix G)

G(q,m) =
2m
∑

p=0

(−1)p(2m− 2p)q
(

2m

p

)

(43)

With this we have:

e−xz
6 sin2(θ/z) =

∞
∑

m,q=0

xmz6m

4m m!

iqθq

zq q!
G(q,m) (44)

Combining all from Eq 33 and Eq 34, Eq 35, Eq 37, Eq 44 we have:

−
1

2π

∞
∑

r,u,s,
m,q=0

s
∑

t=0

Bri
r

r!
zr
E2u

(2u)!
(zδ)6u

(−y)s

s!

(

s

t

)

(iτz)t(ǫz2)s−t
xmz6m

m! 4m
iqθq

q! zq
G(q,m) (45)

=−
1

2π

∞
∑

r,u,s,
m,q=0

s
∑

t=0

Bri
r

r!

E2uδ
6u

(2u)!

(−y)s

s!

(

s

t

)

(iτ)tǫs−t
xmz6m

m! 4m
iqθq

q! zq
G(q,m)zr+6u+2s−t+6m−q (46)

To find the residue at the origin we extract coefficient of z−1 and which gives:

r + 6u+ 2s− t+ 6m− q = −1 (47)

⇒ q = 1 + r + 6u+ 2s− t+ 6m (48)

So finally, after performing the sum we have a closed form of F (n) as:

F (n) = −
1

2π

∞
∑

r,u,s,
m=0

s
∑

t=0

Bri
r

r!

E2uδ
6u

(2u)!

(−y)s

s!

(

s

t

)

(iτ)tǫs−t
xm

m!

iqθq

4m q!
G(q,m) (49)

where q is given by the Eq 48. It is worthy mentioning that there is contribution from the pole
of sech term but it can be shown in the limit δ → 0+ it vanishes, see Appendix for more details.

2.2. Further simplification. With this and from Eq 26 we have

−

∞
∫

0

dy e−y(ǫ+iτ) lim
δ→0+

∫ ∞

0

dx e−x(δ−iψ)
1

2π

∞
∑

r,u,s,
m=0

s
∑

t=0

xm

m!
· · · (50)

= −

∞
∫

0

dy e−y(ǫ+iτ) lim
δ→0+

1

2π

∞
∑

r,u,s,
m=0

s
∑

t=0

∫ ∞

0

dx e−x(δ−iψ)
xm

m!
· · · (51)

Justify the interchange here. We use the following relation to perform the x integration
∞
∫

0

dx e−αxxm =
(−1)mm!

αm+1
(52)
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where ℜ(α) > 0 and we have

−

∞
∫

0

dy e−y(ǫ+iτ) lim
δ→0+

1

2π

∞
∑

r,u,s,
m=0

s
∑

t=0

(−1)m

(δ − iψ)m+1

E2uδ
6u

(2u)!
· · · (53)

= −

∞
∫

0

dy e−y(ǫ+iτ)
1

2π

∞
∑

r,s,
m=0

s
∑

t=0

lim
δ→0+

∞
∑

u=0

(−1)m

(δ − iψ)m+1

E2uδ
6u

(2u)!
· · · (54)

After taking the limit δ → 0+ only u = 0 term will survive. So we have,

−

∞
∫

0

dy e−y(ǫ+iτ)
1

2π

∞
∑

r,s,
m=0

s
∑

t=0

(−1)m

(−iψ)m+1

Bri
r

r!

(−y)s

s!

(

s

t

)

(iτ)tǫs−t
iqθq

4mq!
E0G(q,m) (55)

=
1

2π

∞
∑

r,s,
m=0

s
∑

t=0

∞
∫

0

dy e−y(ǫ+iτ)
(−y)s

s!

Bri
r

r!

(

s

t

)

(iτ)tǫs−t
iqθq

4mq!

G(q,m)

(iψ)m+1
[∵ E0 = 1] (56)

=
1

2π

∞
∑

r,s,
m=0

s
∑

t=0

1

(ǫ+ iτ)s+1

Bri
r

r!

(

s

t

)

(iτ)tǫs−t
iqθq

4mq!

G(q,m)

(iψ)m+1
[using Eq 52] (57)

=
1

2π

∞
∑

r,s,
m=0

s
∑

t=0

(iτ)tǫs−t

(ǫ+ iτ)s+1

(

s

t

)

Bri
r

r!

iqθq

4mq!

G(q,m)

(iψ)m+1
(58)

Now, from Eq 20 we have σ(n) as:

σ(n) = −

∞
∫

−∞

dψ

π
eiψ lim

ǫ→0+

∞
∫

−∞

dτ

2πi
eiτ

1

2π

∞
∑

r,s,
m=0

s
∑

t=0

(iτ)tǫs−t

(ǫ+ iτ)s+1

(

s

t

)

Bri
r

r!

iqθq

4mq!

G(q,m)

(iψ)m+1
(59)

⇒ σ(n) = −
1

2π

∞
∫

−∞

dψ

π
eiψ lim

ǫ→0+

∞
∑

r,s,
m=0

s
∑

t=0

∞
∫

−∞

dτ

2πi

eiτ (iτ)tǫs−t

(ǫ+ iτ)s+1

(

s

t

)

Bri
r

r!

iqθq

4mq!

G(q,m)

(iψ)m+1
(60)

justify the interchange here. The integration over τ can be performed in the following manner.
Since t ∈ [0, s] the integral is well defined within the integration limits (−∞,∞). We observe
that there is a pole of order s at τ = iǫ, hence we find the residue at τ = iǫ as, upto a factor 1

s!
,

ds

dτ s
eiτ (iτ)t

∣

∣

∣

∣

τ=iǫ

(61)
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Using the Leibniz rule for differentiation we have:

ds

dτ s
eiτ (iτ)t

∣

∣

∣

∣

τ=iǫ

= it
s

∑

j=0

(

s

j

)

(

eiτ
)(s−j) (

τ t
)(j)

∣

∣

∣

∣

∣

τ=iǫ

(62)

⇒
ds

dτ s
eiτ (iτ)t

∣

∣

∣

∣

τ=iǫ

= it
t

∑

j=0

(

s

j

)

is−jeiτ t(t− 1) · · · (t− j + 1)τ t−j

∣

∣

∣

∣

∣

τ=iǫ

(63)

⇒
ds

dτ s
eiτ (iτ)t

∣

∣

∣

∣

τ=iǫ

= it
t

∑

j=0

(

s

j

)

is−je−ǫt(t− 1) · · · (t− j + 1)(iǫ)t−j (64)

⇒
ds

dτ s
eiτ (iτ)t

∣

∣

∣

∣

τ=iǫ

= (−1)tis
t

∑

j=0

(

s

j

)

(−1)jt(t− 1) · · · (t− j + 1)e−ǫǫt−j (65)

After taking the limit ǫ→ 0+ only j = t term will survive, hence we have:

lim
ǫ→0+

ds

dτ s
eiτ (iτ)t

∣

∣

∣

∣

τ=iǫ

= is
(

s

t

)

(66)

But there is another term on which taking the limit ǫ→ 0+, non-vanishing terms are corresponds
to t = s. So, we have

σ(n) =
1

2πi

∞
∫

−∞

dψ

π
eiψ

∞
∑

r,s,
m=0

Bri
r

r!

is

s!

iqθq

4mq!

G(q,m)

(iψ)m+1
(67)

⇒ σ(n) =
1

πi

∞
∑

r,s,
m=0

∞
∫

−∞

dψ

2π

eiψ

(iψ)m+1

Bri
r

r!

is

s!

iqθq

4mq!
G(q,m) (68)

where q = 1+ r+ s+ 6m. Justify the interchange. The integration over ψ in case of m ≥ 0 can
be performed in the following way. Since there is a pole of higher-order at origin on the contour
(−∞,∞), say D, we deform the contour by creating a semi-circle centred at the origin of radius
ǫ and finally we take the limit ǫ→ 0.

∫

D

dψ

2πi

eiψ

ψm+1
= lim

ǫ→0

∫

Dǫ

dψ

2πi

eiψ

ψm+1
= lim

ǫ→0

1

2πi



−
eiψ

mψm

∣

∣

∣

∣

∞

−∞

+
i

m

∫

Dǫ

dψ
eiψ

ψm



 (69)

⇒

∫

D

dψ

2πi

eiψ

ψm+1
=

i

m
lim
ǫ→0

∫

Dǫ

dψ

2πi

eiψ

ψm
= · · · =

im

m!
lim
ǫ→0

∫

Dǫ

dψ

2πi

eiψ

ψ
=

im

2m!
(70)

⇒

∞
∫

−∞

dψ

2π

eiψ

(iψ)m+1
=

1

2

1

m!
(71)

In the last step we have closed the contour in the upper-half of complex plane and used residue
theorem to obtain the result. With this finally we have a closed form of σ(n) as

σ(n) =
1

2πi

∞
∑

r,s,m=0

Bri
r

r!

is

s!

G(q,m)

4m m!

iqθq

q!
(72)

where q = 1 + r + s + 6m and θ = 2nπ2. Since q has to be even, r + s has to be odd and
hence reality of σ(n) is established. With the same spirit we can also find, a similar closed



ON THE SERIES REPRESENTATION OF SUM OF POSITIVE DIVISORS FUNCTION 9

form expression for the divisor function S(n) (see Section 4) and its generalisation to the higher
orders.

2.3. Generalisation to higher orders. At this point it is natural to extend this result to
higher order sum-of-positive divisors function. Here we mention for odd orders and for even
orders see Section 4. The modifications to Eq 72 can be guessed from Eq 15 and 47. For the
(1 + 2j)th order, ∀j ∈ Z, required changes to Eq 47 is:

2j + r + 2(3 + j)u+ 2s− t+ 2(3 + j)m− q = −1 (73)

⇒ q = 1 + 2j + r + 2(3 + j)u+ 2s− t+ 2(3 + j)m (74)

After all the intermediate manipulation, finally we have

q = 1 + 2j + r + s+ 2(3 + j)m (75)

So, σ1+2j(n) is given by the following expression

σ1+2j(n) =
1

(2π)1+2ji

∞
∑

r,s,m=0

Bri
r

r!

is

s!

G(q,m)

4m m!

iqθq

q!
(76)

where q is given by the Eq 75.

3. Robin’s Inequality and Riemann Conjecture

To prove Riemann Conjecture we follow two theorems of Guy Robin1 and its statements are
given below.

Theorem 1 (Theorem 1 of Robin1). If the Riemann hypothesis is true, then for each n ≥ 5041

σ(n) ≤ eγn log log n (77)

where γ is Euler–Mascheroni constant.

The above inequality is now known as Robin’s inequality after his work. This inequality is known
to fail for 27 numbers (sequence A067698 in the OEIS): 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 18, 20, 24,
30, 36, 48, 60, 72, 84, 120, 180, 240, 360, 720, 840, 2520, 5040.

Theorem 2 (Proposition 1 of Section 4 of Robin1). If the Riemann hypothesis is false, then

there exist constants 0 < β < 1/2 and C such that

σ(n) ≥ eγn log log n+
Cn log log n

(log n)β
(78)

holds for infinitely many n.

The combined implication of these two theorems is, if Robin’s inequality fails for n > 5041
it must fail for infinitely many integers. Since the Riemann hypothesis is true and Robin’s
inequality fails for few n > 5041 is not possible simultaneously.

1G. Robin, “Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann”, Journal de
Mathématiques Pures et Appliquées 63 (1984), pp. 187–213.
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3.1. Extension of σ(n) to real argument. Before we apply Robin’s inequality we need to
extend σ(n) in Eq 72 to n ∈ R. Since there is no unique way to do this for any general integer
valued function, this we do trivially, by extending the domain of n from Z to R. The nature of
extended function can be assessed from the Eq 15. If n is not an integer then only m = 1 term
will be contributing in the sum of Eq 15. So, σ(n) assumes maximum value when n ∈ Z when
at least two values of m = {1, n} contributes and hence the extended σ(n) is under the envelop

of the original one. So if σ(n) satisfy Robin’s inequality for integer n it will also hold for n ∈ R

and vice-versa for this form of extension.

3.2. Convergence nature of the series representation of σ(n). Before we proceed here we
quickly explore some properties of the expansion coefficient of σ(n). From Eq 72 we have:

σ(n) =
1

2πi

∞
∑

r,s,m=0

Bri
r

r!

is

s!

G(q,m)

4m m!

iqθq

q!
(79)

⇒ σ(n) =
1

2πi

∞
∑

r,s,m=0

Br

r!s!

G(q,m)

4m m!

θq

q!
iq+r+s (80)

⇒ σ(n) =
1

2πi

∞
∑

r,s,m=0

Br

r!s!

G(q,m)

4m m!

θq

q!
i2q−1−6m [∵ q = 1 + r + s+ 6m] (81)

⇒ σ(n) = −
1

2π

∞
∑

r,s,m=0

Br

r!s!

i−6mG(q,m)

4m m!

i2qθq

q!
(82)

⇒ σ(n) = −
1

2π

∞
∑

r,s,m=0

Br

r!s!

(−1)mG(q,m)

4m m!

θq

q!
[∵ q is even] (83)

Now we will rearrange the sum in the following way. Since q = 1+ r+ s+ 6m⇒ m ∈ [0, ⌊ q−1
6
⌋]

and hence r ∈ [0, q − 1− 6m]. Before we rearrange we have to justify it. So we have:

σ(n) = −
1

2π

∞
∑

q=0

⌊
q−1
6
⌋

∑

m=0

q−1−6m
∑

r=0

(2π2)q

q!

(−1)mG(q,m)

4m m!

Br

r!s!
θq =

∞
∑

q=0

aqn
q (84)

where s = q − 1− 6m− r and aq is given by:

aq = −
(2π2)q

2π q!

⌊
q−1
6
⌋

∑

m=0

q−1−6m
∑

r=0

(−1)mG(q,m)

4m m!

Br

r!s!
(85)

⇒ aq = −
(2π2)q

2π q!

⌊
q−1
6
⌋

∑

m=0

(−1)mG(q,m)

4m m!

q−1−6m
∑

r=0

Br

r!s!
(86)

⇒ aq = −
(2π2)q

2π q!

⌊
q−1
6
⌋

∑

m=0

(−1)mG(q,m)S(q,m)

4m m!
(87)

where

S(q,m) =

q−1−6m
∑

r=0

Br

r!(q − 1− 6m− r)!
(88)

Now we will review convergence nature of σ(n). Our attempt will be to show the series is
absolutely convergent. From the Appendix G we have the following results.
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i) G(q,m) ≥ 0

ii) G(q,m) < 2qmq4m

and from Appendix H we have:

S(q,m) =

{

1/2 if q − 1− 6m = 1
0 otherwise

(89)

Now not all m will give non-zero contribution to the sum. Rather for some q there is only one
m such that the condition q − 1 − 6m = 1 is satisfied. Hence it is natural to re-index the sum
in Eq 84, in the following way.

σ(n) =
∞
∑

q=0

aqn
6q+2 (90)

where the new aq is given by:

aq = −
(2π2)6q+2

2π(6q + 2)!

(−1)qG(6q + 2, q)S(6q + 2, q)

4q q!
(91)

⇒ aq = −
(2π2)6q+2

4π

(−1)qG(6q + 2, q)

4q q!(6q + 2)!
(92)

We can find approximate upper bound of aq as:

aq = −
(2π2)6q+2

4π

(−1)qG(6q + 2, q)

4q q!(6q + 2)!
(93)

⇒ |aq| ≤
(2π2)6q+2

4π

(2q)6q+24q

4q q!(6q + 2)!
(94)

⇒ |aq| ≤
1

4π

(4π2)6q+2q6q+2

q!(6q + 2)!
(95)

Now we will perform the ratio test on the series in Eq 90

lim
q→∞

|aq+1|n
6(q+1)+2

|aq|n6q+2
(96)

= lim
q→∞

n
|aq+1|

|aq|
(97)

= n lim
q→∞

(4π2)6(q+1)+2q6(q+1)+2q!(6q + 2)!

(4π2)6q+2q6q+2(q + 1)![6(q + 1) + 2]!
(98)

= (4π2)6n lim
q→∞

q6(6q + 2)6q+2+1/2e6(q+1)+2

e6q+2(q + 1)[6(q + 1) + 2]6(q+1)+2+1/2
(99)

= (4π2e)6n lim
q→∞

q6(6q + 2)6q+2+1/2

(q + 1)[6(q + 1) + 2]6(q+1)+2+1/2
(100)

= (4π2e)6n lim
q→∞

(6q + 2)6q+2+1/2

[6(q + 1) + 2]6q+2+1/2

q6

(q + 1)[6(q + 1) + 2]6
(101)

= (4π2e)6n lim
q→∞

[

1 + 6
6q+2

]6q+2

lim
q→∞

[

1 + 6
6q+2

]1/2

lim
q→∞

[

6 + 8
q

]6

lim
q→∞

1

q + 1
(102)

= (4π2e)6n lim
x→∞

[

1 + 6
x

]x
lim
y→∞

[

1 + 6
y

]1/2

lim
z→∞

[

6 + 8
z

]6
lim
q→∞

1

q
(103)

= (4π2e)6n · e6 · 1 · 6 lim
q→∞

1

q
= 6(4π2e2)6n lim

q→∞

1

q
= 0 (104)
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So the series in Eq 90 converges absolutely.

3.3. Existence of upper bound of σ(n). Now let n = ee
u

, if Riemann hypothesis is true then
from Eq 77 we have

σ(ee
u

) < eγee
u

u (105)

⇒
∑

q

aq[e
eu ]6q+2 < eγee

u

u (106)

⇒
∑

q

aqe
(6q+2)eu < eγee

u

u (107)

⇒
∑

q,r

aq
(6q + 2)reru

r!
< eγu

∑

r

eru

r!
(108)

⇒
∑

q,r,s

aq(6q + 2)rrs

r!s!
us < eγ

∑

r,s

rs

r!s!
us+1 (109)

Since the series σ(n) is absolutely convergent we can reorder the summation and we have:

∑

r,s

rs

r!s!

[

∞
∑

q=1

aq(6q + 2)r

]

us <
∑

r,s

rs

r!s!
[eγu] us (110)

Since σ(n) ≥ 0 it is guaranteed from the above equation that
∑∞

q=1 aq(6q + 2)r is has to be

positive. Now if we can show the upper bound of the series
∑∞

q=0 aq(6q+ 2)r is a finite for all r
then there exists a u0 such that:

∞
∑

q=1

aq(6q + 2)r < eγu0 (111)

and hence Robin’s inequality can be satisfied with the upper limit of n as n0 = ee
u0 . The proof

that n0 = 5041 can be omitted for the following reason. If n0 > 5041 then Robin’s inequality
fails for finite number of points n ∈ (5041, n0) which is not in accord with the Theorem 1, 2. So,
a proof of a finite n0 is sufficient to prove the Riemann hypothesis.

The series that we have in our hand is:
∞
∑

q=0

aq(6q + 2)r (112)

⇒−
1

4π

∞
∑

q=0

(−1)q(2π2)6q+2 G(6q + 2, q)

4q q!(6q + 2)!
(6q + 2)r (113)

⇒−
1

4π

∞
∑

q=0

(−1)q
(2π2)6q+2

q!

(6q + 2)r

(6q + 2)!

∂6q+2

∂z6q+2
sinh2q z

∣

∣

∣

∣

z=0

(114)

For the last step see Eq G5. To analyse the above infinite series, let’s look at the following
expansion:

exp
[

−
(

2π2
)6
e6z

]

=
∞
∑

q=0

(−1)q
(2π2)

6q

q!
e6qz (115)

⇒
(

2π2
)2
e2z exp

[

−
(

2π2
)6
e6z

]

=
∞
∑

q=0

(−1)q
(2π2)

6q+2

q!
e(6q+2)z (116)
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To incorporate the last factor in Eq 114 we use the Cauchy’s integral formula:

1

2πi

∮

C

f(ψ)

ψn+1
dψ =

1

n!
fn(0) (117)

where the contour C is a simple closed curve around the origin and we have the following
modification.

(2π2)
2

ψ3
e2z exp

[

−
(2π2)

6

ψ6
e6z sinh2 ψ

]

=
∞
∑

q=0

(−1)q
(2π2)

6q+2

q!
e(6q+2)z sinh

2q ψ

ψ6q+3
(118)

⇒ M(z) ≡ e2z
∮

C

dψ
(2π2)

2

ψ3
exp

[

−
(2π2)

6

ψ6
e6z sinh2 ψ

]

=
∞
∑

q=0

(−1)q
(2π2)

6q+2

q!

e(6q+2)z

(6q + 2)!

∂6q+2

∂ψ6q+2
sinh2q ψ

∣

∣

∣

∣

ψ=0

(119)

Using Cauchy-Riemann condition it is easy to show thatM(z) is an analytical function at z = 0.
For this consider an open neighborhood U at z = 0. Since the integrand in the definition of
M(z) and its partial derivatives w.r.t Re(z) and Im(z) is continuous in the region U×C, while
using the Cauchy-Riemann condition we can interchange partial differentiations and the contour
integration. Hence M(z) has derivatives of all orders, so we have:

∂rM(z)

∂zr

∣

∣

∣

∣

z=0

=
∞
∑

q=0

(−1)q
(2π2)6q+2

q!

(6q + 2)r

(6q + 2)!

∂6q+2

∂ψ6q+2
sinh2q ψ

∣

∣

∣

∣

ψ=0

(120)

RHS in the above equation is exactly the summation appears in Eq . Let Λ = sup {|∂rM(z)/∂zr|z=0 ,
r ∈ Z}. SinceM(z) is analytic at z = 0, its all derivatives are finite so Λ is finite too. Then we
have:

∂rM(z)

∂zr

∣

∣

∣

∣

z=0

≤ Λ ∀r ∈ Z (121)

This implies
∑∞

q=0 aq(6q + 2)r is a bounded function of r and hence the Riemann conjecture is

proved to be true.
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4. Series Representation of the number-of-divisors Function

By counting number of zeros of the function sin(nπ/m) we can find a series representation of
the divisor function Sn. We can express Sn in the following manner:

Sn ≡
∑

m|n

=
n

∑

m=−n

′
∫ ∞

−∞

dψ

2πi

eiψ

ψ + i(2mπ)4 sin2(nπ/m)
(122)

=

∫ ∞

−∞

dψ

2πi
eiψ

n
∑

m=−n

′ 1

ψ + i(2mπ)4 sin2(nπ/m)
(123)

=

∫ ∞

−∞

dψ

2πi
eiψ

n
∑

m=−n

′
lim
δ→0+

sech [(2mπδ)4]

ψ + i(2mπ)4 sin2(nπ/m) + iδ
(124)

= −

∫ ∞

−∞

dψ

2π
eiψ lim

δ→0+

∞
∑

m=−∞

′ sech [(2mπδ)4]

−iψ + (2mπ)4 sin2(nπ/m) + δ
(125)

= −

∫ ∞

−∞

dψ

2π
eiψ lim

δ→0+

∞
∑

m=−∞

′
sech

[

(2mπδ)4
]

∫ ∞

0

dx e−x[−iψ+(2mπ)4 sin2(nπ/m)+δ] (126)

⇒ Sn = −

∫ ∞

−∞

dψ

2π
eiψ lim

δ→0+

∫ ∞

0

dx e−x(δ−iψ)
∞
∑

m=−∞

′
sech

[

(2mπδ)4
]

e−x(2mπ)
4 sin2(nπ/m) (127)

Separate out the sum over m:

Fn =
∞
∑

m=−∞

′
sech

[

(2mπδ)4
]

e−x(2mπ)
4 sin2(nπ/m) (128)

⇒ Fn =
∞
∑

m=−∞

′
sech

[

(2mπδ)4
]

e−x(2mπ)
4 sin2(2nπ2/2mπ) (129)

We are going to use the same factor 1
eiz−1

to implement Matsubara technique. We re-express Fn
in this way:

Fn = i
∑

m 6=0

(−i) sech
[

(2mπδ)4
]

e−x(2mπ)
4 sin2(2nπ2/2mπ)

⇒ Fn = i

∮

dz

2πi

1

eiz − 1
sech(z4δ4)e−xz

4 sin2(θ/z) (130)

where θ = 2nπ2.

We find residue at the origin by Laurrent expansion of individual factors around the origin and
from the previous analysis here we only mention them

1

eiz − 1
=

1

iz

iz

eiz − 1
=

∞
∑

r=0

Br
(iz)r−1

r!
, |z| < π (131)

sech(z4δ4) =
∞
∑

u=0

E2u

(2u)!
(zδ)4u,

∣

∣z4δ4
∣

∣ < π/2 (132)

e−x sin
2(θ/z)z4 =

∞
∑

m,q=0

xmz4m

4mm!

iqθq

zqq!
G(q,m) (133)



ON THE SERIES REPRESENTATION OF SUM OF POSITIVE DIVISORS FUNCTION 15

Combining all we have:

i
∞
∑

r,m,q,u=0

Br
ir−1

r!
zr−1

E2u

(2u)!
(zδ)4u

xmz4m

4mm!

iqθq

q! zq
G(q,m) (134)

= i
∞
∑

r,m,q,u=0

Br
ir−1

r!

E2uδ
4u

(2u)!

xm

4mm!

iqθq

q!
G(q,m)zr+4m+4u−q−1 (135)

To find residue we extract coefficient of z−1 which gives:

r + 4m+ 4u− q − 1 = −1 (136)

⇒ q = r + 4m+ 4u (137)

Clockwise contour around the origin gives an extra −ve sign and we have:

Fn = −i
∞
∑

r,m,u=0

Br
ir−1

r!

E2uδ
4u

(2u)!

xm

4mm!

iqθq

q!
(138)

where q = r + 4m+ 4u. With this Sn is given by:

Sn = i

∫ ∞

−∞

dψ

2π
eiψ lim

δ→0+

∫ ∞

0

dx e−x(δ−iψ)
∞
∑

r,m,u=0

xm

m!
· · · (139)

⇒ Sn = i

∫ ∞

−∞

dψ

2π
eiψ lim

δ→0+

∞
∑

r,m,u=0

∫ ∞

0

dx e−x(δ−iψ)
xm

m!
· · · (140)

We use following relation to perform the x integration, like in the previous section:
∫ ∞

0

dx e−αxxm =
(−1)mm!

αm+1
(141)

and we have:

Sn = i

∫ ∞

−∞

dψ

2π
eiψ lim

δ→0+

∞
∑

r,m,u=0

(−1)m

[δ − iψ]m+1
· · ·

E2uδ
4u

(2u)!
(142)

= i

∫ ∞

−∞

dψ

2π
eiψ

∞
∑

r,m=0

lim
δ→0+

∞
∑

u=0

(−1)m

[δ − iψ]m+1
· · ·

E2uδ
4u

(2u)!
(143)

= i

∫ ∞

−∞

dψ

2π
eiψ

∞
∑

r,m=0

(−1)m

(−iψ)m+1
Br
ir−1

r!

1

4m
iqθq

q!
G(q,m)E0 (144)

= −iE0

∫ ∞

−∞

dψ

2π
eiψ

∞
∑

r,m=0

1

(iψ)m+1
Br
ir−1

r!

1

4m
iqθq

q!
G(q,m) (145)

= −
∞
∑

r,m=0

∫ ∞

−∞

dψ

2π

eiψ

(iψ)m+1
Br
ir

r!

1

4m
iqθq

q!
G(q,m) [ ∵ E0 = 1 ] (146)

Using the result from the previous section the integration over ψ is given by:
∞
∫

−∞

dψ

2π

eiψ

(iψ)m+1
=

1

2

1

m!
(147)

With this we have,

Sn = −
1

2

∞
∑

r,m=0

Br
ir

r!

1

4m
iqθq

m! q!
G(q,m) (148)
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where Br is r
th Bernoulli number, θ = 2nπ2 and q = r + 4m. From Appendix G we know q has

to be even for non-zero value and this implies r is also even. Hence we have:

Sn = −
1

2

∞
∑

r,m=0

|Br|

r!

G(q,m)iq

4mm! q!
θq (149)

This closed form of Sn can be used to determine a number is prime or not numerically. As a by
product of this effort we have obtained an quadrature to determine primeness of a number.

4.1. Generalisation to higher order. The modification to Eq 136 for the 2jth order, ∀j ∈ Z,
is given below:

2j + r + 2(2 + j)m+ 4u− q − 1 = −1 (150)

⇒ q = 2j + r + 2(2 + j)m+ 4u (151)

After performing the above steps we have:

q = 2j + r + 2(2 + j)m (152)

So, S2j(n) is given as:

S2j(n) = −
1

2(2π)2j

∞
∑

r,m=0

|Br|

r!

G(q,m)iq

4mm! q!
θq (153)

where q is given by the Eq 152.
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Appendix A. Notes

1. Since each improper integral converges independently the summation and integration can
be interchanged. Thanks Alan in MathStackExchange for providing this reasoning.

2. If m > n then m does not divide n. Hence all such term will vanish after performing the
ψ integration and we can extend limit of the summation over m to (−∞,∞).

Appendix B.

To justify the interchange of summation and integration we invoke the dominated convergence

theorem and we mention it here for the general readers.

The Dominated Convergence Theorem. If {fn : R → R} is a sequence of measurable

functions which converge pointwise almost everywhere to f , and if there exists an integrable

function g such that |fn(x)| ≤ g(x) for all n and for all x, then f is integrable and

lim
n→∞

∫

R

fn =

∫

R

f (B1)

Basically it tells when integration and taking limit can be interchanged. An infinite summation
can be thought of limit to a finite sum, so we can use this theorem to justify the interchange in
the following manner.

∞
∑

n=0

∫

X

fn(x) = lim
k→∞

k
∑

n=0

∫

X

fn(x) = lim
k→∞

∫

X

k
∑

n=0

fn(x) (B2)

So, if
∑∞

n=0 fn(x) exists for all x and there is some integrable function g(x) such that

∣

∣

∣

∣

∣

k
∑

n=0

fn(x)

∣

∣

∣

∣

∣

≤ g(x) (B3)

for every k, then

∞
∑

n=0

∫

X

fn(x) =

∫

X

∞
∑

n=0

fn(x) (B4)

Now,

∣

∣

∣

∣

∣

k
∑

n=0

fn(x)

∣

∣

∣

∣

∣

≤

k
∑

n=0

|fn(x)| (B5)

≤

∞
∑

n=0

|fn(x)| (B6)



ON THE SERIES REPRESENTATION OF SUM OF POSITIVE DIVISORS FUNCTION 18

so if the sum converges absolutely to an integrable function, then the integral and the summation
can be exchanged. The sum we have in Eq 23 is:

∞
∑

m=−∞

′

∣

∣

∣

∣

∣

me−y[ǫ(2mπ)
2+2mπiτ+ǫ+iτ]

−iψ + (2mπ)6 sin2(nπ/m)

∣

∣

∣

∣

∣

(B7)

= 2
∞
∑

m=1

e−y[ǫ(2mπ)
2+ǫ]

∣

∣

∣

∣

m

−iψ + (2mπ)6 sin2(nπ/m)

∣

∣

∣

∣

(B8)

≤ e−ǫy
∞
∑

m=1

∣

∣

∣

∣

m

−iψ + (2mπ)6 sin2(nπ/m)

∣

∣

∣

∣

[∵ y ∈ [0,∞)] (B9)

≤ Ke−ǫy (B10)

where K is some constant and this is an integrable function for ǫ > 0 and over the domain
[0,∞).

The sum we have in Eq 26 is:

∞
∑

m=−∞

′
∣

∣

∣
e−x(δ−iψ)me−y[ǫ(2mπ)

2+2mπiτ] sech[(2mπδ)6]e−x(2mπ)
6 sin2(nπm )

∣

∣

∣
(B11)

= 2
∞
∑

m=1

e−xδ
∣

∣

∣
me−yǫ(2mπ)

2

sech[(2mπδ)6]e−x(2mπ)
6 sin2(nπm )

∣

∣

∣
(B12)

≤ 2e−xδ
∞
∑

m=1

∣

∣

∣
me−yǫ(2mπ)

2

sech[(2mπδ)6]
∣

∣

∣
[∵ x ∈ [0,∞)] (B13)

≤ Ke−xδ (B14)

where K is some constant and this is an integrable function for δ > 0 and over the domain
[0,∞).

This part is mostly taken from an answer on this topic in Quora by Senia Sheydvasser, PhD in

Mathematics.

Appendix C. Matsubara Technique

Appendix D.

Appendix E.

The reason for introducing this convergence factor is that when sin(nπ/m) = 0 still the numer-
ator is positive definite real part which is necessary for the next manipulation. Now we justify
the interchange.
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Appendix F.

Appendix G. Properties of the polynomial G(q,m)

G.1. Positivity. Now we will show G(q,m) ≥ 0 in the following way

G(q,m) =
2m
∑

p=0

(−1)p(2m− 2p)q
(

2m

p

)

(G1)

⇒ G(q,m) =
2m
∑

p=0

(−1)p
∂q

∂xq
e(2m−2p)x

∣

∣

∣

∣

x=0

(

2m

p

)

(G2)

⇒ G(q,m) =
∂q

∂xq

2m
∑

p=0

(−1)pe(2m−2p)x
(

2m

p

)

∣

∣

∣

∣

∣

x=0

(G3)

⇒ G(q,m) =
∂q

∂xq
[

ex − e−x
]2m

∣

∣

∣

∣

x=0

(G4)

⇒ G(q,m) = 4m
∂q

∂xq
sinh2m x

∣

∣

∣

∣

x=0

(G5)

Since Taylor series expansion of sinh(x) about the origin contains only positive coefficients and
hence sinh2m x will also have positive expansion coefficient only. Hence G(q,m) > 0 ∀q ≥ 2m.
It can be easily inferred that if q < 2m then G(q,m) = 0.

G.2. Dependence on q and m. First we will show G(q,m) = 0 if q is odd. This can be proved
very easily from the defining equation, Eq 43 and since p ∈ [0, 2m] and

(

2m
p

)

=
(

2m
2m−p

)

, a sum

over p of (−1)p(2m − 2p)q
(

2m
p

)

would be zero for odd q. From here also we can see that only

even q gives non-zero values. ∀m G(0,m) = 0 and ∀q G(q, 0) = 0. For odd p individual term in

the sum probably vanishes.

G.3. Approximate upper-bound. Here we will find an approximate upper bound for G(q,m).

G(q,m) =
2m
∑

p=0

(−1)p(2m− 2p)q
(

2m

p

)

(G6)

⇒ G(q,m) <
2m
∑

p=0

(2m− 2p)q
(

2m

p

)

[∵ q is even] (G7)

⇒ G(q,m) < (2m)q
2m
∑

p=0

(

2m

p

)

(G8)

⇒ G(q,m) < (2m)q22m (G9)

⇒ G(q,m) < 2qmq4m (G10)
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G.4. Recurrence relation. From Eq we have

G(q,m+ 1) = 4m+1 ∂q

∂xq
sinh2m+2 x

∣

∣

∣

∣

x=0

(G11)

⇒ G(q,m+ 1) = 4m+1 ∂
q

∂xq
[

sinh2 x · sinh2m x
]

x=0
(G12)

⇒ G(q,m+ 1) = 4m+1

q
∑

p=0

(

q

p

)

(

sinh2 x
)(p) (

sinh2m x
)(q−p)

∣

∣

∣

x=0
(G13)

⇒ G(q,m+ 1) = 4m+1

q
∑

p=0

(

q

p

)

(

sinh2 x
)(p)

∣

∣

∣

x=0

(

sinh2m x
)(q−p)

∣

∣

∣

x=0
(G14)

Now,
∂p

∂xp
sinh2 x

∣

∣

∣

∣

x=0

=

{

2p−1 p even
0 otherwise

(G15)

Hence,

G(q,m+ 1) = 2

q
∑

p=0

(

q

p

)

2p4m
∂q−2

∂xq−2
sinh2m x

∣

∣

∣

∣

x=0

(G16)

⇒ G(q,m+ 1) = 2

q
∑

p=0

(

q

2p

)

22pG(q − 2p,m) (G17)

G.5. Solution of the recurrence relation. (Yet to be finished.) From solution of the above
recurrence relation we can compute the exact value of G(q,m) in the following way

G(q,m+ 1)

q!
=

2

q!

q
∑

p=0

(

q

2p

)

22pG(q − 2p,m) (G18)

⇒
G(q,m+ 1)

q!
=

2

q!

q
∑

p=0

22p q!

(2p)!(q − 2p)!
G(q − 2p,m) (G19)

⇒
G(q,m+ 1)

q!
= 2

q
∑

p=0

22p

(2p)!

G(q − 2p,m)

(q − 2p)!
(G20)

Now from Eq G5 we can explicitly compute G(q, 1) in the following way

G(q, 1) = 4
∂q

∂xq
sinh2 x

∣

∣

∣

∣

x=0

(G21)

⇒ G(q, 1) = 2
∂q

∂xq
2 sinh2 x

∣

∣

∣

∣

x=0

(G22)

⇒ G(q, 1) = 2
∂q

∂xq
(cosh 2x− 1)

∣

∣

∣

∣

x=0

(G23)

⇒ G(q, 1) = 2
∂q

∂xq
cosh 2x

∣

∣

∣

∣

x=0

(G24)

⇒ G(q, 1) = 2
∂q

∂xq

∞
∑

n=0

(2x)2n

(2n)!

∣

∣

∣

∣

∣

x=0

(G25)

⇒ G(q, 1) = 2q+1 (G26)

It is worthy mentioning, G(q,m) has striking similarity with Stirling number of the second kind.
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Appendix H. Properties of the polynomial S(q,m)

Here we analyse the polynomial S(q,m). From the definition we have:

S(q,m) =

q−1−6m
∑

r=0

Br

r!(q − 1− r − 6m)!
(H1)

⇒ S(q,m) =
1

k!

k
∑

r=0

Brk!

r!(k − r)!
[where k = q − 1− 6m] (H2)

⇒ S(q,m) =
1

k!

k
∑

r=0

(

k

r

)

Br (H3)

From the closed form expression of the sum of the mth powers of the first n positive integers we
have:

1

m+ 1

m
∑

k=0

(

m+ 1

k

)

B+
k n

m+1−k =
n

∑

k=1

km = 1m + 2m + · · ·+ nm (H4)

Set n = 1 in the above equation and we have:

1

m+ 1

m
∑

k=0

(

m+ 1

k

)

B+
k = 1 (H5)

Since q is even it implies k is always odd in Eq H3 and we have:

1

k!

k
∑

r=0

(

k

r

)

B−r =
1

k!

k−1
∑

r=0

(

k

r

)

B−r +
B−k
k!

(H6)

⇒
1

k!

k
∑

r=0

(

k

r

)

B−r =
k

k!
B−1 +

1

k!

k−1
∑

r=0

′
(

k

r

)

B−r +
B−k
k!

(H7)

where
∑′

k means k 6= 1. Now if k > 1 we have:

1

k!

k
∑

r=0

(

k

r

)

B−r =
k

k!
B−1 +

1

k!

k−1
∑

r=0

′
(

k

r

)

B+
r +

B−k
k!

(H8)

⇒
1

k!

k
∑

r=0

(

k

r

)

B−r =
k

k!
(B+

1 − 1) +
1

k!

k−1
∑

r=0

′
(

k

r

)

B+
r +

B−k
k!

(H9)

⇒
1

k!

k
∑

r=0

(

k

r

)

B−r = −
k

k!
+
k

k!
B+

1 +
1

k!

k−1
∑

r=0

′
(

k

r

)

B+
r +

B−k
k!

(H10)

⇒
1

k!

k
∑

r=0

(

k

r

)

B−r = −
k

k!
+

1

k!

k−1
∑

r=0

(

k

r

)

B+
r +

B−k
k!

(H11)

But from Eq H5 we have:

1

m

m−1
∑

k=0

(

m

k

)

B+
k = 1 (H12)

⇒

m−1
∑

k=0

(

m

k

)

B+
k = m (H13)
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Using this we have from Eq H3

1

k!

k
∑

r=0

(

k

r

)

B−r =
B−k
k!

(H14)

From the properties of Bernoulli’s number this sum vanishes for odd k > 1. For k = 1 we have
k

∑

r=0

(

k

r

)

B−r = B−0 +B−1 = 1− 1/2 = 1/2 (H15)

So in essence what we have shown here is that, over the present domain S(q,m) > 0 and only
one value of m will contribute for which q − 1− 6m = 1 when summed over m.
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