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“The difference between an amateur trader and a 

professional trader is that the first is obsessed by the result 

while the second is obsessed by the knowledge” 
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Introduction 
 

The first step that you must take when you want to learn how to develop a quantitative trading 

system is to answer the following question: what characteristics must a system have to represent 

the theoretically most difficult situation possible where to make predictions? 

The first characteristic that this system must possess is that of having a very low ratio between 

the deterministic component and the random component. Therefore, the random component must 

overcome the deterministic component.  

The second characteristic that we need to determine concerns the number of degrees of freedom. 

This parameter determines how much difficult it is to test hypotheses. This consideration derives 

from the fundamental problem of statistics defined as follows: "A statistical data does not represent 

useful information, but becomes useful information only when it is shown that it was not obtained 

randomly". Therefore, given a result, the probability of obtaining it randomly decreases as the 

degrees of freedom of the system increase. Consequently, systems with a low number of degrees 

of freedom are particularly dangerous, because it is particularly easy to get good results randomly 

and therefore you risk overestimating an investment strategy. For this reason, a system that wants 

to be as difficult as possible where making predictions must have a low number of degrees of 

freedom.  

The third characteristic we have to choose is if to consider the system as ergodic (stationary) or 

non-ergodic (non-stationary). This choice is easy because it is much more difficult to make 

forecasts on a non-ergodic system. Indeed, in this case, past results may not be significant with 

respect to future results.  

In conclusion, the system that represents, from the theoretical point of view, the most difficult 

situation in which to make predictions is a system in which there is a predominant random 

component, with a low number of degrees of freedom and not ergodic. Is there a system that has 

all these 3 characteristics? The answer is yes indeed, the financial markets represent a system that 

respects all these conditions. 

I started this book with this consideration because I believe that the most important thing to 

understand, for any person who wants to develop a quantitative trading system, is to know that you 

are facing the most difficult situation theoretically possible where to make predictions. It is this 

awareness that must guide us in the study of the financial markets. Without this awareness, we will 

inevitably be led to underestimate the difficulty of the problem and this will lead us to make 

mistakes.  
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Structure of the book 
 

This book consists of a selection of articles divided into three main themes:  

 

Statistics 

Quantitative Trading 

Psychology 

 

These three arguments are indispensable for the development of a quantitative trading system. 

Although the articles deal with very different topics, they are closely linked to each other, in 

practice they represent the observation of the same problem from three different points of view. 

At the beginning of each chapter there will be an introductory paragraph where the results 

reported in the articles are summarize. The order of the articles was chosen so as to constitute a 

single logical reasoning that develops progressively.  
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Statistics 
 

Financial markets are characterized by a dominant random component with respect to the 

deterministic component. For this reason, the articles present are intended to explain the statistical 

analysis under these conditions.  

The main topic that is treated concerns the definition of the uncertainty of the statistical data. The 

traditional approach considers uncertainty as the dispersion of data around the true value. 

Therefore, it is based on the hypothesis that any divergence from uniformity is the result of a 

deterministic component. This condition is realistic only in systems where the random component 

is negligible. Instead, in cases, such as in finance, where the random component prevails, it turns 

out to be an unrealistic hypothesis that leads to incorrect conclusions. For this reason, we will give 

a new definition of uncertainty suitable for a system in which there is a predominant random 

component. The parameter that has been chosen for its definition is represented by the probability 

of obtaining an equal or better result in a random way. Knowing how to calculate this parameter 

correctly represents the basis of statistics in finance. As I will show in the articles, this calculation 

is very difficult, and extremely easy to underestimate the uncertainty. Indeed, the mistake made is 

to evaluate the individual hypotheses independently without considering the hypotheses previously 

tested. This way of operating often leads, in systems with a low number of degrees of freedom 

where it is easy to obtain good results randomly, to underestimating uncertainty.  

This approach will then be applied in different situations, such as in the case of the resolution of 

the St. Petersburg paradox. In this way, we will have concrete examples of how this method 

represents a completely new point of view in the evaluation of hypotheses. 
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The uncertainty of the statistical data  

 
Andrea Berdondini 

 

 ABSTRACT: Any result can be generated randomly and any random result is useless. Traditional methods 

define uncertainty as a measure of the dispersion around the true value and are based on the hypothesis that 

any divergence from uniformity is the result of a deterministic event. The problem with this approach is 

that even non-uniform distributions can be generated randomly and the probability of this event rises as the 

number of hypotheses tested increases. Consequently, there is a risk of considering a random and therefore 

non-repeatable hypothesis as deterministic. Indeed, it is believed that this way of acting is the cause of the 

high number of non-reproducible results. Therefore, we believe that the probability of obtaining an equal 

or better result randomly is the true uncertainty of the statistical data. Because it represents the probability 

that the data is useful and therefore the validity of any other analysis depends on this parameter.  

 

Introduction 
 

Any result can be generated randomly and any random result is useless. Traditional methods [1] 

and [2] define uncertainty as a measure of the dispersion around the true value and are based on the 

hypothesis that any divergence from uniformity is the result of a deterministic event. The problem 

with this approach is that even non-uniform distributions can be generated randomly and the 

probability of this event rises as the number of hypotheses tested increases. Consequently, there is 

a risk of considering a random and therefore non-repeatable hypothesis as deterministic. Indeed, it 

is believed that this way of acting is the cause of the high number of non-reproducible results [3] 

and [4]. Therefore, we believe that the probability of obtaining an equal or better result randomly 

is the true uncertainty of the statistical data, because it represents the probability that the data is 

useful and therefore the validity of any other analysis depends on this parameter.  

In addition, we will also address the problem of determining the correct method of calculating 

the probability of obtaining an equal or better result randomly. Regarding this topic, we will see 

that the fundamental point, in calculating this probability value, is to consider the statistical data 

dependent on all the other data generated by all the tested hypotheses. 

Considering the statistical data as non-independent has fundamental implications in statistical 

analysis. Indeed, all our random actions are not only useless, but will increase the uncertainty of 

the statistical data. For this reason, in the following article [5], we highlight the importance of acting 

consciously in statistics. 

Furthermore, the evaluation of the uncertainty of the statistical data will be possible only by 

knowing all the attempts made. In practice, the calculation of uncertainty is very difficult because 

not only we must consider all our attempts, but we must also consider the attempts made by every 

other person who is performing the same task as us. In this way, the uncertainty of our statistical 

data also depends on the actions performed by the people who are working our own analysis. 

Indeed, a group of people who belong to a research network all having the same reputation who all 

work on the same problem can be considered with one person who carries out all the attempts made. 

Consequently, the calculation of uncertainty becomes something relative that depends on the 

information we have. 
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Definition of uncertainty  

   

The aim of the definition of uncertainty of the statistical data that we are going to give is to 

determine a parameter that is linked to the repeatability of the result and that is universal and therefore, 

independent of the system in which we perform the statistical analysis. 

We define the uncertainty of the statistical data as the probability of obtaining an equal or better 

result randomly. 

This definition considers the statistical data as a forecast, so a forecast is repeatable only if the 

process that generated it is non-random. Consequently, the calculation of uncertainty involves 

determining the type of process that generated the result. We can distinguish cognitive processes from 

random processes by their statistical property of generating non-reproducible results in a random way. 

Indeed, by using the information on the system, on which we are performing a measurement, we can 

increase our probability of forecasting and this leads to a consequent decrease in the probability of 

obtaining the same result randomly.  

It is interesting to note that the repeatability of the statistical data and non-randomness of the process 

that produced it are two equivalent concepts. Indeed, the information leads to the repeatability of the 

result and at the same time generates results that cannot be reproduced randomly.  

To understand the definition given, we report the following example: We have to analyze a 

statistical datum represented by 1000 predictions on an event that can have only two results. The 1000 

predictions are divided into 600 successes and 400 failures. To calculate the probability of obtaining 

an equal or better result in a random way, we use the binomial distribution and we obtain the following 

value 1.4 ∙ 10−8%. 

Now, instead, let us consider a statistical datum represented by 10 predictions divided into 8 

successes and 2 failures. In this case, the probability of getting an equal or better result randomly is 

5.5%. 

Comparing the two results, we note that in the first case, although the number of successes is only 

60%, the uncertainty is almost zero, while in the second case, with a probability of success of 80%, 

the uncertainty is much higher. This difference is due to the fact that the definition given, as 

mentioned, concerns only the repeatability of the result and not its accuracy. Therefore, it is a value 

that decreases as the repetition of the result increases. The approach presented is very different from 

the classic approach, where uncertainty is seen as a measure of the dispersion of the data with respect 

to the true value. 

The fundamental point to understand is that the probability that statistical data is completely random 

and the estimate of its random component (dispersion around the true value) are two parameters that 

are only partially dependent on each other. The first decreases as the number of repetitions of the 

measurement increases, the second does not and this is one of the reasons, why the traditional 

definition of uncertainty, in many cases, is not significant with regard to the repeatability of the result. 

The problem, as we have seen in the examples, is that there is always a greater or lesser probability 

that a purely random process generates the result. In this case, any analysis turns out to be wrong, for 

this reason, this value is considered the true uncertainty of the statistical result. 

 

Calculation of the uncertainty of the statistical data 

   

Correctly calculating the probability of getting an equal or better result randomly involves changing 

our approach to statistics. The approach commonly used in statistics is to consider the data produced 
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by one method independent of the data produced by different methods. This way of proceeding seems 

the only possible one but, as we will show in the following paradox, it leads to an illogical result, 

which is instead solved by considering the data as non-independent. 

We think to have a computer with enormous computational capacity that is used to develop 

hypotheses about a phenomenon that we want to study. The computer works as follows: it creates a 

random hypothesis and then performs a statistical test. At this point, we ask ourselves the following 

question: can there be a useful statistical test to evaluate the results of the hypothesis generated? 

If we answer yes, we get an illogical result because our computer would always be able, by 

generating a large number of random hypotheses, to find a hypothesis that passes the statistical test. 

In this way, we arrive at the absurd conclusion that it is possible to create knowledge randomly, 

because it is enough to have a very powerful computer and a statistical test to understand every 

phenomenon. 

If we answer no, we get another illogical result because we are saying that no hypothesis can be 

evaluated. In practice, the results of different hypotheses are all equivalent and indistinguishable. 

How can we solve this logical paradox? The only way to answer the question, without obtaining an 

illogical situation, is to consider the results obtained from different methods depending on each other. 

A function that meets this condition is the probability of getting an equal or better result at random. 

Indeed, the calculation of this probability implies the random simulation of all the actions performed. 

Hence, random attempts increase the number of actions performed and consequently increase the 

probability of obtaining an equal or better result randomly. For this reason, generating random 

hypotheses is useless, and therefore if you use this parameter, as a measure of uncertainty, it is 

possible to evaluate the data and at the same time it is impossible to create knowledge by generating 

random hypotheses. 

Considering the statistical data as non-independent is a fundamental condition for correctly 

calculating the uncertainty. The probability of getting an equal or better result at random meets this 

condition. 

The dependence of statistical data on each other has profound implications in statistics, which will 

be discussed in the next section. 

 

Consequences of the non-independence of the statistical data  

   

Considering the statistical data dependent on each other in the calculation of uncertainty leads to 

three fundamental consequences in statistics. 

First fundamental consequence of the non-independence of the statistical data: our every random 

action always involves an increase in the uncertainty of the statistical data. 

Example: We need to analyze a statistical datum represented by 10 predictions about an event that 

can only have two results. The 10 predictions are divided into 8 successes and 2 failures. To calculate 

the probability of obtaining an equal or better result randomly we use the binomial distribution and 

we get the following value 5.5%. If before making these 10 predictions, we tested a different 

hypothesis with which we made 10 other predictions divided into 5 successes and 5 failures, the 

uncertainty of our result changes. Indeed, in this case, we must calculate the probability of obtaining 

a result with a number of successes greater than or equal to 8 by performing two random attempts 

consisting of 10 predictions each. In this case, the probability becomes 10.6%, so the fact of having 

first tested a random hypothesis almost doubled the uncertainty of our second hypothesis. 

Consequently, increasing the random hypotheses increases the number of predictions that we will 

have to make, with the true hypothesis, to have an acceptable uncertainty.  
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Second fundamental consequence of the non-independence of the statistical data: every random 

action of ours and of every other person equivalent to us, always involves an increase in the 

uncertainty of the statistical data. 

By the equivalent term, we mean a person with the same reputation as us, therefore the data 

produced by equivalent people are judged with the same weight. 

Example: 10 people participate in a project whose goal is the development of an algorithm capable 

of predicting the outcome of an event that can have only two results. An external person who does 

not participate in the project but is aware of every attempt made by the participants evaluates the 

statistical data obtained. All participants make 100 predictions, 9 get a 50% chance of success, one 

gets a 65% chance of success. The uncertainty of the static data of the participant who obtains a 

probability of success of 65% is obtained by calculating the probability of obtaining a result with a 

number of successes greater than or equal to 65 by performing ten random attempts consisting of 100 

predictions each. The probability obtained, in this way, is 16% instead if he was the only participant 

in the project the probability would have been 0.18%, therefore about 100 times lower.  

Third fundamental consequence of the non-independence of the statistical data: the calculation of 

the uncertainty varies according to the information possessed. 

Example: 10 people participate in a project whose goal is the development of an algorithm capable 

of predicting the outcome of an event that can have only two results. In this case, people do not know 

the other participants and think they are the only ones participating in the project. All participants 

make 100 predictions, 9 get a 50% chance of success and one gets a 65% chance of success. The 

participant who obtains a probability of success of 65% independently calculates the uncertainty of 

the result obtained. Not knowing that other people are participating in the project, calculate the 

probability of obtaining a result with a number of successes greater than or equal to 65 by performing 

a single random attempt consisting of 100 predictions; the probability obtained is 0.18%. An external 

person who is aware of every attempt made by the participants calculates the uncertainty of the 

participant's statistical data, which obtains a probability of success of 65%. It then calculates the 

probability of obtaining a result with a number of successes greater than or equal to 65 by making ten 

random attempts consisting of 100 predictions each. The probability obtained, in this way, is 16%, a 

much higher value than the uncertainty calculated by the participant. The uncertainty value calculated 

by the external person using more information is most accurate than the uncertainty value calculated 

by the individual participant. Consequently, the uncertainty value obtained by exploiting the greatest 

number of information must always be considered, in the case of the example, the most accurate 

uncertainty is that of 16%.  

The first and second fundamental highlighting consequence of the non-independence of the 

statistical data can be redefined by highlighting the non-randomness of the action.  

First fundamental consequence of the non-independence of the statistical data: our every non-

random action always involves a decrease in the uncertainty of the statistical data. 

Second fundamental consequence of the non-independence of the statistical data: every non-random 

action of ours and of every other person equivalent to us, always involves a decrease in the uncertainty 

of the statistical data. 

 

Conclusion 

   

The traditional definition of uncertainty implies considering true, for non-homogeneous data 

dispersions, the hypothesis that the result is not completely random. We consider this assumption the 

main problem of the definition of uncertainty. Indeed, whatever the statistical data obtained, there is 
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always a possibility that they are completely random and therefore useless. 

This error stems from the fact that the definition of uncertainty was developed in an environment 

where each method had a strong deterministic component. Therefore, calculating the probability of 

obtaining an equal or better result at random might seem useless. However, when we apply statistics 

in fields such as finance, where the random component is predominant the traditional approach to 

uncertainty turns out to be unsuccessful. It fails for the simple reason that the hypothesis on which it 

is based may not be true. For this reason, we have defined the uncertainty of the statistical data as the 

probability of obtaining an equal or better result randomly. Since this definition of uncertainty is not 

linked to any hypothesis, it turns out to be universal. The correct calculation of this probability value 

implies considering the statistical data dependent on each other. This assumption, as we have shown 

through a paradox, makes the definition of uncertainty given consistent with the logical principle that 

it is not possible to create knowledge randomly.  

The non-independence of the statistical data implies that each action performed has an effect on the 

calculation of uncertainty. The interesting aspect is that a dependence is also created between actions 

performed by different people. Consequently, the calculation of uncertainty depends on the 

information in our possession, so it becomes something relative that can be determined absolutely 

only with complete knowledge of the information.  
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A Modern Approach to the Fundamental Problem of Causal 

Inference  

 
Andrea Berdondini 

 

 ABSTRACT: The fundamental problem of causal inference defines the impossibility of associating a 

causal link to a correlation, in other words: correlation does not prove causality. This problem can be 

understood from two points of view: experimental and statistical. The experimental approach tells us that 

this problem arises from the impossibility of simultaneously observing an event both in the presence and 

absence of a hypothesis. The statistical approach, on the other hand, suggests that this problem stems from 

the error of treating tested hypotheses as independent of each other. Modern statistics tends to place greater 

emphasis on the statistical approach because, compared to the experimental point of view, it also shows us 

a way to solve the problem. Indeed, when testing many hypotheses, a composite hypothesis is constructed 

that tends to cover the entire solution space. Consequently, the composite hypothesis can be fitted to any 

data set by generating a random correlation. Furthermore, the probability that the correlation is random is 

equal to the probability of obtaining the same result by generating an equivalent number of random 

hypotheses.  

 

Introduction 
 

The fundamental problem of causal inference defines the impossibility of associating causality 

with a correlation; in other words, correlation does not prove causality. This problem can be 

understood from two perspectives: experimental and statistical. The experimental approach 

suggests that this problem arises from the impossibility of observing an event both in the presence 

and absence of a hypothesis simultaneously. The statistical approach, on the other hand, suggests 

that this problem stems from the error of treating tested hypotheses as independent of each other. 

Modern statistics tends to place greater emphasis on the statistical approach, as it, unlike the 

experimental approach, also provides a path to solving the problem. Indeed, when testing many 

hypotheses, a composite hypothesis is constructed that tends to cover the entire solution space. 

Consequently, the composite hypothesis can fit any data series, thereby generating a correlation 

that does not imply causality. 

Furthermore, the probability that the correlation is random is equal to the probability of obtaining 

the same result by generating an equivalent number of random hypotheses. Regarding this topic, 

we will see that the key point, in calculating this probability value, is to consider hypotheses as 

dependent on all other previously tested hypotheses. 

Considering the hypothesis as non-independent has fundamental implications in statistical 

analysis. In fact, every random action we take is not only useless but will increase the 

probability of a random correlation. For this reason, in the following article [1], we highlight the 

importance of acting consciously in statistics. 

Moreover, calculating the probability that the correlation is random is only possible if all prior 

attempts are known. In practice, calculating this probability is very difficult because not only do 

we need to consider all our attempts, but we also need to consider the attempts made by everyone 

else performing the same task. In fact, a group of people belonging to a research network all having 
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the same reputation and all working on the same problem can be considered with a single person 

who performs all the attempts made. From a practical point of view, we are almost always in the 

situation where this parameter is underestimated because it is very difficult to know all the 

hypotheses tested. Consequently, the calculation of the probability that a correlation is casual 

becomes something relative that depends on the information we have.  

 

The Fundamental Problem of Causal Inference 

   

The fundamental problem of causal inference [2] defines the impossibility of associating causality 

with a correlation, in other words: correlation does not prove causality. From a statistical point of 

view, this indeterminacy arises from the error of considering the tested hypotheses as independent of 

each other. When a series of hypotheses is generated, a composite hypothesis is formed that tends to 

fit any data series, leading to purely random correlations. 

For example, you can find amusing correlations between very different events on the internet; these 

correlations are obviously random. These examples are often used to demonstrate the fundamental 

problem of causal inference. In presenting this data, the following information is always omitted: 

how many hypotheses did I consider before finding a related hypothesis.  

This is essential information because if I have a database comprising a very high number of events, 

for any data series, there will always be a hypothesis that correlates well with my data. Thus, if I 

generate a large number of random hypotheses, I will almost certainly find a hypothesis that correlates 

with the data I am studying. Therefore, having a probability of about 100% of being able to obtain 

the same result randomly, I have a probability of about 100% that the correlation does not also imply 

causation.  

On the other hand, if we generate a single hypothesis that correlates well with the data, in this 

situation, almost certainly, the correlation also implies causation. This is because the probability of 

obtaining a good correlation by generating a single random hypothesis is almost zero. 

This result is also intuitive, because it is possible to achieve a good correlation with a single attempt 

only if one has knowledge of the process that generated the data to be analyzed. And it is precisely 

this knowledge that also determines a causal constraint. 

Figure 1 summarizes the basic concepts showing how the correct way to proceed is to consider the 

hypotheses as non-independent. 
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Figure 1: shows that the correct way is to consider the generated hypotheses as non-independent. In this way, one develops the 
awareness that by generating many hypotheses one creates a composite hypothesis capable of generating random correlations. 

 

Calculating the probability that the correlation is random 

   

Correctly calculating the probability of getting an equal or better result randomly involves changing 

our approach to statistics. The approach commonly used in statistics is to consider the data produced 

by one method independent of the data produced by different methods. This way of proceeding seems 

the only possible one but, as we will show in the following paradox, it leads to an illogical result, 

which is instead solved by considering the data as non-independent. 

We think to have a computer with enormous computational capacity that is used to develop 

hypotheses about a phenomenon that we want to study. The computer works as follows: it creates a 

random hypothesis and then performs a statistical test. At this point, we ask ourselves the following 

question: can there be a useful statistical test to evaluate the results of the hypothesis generated?  

If we answer yes, we get an illogical result because our computer would always be able, by 

generating a large number of random hypotheses, to find a hypothesis that passes the statistical test. 

In this way, we arrive at the absurd conclusion that it is possible to create knowledge randomly, 

because it is enough to have a very powerful computer and a statistical test to understand every 

phenomenon. 

If we answer no, we get another illogical result because we are saying that no hypothesis can be 

evaluated. In practice, the results of different hypotheses are all equivalent and indistinguishable. 

How can we solve this logical paradox? The only way to answer the question, without obtaining an 

illogical situation, is to consider the results obtained from different methods depending on each other. 

A function that meets this condition is the probability of getting an equal or better result at random. 

Indeed, the calculation of this probability implies the random simulation of all the actions performed. 

Hence, random attempts increase the number of actions performed and consequently increase the 
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probability of obtaining an equal or better result randomly.  

For this reason, generating random hypotheses is useless, and therefore if you use this parameter, it 

is possible to evaluate the data and at the same time it is impossible to create knowledge by generating 

random hypotheses. Considering the hypothesis as non-independent is a fundamental condition for 

correctly calculating of the probability that the correlation is random. The probability of getting an 

equal or better result at random meets this condition. 

The dependence of hypothesis on each other has profound implications in statistics, which will be 

discussed in the next section. 

 

Consequences of the non-independence of the hypothesis 

   

Consider the tested hypotheses to be dependent on each other when calculating the probability that 

the correlation is causal leads to three fundamental consequences in statistics. 

First fundamental consequence of the non-independence of the hypothesis: our every random action 

always involves an increase in the probability of a random correlation. 

Example: We need to analyze a statistical datum represented by 10 predictions about an event that 

can only have two results. The 10 predictions are divided into 8 successes and 2 failures. To calculate 

the probability of obtaining an equal or better result randomly we use the binomial distribution and 

we get the following value 5.5%. If before making these 10 predictions, we tested a different 

hypothesis with which we made 10 other predictions divided into 5 successes and 5 failures, the 

uncertainty of our result changes. Indeed, in this case, we must calculate the probability of obtaining 

a result with a number of successes greater than or equal to 8 by performing two random attempts 

consisting of 10 predictions each. In this case, the probability becomes 10.6%, so the fact of having 

first tested a random hypothesis almost doubled the probability of a random correlation of our second 

hypothesis. Consequently, increasing the random hypotheses increases the number of predictions that 

we will have to make, with the true hypothesis, to have a low probability that the correlation is 

coincidental.  

Second fundamental consequence of the non-independence of the hypothesis: every random action 

of ours and of every other person equivalent to us, always involves an increase of the probability that 

the correlation is random. 

By the equivalent term, we mean a person with the same reputation as us, therefore the data 

produced by equivalent people are judged with the same weight. 

Example: 10 people participate in a project whose goal is the development of an algorithm capable 

of predicting the outcome of an event that can have only two results. An external person who does 

not participate in the project but is aware of every attempt made by the participants evaluates the 

statistical data obtained. All participants make 100 predictions, 9 get a 50% chance of success, one 

gets a 65% chance of success. The probability that a 65% success is due to a random correlation is 

obtained by calculating the probability of obtaining a result with a number of successes greater than 

or equal to 65 by performing ten random attempts consisting of 100 predictions each. The probability 

obtained, in this way, is 16% instead if he was the only participant in the project the probability would 

have been 0.18%, therefore about 100 times lower.  

Third fundamental consequence of the non-independence of the hypothesis: the calculation the 

probability that the correlation is random varies according to the information possessed. 

Example: 10 people participate in a project whose goal is the development of an algorithm capable 

of predicting the outcome of an event that can have only two results. In this case, people do not know 
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the other participants and think they are the only ones participating in the project. All participants 

make 100 predictions, 9 get a 50% chance of success and one gets a 65% chance of success. The 

participant who obtains a probability of success of 65% independently calculate the probability that 

the correlation is coincidental. Not knowing that other people are participating in the project, calculate 

the probability of obtaining a result with a number of successes greater than or equal to 65 by 

performing a single random attempt consisting of 100 predictions; the probability obtained is 0.18%. 

An external person who is aware of every attempt made by the participants  calculate the probability 

that the 65% success rate of one of the participants was due to a random correlation. knowing the 

number of participants in the project calculates the probability of obtaining a result with a number of 

successes greater than or equal to 65 by making ten random attempts consisting of 100 predictions 

each. The probability obtained, in this way, is 16%, a much higher value than the probability 

calculated by the participant. The probability calculated by the external person using more 

information is most accurate than the probability calculated by the individual participant. 

Consequently, the probability obtained by exploiting the greatest number of information must always 

be considered, in the case of the example, the probability that the 65% success is due to a random 

correlation is 16%. Therefore, the participant having less information underestimates this probability. 

The first and second fundamental highlighting consequence of the non-independence of the 

hypothesis can be redefined by highlighting the non-randomness of the action.  

First fundamental consequence of the non-independence of the hypothesis: our every non-random 

action always involves a reduction in the probability that the correlation is random. 

Second fundamental consequence of the non-independence of the hypothesis: every non-random 

action of ours and of every other person equivalent to us, always involves a reduction in the 

probability that the correlation is random. 

 

How to perform correctly the statistical hypothesis test  

 

About to perform correctly the statistical hypothesis test, It is interesting to note how the non-

independence of the hypothesis can be seen as something extremely obvious or as something 

extremely innovative. Indeed, it may seem absolutely banal to consider all the hypotheses that have 

been tested, for the obvious reason that by running a large number of random hypotheses sooner or 

later there will be some hypothesis that will fit the data quite well. On the other hand, also considering 

the previous hypotheses represents a revolution in the evaluation of a hypothesis. In fact, from this 

point of view, the mere knowledge of the hypothesis that makes the prediction does not allow us to 

define its real complexity. Therefore, if in the statistical hypothesis test the p-value [3], [4], used as a 

threshold to reject the null hypothesis, is calculated considering only the hypothesis that actively 

participates in the prediction, it means, that we are underestimating the complexity of the hypothesis. 

Consequently, the p-value, thus calculated, is wrong and therefore determines a false evaluation of 

the hypothesis. It is therefore believed that this systematic error, in the execution of the hypothesis 

test, is responsible for the high number of non-reproducible results [5], [6].  

 

Taking advantage of these considerations it is understood that evaluating a statistical result can be 

very difficult because some information can be hidden. For example, we are obliged to report the 

mathematical formula that makes the prediction but, instead, we may not report all previous failed 

attempts. Unfortunately, this information is essential for evaluating the hypothesis, because they are 

an integral part of the hypothesis. Indeed, if we test 10 hypotheses, we simply interpolate the data 

with those ten hypotheses and choose the hypothesis that passes the chosen evaluation test. This 

problem also depends on the increasing use of statistical software capable of quickly executing 
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a huge number of mathematical models. Consequently, there is the risk of "playing" with this 

software by performing a multitude of analyzes and this sooner or later leads to a random correlation. 

For these reasons, the evaluation of statistical results represents one of the most important challenges 

for scientific research.  

 

Unfortunately, it is a difficult problem to solve because, as mentioned, some information can always 

be hidden when writing an article. The simplest solution adopted is to use more selective evaluation 

parameters, which in practice means making it unlikely to pass the evaluation test by developing 

random hypotheses. However, this solution has a big problem: by acting in this way there is the risk 

of discarding a correct hypotheses and cannot be applied to all fields of research. For example, in 

finance where the possible inefficiencies of the markets [7], which can be observed, are minimal, 

adopting very restrictive valuation methods means having to discard almost any hypothesis. 

 

Conclusion 

 

In this article, we analyzed the fundamental problem of causal inference from a statistical 

perspective. From this point of view, the problem arises from treating all tested hypotheses as 

independent of each other. This way of acting is wrong because when we generate a series of 

hypotheses we are building a composite hypothesis that will tend to adapt and therefore give a random 

correlation to each of our series of data. It is believed that this incorrect approach is the cause of 

the problem of non-reproducibility of scientific results. Moreover, the increase in computational 

capacity speeds up hypothesis development, inadvertently creating composite hypotheses that can 

lead to random correlations.  

The probability that a correlation is random is obtained by calculating the probability of obtaining 

an equal or better result randomly. This calculation can be done, correctly, only by knowing all the 

hypotheses tested, unfortunately this information is very difficult to have. 

For this reason, in modern statistics it is considered fundamental to develop the awareness that each 

of our compulsive and irrational actions, which leads us to develop and test a large quantity of 

hypotheses, has as a consequence the generation of random correlations that are difficult to detect. 
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The information paradox  

Andrea Berdondini 

ABSTRACT: The following paradox is based on the consideration that the value of a statistical datum does 

not represent useful information but becomes useful information only when it is possible to prove that it 

was not obtained in a random way. In practice, the probability of obtaining the same result randomly must 

be very low in order to consider the result useful. It follows that the value of a statistical datum is something 

absolute, but its evaluation in order to understand whether it is useful or not is something relative depending 

on the actions that have been performed. Consequently, a situation such as the one described in this paradox 

can occur, wherein in one case it is practically certain that the statistical datum is useful, instead of in the 

other case the statistical datum turns out to be completely devoid of value. This paradox wants to bring 

attention to the importance of the procedure used to extract statistical information. Indeed, the way in which 

we act affects the probability of obtaining the same result in a random way and consequently on the 

evaluation of the statistical parameter. 

The information paradox  

We have two identical universes, in both universes the same person is present, that we will 

call John, he must perform the exact same task which is to analyze a database in order to extract 

useful correlations. As we have said the universes are equal, so the databases are identical and 

the person who has to do the work is the same.  The database that needs to be analyzed consists 

of a million parameters related to an event to be studied. 

 

In the universe "1”, John acts as follows: he takes the whole database and calculates the 

correlation of the parameters with the event to be studied. From this analysis he finds 50 

parameters with a high correlation with the event, the correlation found has a chance to happen 

randomly of 0.005%. Of these 50 parameters, John identifies 10 that according to his experience 

can be useful in order to study the event. However it is important to point out that the assumptions 

made by John, on the 10 parameters, are only hypotheses based on his experience, they are not 

scientific demonstrations that explain precisely the correlation of the 10 parameters with the 

event. 

 

In the universe "2", John acts in the following way: before analyzing the entire database he 

uses his knowledge of the event in order to select 10 parameters, that he believes are most 

correlated with the event, from the million parameters available. However, also in this case, it is 

important to point out that the assumptions made by John, on the 10 parameters, are only 

hypotheses based on his experience, they are not scientific demonstrations that explain precisely 

the correlation of the 10 parameters with the event. Analyzing only these 10 parameters, he finds 

5 of them with a high correlation with the event, the correlation found has a chance to happen 

randomly of 0.005% (as in the previous case). 

 

In practice, the fundamental difference in the analysis method that John does in the two 

universes is that: in the first universe John uses his own experience after performing statistical 

analysis on the whole database, instead in the second universe, John uses his experience before 

to perform the statistical analysis in order to reduce the size of the database. 
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Now let us see how this different approach affects the evaluation of the data obtained. To do 

this, we must calculate the probability of obtaining the same results randomly in the two cases. 

 

In the first case, universe "1", in order to calculate the probability of obtaining the same results 

in a random way we must use the binomial distribution formula with the following parameters: 

 

probability of victory (p) = probability of getting the same correlation randomly 

 

number of successes (k) = number of parameters that present the correlation considered 

 

number of tests (L) = total number of parameters present in the database 

 

By entering these data within the binomial distribution formula: 

𝐹(𝑘, 𝐿, 𝑝) = (
𝐿
𝑘

) 𝑝𝑘(1 − 𝑝)𝐿−𝑘  

p = 0.005% 

k = 50 

L = 1 Million 

We get a probability of 5.6% as a result. 

  

Now let's consider the second case, the universe "2", even in this situation, in order to calculate 

the probability of obtaining the same results in a random way we must use the binomial 

distribution formula with the following parameters: 

p = 0.005% 

k = 5 

L = 10 

The probability obtained in this case is 7.9 ∙ 10−18 %. 
 

Analyzing these results it is easy to understand that a percentage of 5.6% makes the 

correlations found not significant. In order to understand how high this percentage is, we can 

also calculate the probability of obtaining, in a random way, more than 50 of parameters with 

the correlation considered, this probability is 46%. 

 

Now we analyze the percentage of the second case (7.9 ∙ 10−18 %) this percentage is 

extremely low, consequently we are practically certain that the correlation found is not random 

and therefore this result represents a useful information for studying the event. 

 

At this point, John must to decide whether to implement the correlations found or not. 

Obviously, exploiting the correlations found implies costs, therefore a wrong evaluation involves 

a high risk. In the universe “1” John is in a difficult situation, in fact the work done is not only 

useless but also dangerous because it can lead him to sustain wrong investments. Instead, in the 

second universe John knows that the probability that the correlation is random is almost zero, so 
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he can invest with an acceptable risk. 

 

In conclusion, a simple procedural error has led to enormous consequences. In the first case 

the experience of john is useless, instead in the second case it was a key resource in order to 

extract useful information from a big database. 

 

In fact, in the case of the universe “1”, John can no longer use his own knowledge and the 

only thing he can do is transform his hypotheses into real scientific demonstrations, but in many 

situations, as in the financial field, doing it can be very difficult. Consequently, when hypotheses 

are made after having carried out an analysis, these hypotheses risk being conditioned by the 

results and therefore lose value. Instead, the hypotheses made before the analysis are not 

conditioned and the analysis of the data is used in order to verify them in a statistical way, as 

happened in the universe “2”. 

 

One of the fields where it is fundamental to calculate the probability of obtaining the same 

data in a random way, as a method of evaluating the correlations detected, is the financial one 

[1], [2]. 

Conclusion 

In this article we have used a paradox to explain how a statistical datum does not represent a 

useful information, it becomes a useful information, to study an event, only when it is possible 

to prove that the probability that it was obtained in a random way is very low. This consideration 

makes the application of statistics, as a method of evaluating a hypothesis, a "relativistic" 

science. In fact, as described in the paradox, the calculation of the probability of obtaining the 

same result in a random way is something of relative that depend from the method used and from 

the actions performed. 

 

These considerations have a great impact from an experimental point of view, because they 

teach us the importance of correct planning, in which we must always implement all the 

knowledge about the event we want to study. It is also essential keep track of all the operations 

performed on the data, because this information is necessary in order to calculate correctly the 

probability of obtaining the same results in a random way. 

 

This way of interpreting statistical data is also very useful for understanding the phenomenon 

of overfitting, a very important issue in data analysis [3], [4]. The overfitting seen from this point 

of view is simply the direct consequence of considering the statistical parameters, and therefore 

the results obtained, as a useful information without checking  that them was not obtained in a 

random way. Therefore, in order to estimate the presence of overfitting we have to use the 

algorithm on a database equivalent to the real one but with randomly generated values, repeating 

this operation many times we can estimate the probability of obtaining equal or better results in 

a random way. If this probability is high, we are most likely in an overfitting situation. For 

example, the probability that a fourth-degree polynomial has a correlation of 1 with 5 random 

points on a plane is 100%, so this correlation is useless and we are in an overfitting situation. 

 

This approach can also be applied to the St Petersburg paradox [5], in fact also in this case 
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the expectation gain is a statistical datum that must be evaluated before being used at the 

decisional level. In fact, the difficulty in solving the paradox stems from the fact of considering 

a statistical datum always as a useful information. Analyzing the expectation gain it is possible 

to proof that we can obtain better result, randomly, with a probability that tends asymptotically 

to 50%. Consequently, the expectation gain that tends to infinity turns out to be a statistic data 

without value that cannot be used for decision-making purposes. 

 

This way of thinking gives an explanation to the logical principle of Occam's razor, in which 

it is advisable to choose the simplest solution among the available solutions. In fact, for example, 

if we want to analyze some points on a plane with a polynomial, increasing the degree increases 

the probability that a given correlation can occur randomly. For example, given 24 points on a 

plane, a second degree polynomial has a 50% probability of randomly having a correlation 

greater than 0.27, instead a fourth degree polynomial has a probability of 84% of having a 

correlation greater than 0.27 randomly. Therefore, the value of the correlation is an absolute 

datum but its validity to study a set of data is something relative that depends on the method 

used. Consequently the simpler methods, being less parameterized, have a lower probability of 

a randomly correlation, so they are preferred over the complex methods. 
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Use of the fundamental problem of statistics to define the validity limit 

of Occam's razor principle  

Andrea Berdondini 

ABSTRACT: In statistics, to evaluate the significance of a result, one of the most used methods is the 

statistical hypothesis test. Using this theory, the fundamental problem of statistics can be expressed as 

follows: "A statistical data does not represent useful information, but becomes useful information only 

when it is shown that it was not obtained randomly". Consequently, according to this point of view, among 

the hypotheses that perform the same prediction, we must choose the result that has a lower probability of 

being produced randomly. Therefore, the fundamental aspect of this approach is to calculate correctly this 

probability value. This problem is addressed by redefining what is meant by hypothesis. The traditional 

approach considers the hypothesis as the set of rules that actively participate in the forecast. Instead, we 

consider as hypotheses the sum of all the hypotheses made, also considering the hypotheses preceding the 

one used. Therefore, each time a prediction is made, our hypothesis increases in complexity and 

consequently increases its ability to adapt to a random data set. In this way, the complexity of a hypothesis 

can be precisely determined only if all previous attempts are known. Consequently, Occam's razor principle 

no longer has a general value, but its application depends on the information we have on the tested 

hypotheses.  

Introduction 

The logical principle of Occam's razor [1], [2], suggests choosing the simplest hypothesis 

among those available. In this article, we will analyze this principle using the theory of statistical 

hypothesis test [3], [4]. By exploiting this theory, we will reformulate the fundamental problem 

of statistics in such a way as to bring attention to the link between the statistical data and the 

probability that it was produced randomly. Consequently, according to this point of view, among 

the hypotheses that perform the same prediction, we must choose the result that has a lower 

probability of being produced randomly. Therefore, it becomes essential to calculate this 

probability value correctly.  

 

This problem is addressed by redefining what is meant by hypothesis. The traditional 

approach considers the hypothesis as the set of rules that actively participate in the forecast. 

Instead, we consider as hypotheses the sum of all the hypotheses made, also considering the 

hypotheses preceding the one used. Therefore, each time a prediction is made, our hypothesis 

increases in complexity and consequently increases its ability to adapt to a random data set. In 

this way, the complexity of a hypothesis can be precisely determined only if all previous attempts 

are known. Consequently, Occam's razor principle no longer has a general value, but its 

application depends on the information we have on the tested hypotheses.  

 

Finally, we use this new definition of hypothesis to understand the reason for the high 

percentage of non-reproducible results, in which the hypothesis test was used.  

The fundamental problem of statistics  

In statistics, to evaluate the significance of a result, one of the most used methods is the 

statistical hypothesis test. Using this theory, the fundamental problem of statistics can be 
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expressed as follows: "A statistical data does not represent useful information, but becomes 

useful information only when it is shown that it was not obtained randomly". 

 

This definition is particularly significant, because it highlights the two fundamental aspects 

of statistics, which are its uncertainty and the reason for its uncertainty. Indeed, the purpose of 

statistics is the study of phenomena in conditions of uncertainty or non-determinism by 

exploiting the sampling of events related to the phenomenon to be studied. Knowing that the 

observed events can be randomly reproduced with a probability that will never be zero, we 

understand the reason for the indeterminism that characterizes the statistics. This probability 

value is called universal probability [5]. 

 

Through this definition of the fundamental problem of statistics, it is also possible to 

formulate the following paradox [6], which highlights how the evaluation of statistical results is 

dependent on each action performed on the analyzed data. 

The validity limit of Occam's razor principle  

In this paragraph, we will see how the information regarding the development of a hypothesis 

is fundamental to define the validity limit of Occam's razor principle. 

Let us start by giving some definitions useful to formalize our theory. 

Given an experiment that measures N values of a discrete variable X with cardinality C, we 

call D the set of dimension 𝐶𝑁, which includes all possible sequences 𝑋𝑁 of length N that can 

be observed. 

Now, we redefine the concept of hypothesis in order to define a chronological succession 

among the tested hypothesis. 

We call H(t) the hypothesis developed at time t. 

We call PH(t) the set of sequences 𝑋𝑁 ∈ 𝐷 that the hypothesis H(t) is able to predict. 

We call NPH(t) the cardinality of the set PH(t). 

We call TH(t) the set that includes all the hypotheses up to time t. 

 𝑇𝐻(𝑡) = {𝐻(𝑖1), 𝐻(𝑖2), … … , 𝐻(𝑖𝑡)}  

We call TPH(t) the union of all the sets PH(t) relating to all the hypotheses H(t) ∈ TH(t). 

𝑇𝑃𝐻(𝑡) = ⋃ 𝑃𝐻(𝑖)

𝑡

𝑖=0

 

We call NTPH(t) the cardinality of the set TPH(t). Consequently, NTPH(T) defines the 

number of sequences, belonging to D, that the hypothesis TH(t) is able to predict. It may happen 

that different hypotheses forecast the same sequence of values of X, having made the union of 

the sets PH(t) these sequences are calculated only once. 

If we have only made a hypothesis H(t)=TH(t) and NPH(t)=NTPH(t). 
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If, on the other hand, more than one hypothesis has been tested H(t)≠TH(t) and 

NPH(t)≤NTPH(t). 

We define the ability of the hypothesis TH(t) to predict a sequence of N casual observations 

of the i.i.d. random variable X with discrete uniform distribution and cardinality C, the ratio: 

 
𝑁𝑇𝑃𝐻(𝑡)

𝐶𝑁
                                                                                                                                   (1) 

This ratio also defines the probability that the hypothesis TH(t) can predict the results of an 

experiment, in which the cardinality of D is equal to 𝐶𝑁, in a completely random way. 

Knowing that a hypothesis TH(t) can predict the results of an experiment only in the following 

two conditions: 

1) TH(t) is true.  

2) TH(t) is false and the prediction occurs randomly; the probability of this event is given by 

equation (1). 

Under these conditions, the probability that the hypothesis TH(t) is true turns out to be: 

1 −
𝑁𝑇𝑃𝐻(𝑡)

𝐶𝑁
                                                                                                                           (2) 

Consequently, this equation defines the parameter that must be used in the evaluation of H(t). 

So, if we want to compare two hypotheses H1(t) and H2(t), we have 4 possible results: 

1) NPH1(t)>NPH2(t) and NTPH1(t)>NTPH2(t)  

2) NPH1(t)>NPH2(t) and NTPH1(t)<NTPH2(t)  

3) NPH1(t)<NPH2(t) and NTPH1(t)<NTPH2(t)  

4) NPH1(t)<NPH2(t) and NTPH1(t)>NTPH2(t)  

NPH(t) and NTPH(t) define the number of sequences that hypothesis H(t) and the hypothesis 

TH(t) are able to predict. Consequently, they can be used as a measure of their complexity, in 

fact, the more complex a hypothesis is, the greater the number of results it can predict. 

Analyzing the four possible results, we note that even if a hypothesis H1(t) is less complex 

than a hypothesis H2(t) (NPH1(t)<NPH2(t)), it is possible to have a  hypothesis TH1(t) more 

complex than a hypothesis TH2(t) (NTPH1(t)>NTPH2(t)). Consequently, using equation (2) as 

an evaluation method, hypothesis H1(t) should be discarded in favor of hypothesis H2(t). This 

situation can happen, for example, if H1(t) is the last hypothesis of a long series of other 

hypotheses tested previously. 

In the event that there is no information on the hypotheses to be evaluated, it must be assumed 

that the hypotheses have been developed under the same conditions. Therefore, in this case, not 

being able to calculate TH(t), it is recommended to choose the simpler hypothesis H(t). 

Finally, from equation (2), we can deduce the following result: given a hypothesis H(t) the 

probability that is true can be calculated only if all the previously tested hypotheses are known. 
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Consequently, the complexity of a hypothesis not only depends on the mathematical formula 

that makes the prediction, but also depends on all the attempts made previously. Therefore, 

Occam's razor principle does not have an absolute value but its application depends on the 

information about the hypotheses.  

How to perform correctly the statistical hypothesis test  

It is interesting to note how the definition of hypothesis, which was given in the previous 

paragraph, can be seen as something extremely obvious or as something extremely innovative. 

Indeed, it may seem absolutely banal to consider all the hypotheses that have been tested, for the 

obvious reason that by running a large number of random hypotheses sooner or later there will 

be some hypothesis that will fit the data quite well. On the other hand, also considering the 

previous hypotheses represents a revolution in the evaluation of a hypothesis. In fact, from this 

point of view, the mere knowledge of the hypothesis that makes the prediction does not allow us 

to define its real complexity.  

 

Therefore, if in the statistical hypothesis test the p-value [7], [8], used as a threshold to reject 

the null hypothesis, is calculated considering only the hypothesis that actively participates in the 

prediction, it means, that we are underestimating the complexity of the hypothesis. 

Consequently, the p-value, thus calculated, is wrong and therefore determines a false evaluation 

of the hypothesis. It is therefore believed that this systematic error, in the execution of the 

hypothesis test, is responsible for the high number of non-reproducible results [9], [10]. 

 

Taking advantage of these considerations it is understood that evaluating a statistical result 

can be very difficult because some information can be hidden. For example, we are obliged to 

report the mathematical formula that makes the prediction but, instead, we may not report all 

previous failed attempts. Unfortunately, this information is essential for evaluating the 

hypothesis, because they are an integral part of the hypothesis. Indeed, if we test 10 hypotheses, 

we simply interpolate the data with those ten hypotheses and choose the hypothesis that passes 

the chosen evaluation test. 

 

This problem also depends on the increasing use of statistical software capable of quickly 

executing a huge number of mathematical models. Consequently, there is the risk of "playing" 

with this software by performing a multitude of analyzes and this sooner or later leads to a 

random correlation.  

 

For these reasons, the evaluation of statistical results represents one of the most important 

challenges for scientific research. Unfortunately, it is a difficult problem to solve because, as 

mentioned, some information can always be hidden when writing an article. The simplest 

solution adopted is to use more selective evaluation parameters, which in practice means making 

it unlikely to pass the evaluation test by developing random hypotheses. However, this solution 

has different problems in fact, in this way, we can discard correct hypotheses and cannot be 

applied to all fields of research. For example, in finance where the possible inefficiencies of the 

markets [11], which can be observed, are minimal, adopting very restrictive valuation methods 

means having to discard almost any hypothesis. 
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Conclusion 

In this article, we have discussed the logical principle of Occam's razor using the hypothesis 

test theory. This allowed us to reformulate the fundamental problem of statistics, in such a way 

as to make us understand the importance of correctly calculating the probability of obtaining the 

same results randomly. Solving this problem involved redefining the concept of hypothesis. 

According to this point of view, by hypothesis we mean the sum of all tested hypotheses.  

Consequently, the complexity of a hypothesis not only depends on the mathematical formula that 

makes the prediction but also depends on the previous hypotheses tested.  

 

Therefore, according to this approach, the logical principle of Occam's razor no longer has a 

general value if one considers as a hypothesis only the set of rules that actively participate in the 

prediction. If, on the other hand, the hypothesis is considered as the sum of all the tested 

hypotheses, in this case, Occam's razor principle returns to have a general value. 

 

Finally, it is noted that not considering all the tested hypotheses causes a systematic error in 

the application of the statistical hypothesis test. Therefore, it is hypothesized that this error, 

which leads to underestimate the complexity of a hypothesis, is the cause of the high percentage 

of non-reproducible scientific results. 

References 

[1] Roger Ariew, “Ockham's Razor: A Historical and Philosophical Analysis of Ockham's Principle of 

Parsimony”, 1976. 

[2] Sober, Elliott (2004). "What is the Problem of Simplicity?". In Zellner, Arnold; Keuzenkamp, Hugo A.; 

McAleer, Michael (eds.). Simplicity, Inference and Modeling: Keeping it Sophisticatedly Simple. 

Cambridge, U.K.: Cambridge University Press. pp. 13–31. ISBN 978-0-521-80361-8. Retrieved 4 August 

2012ISBN 0-511-00748-5 (eBook [Adobe Reader]) paper as pdf. 

[3] Fisher, R (1955). "Statistical Methods and Scientific Induction" (PDF). Journal of the Royal Statistical 

Society, Series B. 17 (1): 69–78. 

[4] Borror, Connie M. (2009). "Statistical decision making". The Certified Quality Engineer Handbook (3rd 

ed.). Milwaukee, WI: ASQ Quality Press. pp. 418–472. ISBN 978-0-873-89745-7. 

[5] Cristian S. Calude (2002). “Information and Randomness: An Algorithmic Perspective”, second edition. 

Springer. ISBN 3-540-43466-6. 

[6] Berdondini Andrea, “The Information Paradox”, (July 8, 2019). Available at SSRN: 

https://ssrn.com/abstract=3416559.  

[7] Wasserstein, Ronald L.; Lazar, Nicole A. (7 March 2016). "The ASA's Statement on p-Values: Context, 

Process, and Purpose". The American Statistician. 70 (2): 129–133. doi:10.1080/00031305.2016.1154108. 

[8] Hung, H.M.J.; O'Neill, R.T.; Bauer, P.; Kohne, K. (1997). "The behavior of the p-value when the alternative 

hypothesis is true". Biometrics (Submitted manuscript). 53 (1): 11–22.  

[9] Munafò, M., Nosek, B., Bishop, D. et al. “A manifesto for reproducible science”. Nat Hum Behav 1, 0021 

(2017). https://doi.org/10.1038/s41562-016-0021. 

[10] Ioannidis, J. P. A. “Why most published research findings are false”. PLoS Med. 2, e124 (2005). 

[11] Black, F. (1971) “Random Walk and Portfolio Management,” Financial Analyst Journal, 27, 16-22. 



27 
 

Resolution of the St. Petersburg paradox using Von Mises’ axiom of 

randomness  

Andrea Berdondini 

ABSTRACT: In this article we will propose a completely new point of view for solving one of the most 

important paradoxes concerning game theory. The method used derives from the study of non-ergodic 

systems. This circumstance may create a dependency between results that are often extremely difficult to 

detect and quantify, such as in the field of finance. Consequently, the expected gain obtained from data that 

may be correlated has a statistical value that is difficult to determine, thus it cannot be used for decision-

making purposes. Therefore, in this scenario, an alternative parameter to be use during the decision-making 

process must be found. The solution develop shifts the focus from the result to the strategy’s ability to 

operate in a cognitive way by exploiting useful information about the system. In order to determine from a 

mathematical point of view if a strategy is cognitive, we use Von Mises' axiom of randomness. Based on 

this axiom, the knowledge of useful information consequently generates results that cannot be reproduced 

randomly. Useful information in this case may be seen as a significant datum for the recipient, for their 

present or future decision-making process. In conclusion, the infinite behaviour in this paradox may be seen 

as an element capable of rendering the expected gain unusable for decision-making purposes. As a result, 

we are forced to face the problem by employing a different point of view. In order to do this we shift the 

focus from the result to the strategy’s ability to operate in a cognitive way by exploiting useful information 

about the system. Finally, by resolving the paradox from this new point of view, we will demonstrate that 

an expected gain that tends toward infinity is not always a consequence of a cognitive and non-random 

strategy. Therefore, this result leads us to define a hierarchy of values in decision-making, where the 

cognitive aspect, whose statistical consequence is a divergence from random behaviour, turns out to be 

more important than the expected gain. 

Introduction 

The St. Petersburg paradox represents one of the most important paradoxes in game theory. 

The classic solution used to solve uses special utility functions that implement the concept of 

marginal utility [1], [2], [3]. This type of approach has been strongly criticized in virtue of the 

fact that utility functions attempt to formalize sociological behaviour from a mathematical point 

of view, and this is why they always have a subjectivity component. Moreover, many studies of 

behavioural economics [4], [5] highlight how people’s behaviour is often irrational. 

Consequently, the resolution of this paradox still represents an open challenge and, as we will 

see, the search for an alternative solution may help us improve the decision-making process 

during the evaluation of a strategy. 

 In order to understand the method proposed in this article for resolving the St. Petersburg 

paradox, we must first explain the origins of this method. This approach was developed to study 

the strategies operating on non-ergodic systems. In particular, the primary field of application is 

characterized by the study of quantitative trading algorithms operating on financial markets. The 

non-ergodicity condition can make the results dependent on each other. Therefore, in this 

scenario a dependency is created between data which, like in the field of finance, is difficult to 

detect and quantify. 

 To explain to you the possible consequences at a decision-making level of this condition, I 

propose the following example: think about making a hundred bets on a hundred flips of a coin 

and winning one hundred times. In this case, you will have obtained a hundred victories 

independent of each other to which a very high-expected gain will be associated. You therefore 

reach the right conclusion that the strategy used to predict the flip of the coin is most likely 
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correct. Now let's change the starting scenario and let's say we make 100 equal bets on a single 

coin flip, getting a hundred wins. Obviously, since the bets are completely dependent on each 

other, in this case they cannot be used to calculate the expected gain. In fact, it’s basically as if 

we made a single bet. Now let’s imagine, as a third and last scenario, that you are not able to see 

the person flipping the coin: if we win all the hundred times, we don’t know if they are dependent 

or independent of each other. This third scenario generates a very important decision-making 

problem, because if I consider the results as independent and they are not, I risk overestimating 

the strategy. This wrong assessment can lead me to make the irrational choice of using a useless 

strategy. In finance the non-independence of the results creates a statistical phenomenon called 

clustering. This statistical characteristic determines the formation of groups of high returns, 

alternating with groups of low returns. In other words, it means that returns are not distributed 

evenly but tend to cluster together. The clustering phenomenon has disastrous effects in finance, 

because when you are going through winning phases you are led to consider the operations 

carried out as independent of each other. This implies that the expected gain, calculated from 

data that we mistakenly think to be independent, is overestimated, therefore the evaluation of the 

strategy will also be incorrect. So, this behaviour can subject us to unexpected risk. With regards 

to this topic we have developed a paradox [6], which we have called “the professional trader’s 

paradox”. The name derives from the fact that we are inclined to consider that our operations are 

always independent, and therefore, when we face a series of winning bets, we tend to 

overestimate the strategy used. 

 

 In conclusion, the expected gain, obtained from data that may not be independent, cannot be 

used for decision-making purposes, as it has a statistical value that is difficult to determine. 

Therefore, from this example we understand that there are situations, like in non-ergodic 

systems, where the expected gain is no longer a reliable parameter. Consequently, we can think 

that other situations may exist, like in the case of the infinite behaviour of this paradox, where 

the expected gain is a datum that cannot be used in decision-making. 

 We begin to understand that the problem in resolving the St. Petersburg paradox may derive 

from considering the expected gain, and its variants (utility functions), as the only possible point 

of view in the evaluation of a strategy. So, the question we have to ask ourselves is: is there a 

parameter that is better than the expected gain? 

 The answer we give to this question is focused on being able to understand, from a statistical 

point of view, if a strategy operates in a cognitive way by exploiting useful information present 

on the system. The useful information in this case can be seen as a datum subject to analysis that 

rendered it significant to the recipient for their present or future decision-making process. To 

determine mathematically if a strategy is cognitive, in the sense just described, we exploit the 

Von Mises' axiom of randomness. The axiom defines the statistical characteristic that must have 

a sequence in order to be considered random. The axiom is the following: "the essential 

requirement for a sequence to be defined as random consists in the complete absence of any rules 

that may be successfully applied to improve predictions about the next number ". 

 The meaning of this axiom is the following: when we understand a set of rules to which a 

numerical sequence is subject we can obtain results, intended as forecasts on the next number of 

the sequence, whose probability of being reproduced randomly tends toward zero on increasing 

the number of forecasts made. 

 Consequently, the results obtained with a game strategy that implements information useful 

to improve our probability of winning, generates results that cannot be reproduced randomly. 

Basically, the probability of obtaining better results with a random strategy compared to a 
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cognitive strategy, which implements useful information, tends toward zero as the number of 

predictions made increases. 

This axiom is indeed a statistical method for evaluating the results obtained, without taking 

into consideration the absolute value of the expected gain. In fact, this method is based solely on 

the fact of being able to discriminate whether the results were obtained with a random strategy 

or through a cognitive strategy that implements a set of rules to which the system is subject. 

 In this way we obtain a fundamental result in analysing the strategies of a particular class of 

zero-sum games, where there is a balance between the participants. Balance means the situation 

where none of the players has an implicit advantage over the others. The famous mathematician 

Daniel Bernoulli defined this particular class of games as: “mathematically fair game of chance”. 

This type of game plays a particularly important role in game theory, because it represents a 

very frequent situation in various fields of interest such as finance. 

 

 If we analyse the results obtained by repeating the game of chance described in the St. 

Petersburg paradox a large number of times, in the next paragraph we will demonstrate that better 

profits can be obtained with a probability that tends toward 50% by using a random strategy. In 

practice, the results of a purely random game strategy tend to be distributed symmetrically with 

respect to the expected theoretical gain derived from the strategy described in the paradox. This 

result indicates that the doubling-down strategy after each lost bet does not exploit any kind of 

useful information, and therefore it is a completely non-cognitive game method. Consequently, 

by taking the cognitive aspect as a parameter to be used in decision-making, and having 

demonstrated the complete absence within the strategy, we are able to solve the paradox by 

proving the irrationality of the game method.  

 

 In this article, we want to introduce the cognitive aspect, understood in the sense of acting in 

a non-random way by exploiting useful information about the system, as a fundamental element 

for improving the decisions theory. In fact, this paradox is useful to make us understand that the 

knowledge of useful information about the system, capable of increasing our probability of 

victory, always involves an increase of the expected gain. However, the opposite is not true: an 

expected gain that tends to infinity does not imply that the strategy exploits knowledge about the 

system and therefore is cognitive and not random. Consequently, a hierarchy of values is created, 

where the cognitive aspect is more important than the expected gain for decision-making 

purposes.  

Resolution of the St. Petersburg paradox 

In this paragraph, we will solve the St. Petersburg paradox by demonstrating that the 

doubling-down strategy after each lost bet is a non-cognitive strategy, which implements no 

useful information that can be used to improve the probability of success.  

In order to do this we have to define the random strategy, which we will use to calculate the 

probability of obtaining better results than those obtained with the gambling method defined in 

the paradox. In fact, as mentioned in the previous paragraph, this probability should tend to zero 

if the strategy being evaluated is a cognitive strategy that implements useful information. Firstly, 

we define some parameters that are fundamental to characterize our random strategy of 

reference. 

The first parameter we need is the expected value EV of the game obtained by using the 
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doubling-down strategy after each bet lost. Given a number of flips equal to L, with a 50% 

probability of winning and placing the value of the first bet equal to 1, we have: 

𝐸𝑉 =
𝐿

2
 

The second parameter is the average bet AB. By carrying out L bets of Bn value, we have: 

𝐴𝐵 =
(𝐵1 + 𝐵2 … + 𝐵𝐿)

𝐿
 

Knowing that the first bet B1 is equal to 1, and double downing after every bet lost and 

returning to value 1 when we win the bet, we have: 

𝐴𝐵 = ∑
(𝐿 − 𝑛 + 1)2𝑛−1

2𝑛𝐿

𝐿

𝑛=2

+ 1 

𝐴𝐵 = ∑
(𝐿 − 𝑛 + 1)

2𝐿

𝐿

𝑛=2

+ 1 

𝐴𝐵 =
𝐿(𝐿 − 1)

2

1

2𝐿
+ 1 

𝐴𝐵 =
𝐿 − 1

4
+ 1 

At this point the random game strategy will be defined as follows: given a number of flips 

equal to L, L bets of AB constant value will be made, randomly choosing whether to bet heads 

or tails on each bet. To calculate whether a strategy of this type can obtain better results compared 

to the expected value EV of the strategy of the paradox, just use the binomial distribution 

formula.  

𝐹(𝑘, 𝐿, 𝑝) = (
𝐿
𝑘

) 𝑝𝑘(1 − 𝑝)𝐿−𝑘  

P = probability of winning 

K = number of wins 

L = number of tosses 

By using the binomial distribution formula, given a value of L, we can obtain the probability 

of achieving better results with the random strategy described above. The results for the L values 

ranging from 10 to 200 are shown in Figure 1. Looking at the figure, we see how the probability 

tends asymptotically toward 50%. Therefore, we have a 50% chance of getting better or worse 

results. Basically, the strategy described in the paradox tends asymptotically toward a random 

strategy. Consequently, the doubling-down strategy turns out to be a strategy that does not 

implement useful information for improving our likelihood of victory. Thus, using the cognitive 

aspect as a method of evaluation has proven the irrationality of the strategy. 

 

 We use very similar approaches, where the strategy being evaluated is compared with an 

equivalent random strategy, in the financial field to analyse the results generated by a trading 
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strategy [7], [8]. 

 

 

FIG. 1: Probability of obtaining better results with a random strategy, given a number of L 

tosses ranging from 10 to 200. 

Conclusion 

In this article we use the St. Petersburg paradox to introduce a parameter related to the 

cognitive aspect of a strategy, as a fundamental element to help our decision-making in all those 

situations where the expected gain turns out to be an unreliable parameter. This approach was 

developed by studying non-ergodic systems. In this scenario the results can be non-independent, 

so the expected gain becomes a parameter with a statistical value that is difficult to determine. 

Therefore, it cannot be used in decision-making and a new parameter needs to be found. The 

parameter chosen is related to the strategy’s ability to operate in a cognitive way (the cognitive 

term indicates the strategy’s ability to operate in a non-random way by exploiting useful 

information about the system, capable of making us increase the probability of victory). 

  

 To determine mathematically if a strategy is cognitive, we used the von Mises' axiom of 

randomness. Based on this axiom, strategies that implement useful information about the system 

generate results that cannot be reproduced randomly. Thus, we compared the paradox strategy 

with a completely random but equivalent strategy from the point of view of the total betting 

value. From this comparison, we have demonstrated that the random strategy gets better results 

with a probability that tends toward 50% as the number of tosses increases. Basically, the strategy 
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tends to converge to a random strategy instead of diverging as we would expect from a cognitive 

strategy. In fact, if a strategy implements useful information on the system, the probability of 

randomly obtaining better results tends toward zero. This result indicates that the doubling-down 

strategy after each lost bet is not a cognitive strategy that exploits useful information about the 

system, and therefore by taking the cognitive aspect as an evaluation parameter we have solved 

the paradox. 

 

 In conclusion, the St. Petersburg paradox teaches us that an expected gain that tends toward 

infinity does not always imply the presence of a cognitive and non-random strategy. Thus 

knowledge, meaning the exploitation of useful information capable of making us increase the 

probability of victory, always implies an increase in the expected gain, but the opposite is not 

true; an expected gain that tends toward infinity can also be obtained in the absence of knowledge 

about the system. Consequently, from the decision-making aspect we can create a hierarchy of 

values, where knowledge is more important than the expected gain. In fact, the expectation of 

victory can be difficult to estimate as in the case of non-ergodic systems or be a non-useful data 

if the developed strategy has a high degree of overfitting. In all these cases the calculation of the 

probability of obtaining the same results randomly becomes a much more reliable parameter, 

since this datum is influenced only by the real knowledge we have of the system and not by the 

noise. In fact, a statistical datum does not represent a useful information, but becomes a useful 

information only when it is possible to proof that it was not obtained in a random way. In practice, 

the probability of obtaining the same result randomly must be very low in order to consider the 

result useful. 
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Statistics the science of awareness  

Andrea Berdondini 

ABSTRACT: The uncertainty of the statistical data is determined by the value of the probability of 

obtaining an equal or better result randomly. Since this probability depends on all the actions performed, 

two fundamental results can be deduced. Each of our random and therefore unnecessary actions always 

involves an increase in the uncertainty of the phenomenon to which the statistical data refers. Each of our 

non-random actions always involves a decrease in the uncertainty of the phenomenon to which the 

statistical data refers.   

Introduction 

This article proves the following sentence: 

"The only thing that cannot be created randomly is knowledge" 

A true story of a true coincidence  

Ann is a researcher, is a clever and beautiful researcher, one day she decides to do the following 

experiment: she wants to understand if she has some special abilities that allow her to extract the 

number 1 from a bag containing one hundred different numbers mixed in a random way. 

Day 1, Ann takes the bag and randomly pulls out a number. The drawn number is not 1, so she 

failed, the drawn number is put back into the bag. 

Day 2, Ann takes the bag and randomly pulls out a number. The drawn number is not 1, so she 

failed, the drawn number is put back into the bag. 

…………… 

…………… 

The days pass and Ann fails every attempt but continues his experiment.  

…………… 

…………… 

Day 100, Ann takes the bag and randomly pulls out a number. The number drawn is 1, so she is 

successful. The probability of finding number 1 by performing a random extraction is 1/100; this 

value represents an acceptable error that makes the result significant to support the hypothesis that 

the extraction is non-random. But Ann knows that this probability does not represent the uncertainty 

of her success, because this value does not take into account previous attempts. Therefore, she 

calculates the probability of randomly extracting the number 1, at least once, in a hundred attempts. 

The probability value thus calculated is 63%, since this value is very high, she cannot consider the 

success obtained as significant statistical data to support the hypothesis that the extraction is non-

random.  

Ann concludes the experiment and deduces, from the results obtained, that she has no special 

ability and the extractions are all random.  

 

John is a data scientist, one day he is entrusted with the following task: he has to develop an 

algorithm capable of predicting the result of an experiment whose result is determined by a value 

from 1 to 100. 
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 Day 1, an incredible coincidence begins, at the same time that Ann pulls a number John tests his 

own algorithm. The number generated by the algorithm does not coincide with the result of the 

experiment, so he failed. 

Day 2, the incredible coincidence continues, at the same time that Ann pulls a number John tests 

a new algorithm. The number generated by the algorithm does not coincide with the result of the 

experiment, so he failed. 

…………… 

…………… 

The days pass, the coincidence continues and John fails every attempt. 

…………… 

…………… 

Day 100, the incredible coincidence continues, at the same time that Ann pulls a number John 

tests his new algorithm. The number generated by the algorithm coincides with the result of the 

experiment, so he is successful. The probability of predicting the result of the experiment by running 

a random algorithm is 1/100; this value represents an acceptable error that makes the result 

significant to support the hypothesis that the algorithm used is non-random. 

For this reason, John writes an article in which presents the result obtained. The article is 

accepted, John is thirty years old and this is his hundredth article. 

Awareness breeds awareness  

We call "researcher" a person who knows only his own attempts regarding the study of a certain 

phenomenon. 

We call "reviewer" a person who does not actively participate in the study of a particular 

phenomenon but knows every single attempt made by each researcher. 

Researcher 1: develops an algorithm that obtains the result R1 with respect to a phenomenon F. 

The probability of getting a result equal to or better than R1 in a random way is 1%.  

Researcher 2: develops an algorithm that obtains the result R2 with respect to a phenomenon F. 

The probability of getting a result equal to or better than R2 in a random way is 1%.  

Reviewer: defines a new result RT= R1∩R2. The probability of getting a result equal to or better 

than RT in a random way is 0.01%. Consequently, the uncertainty of the result RT is 0.01%.  

The absence of awareness reduces awareness  

We call "researcher" a person who knows only his own attempts regarding the study of a certain 

phenomenon. 

We call "reviewer" a person who does not actively participate in the study of a particular 

phenomenon but knows every single attempt made by each researcher. 

Researcher 1: develops an algorithm that obtains the result R1 with respect to a phenomenon F. 

The probability of getting a result equal to or better than R1 in a random way is 1%.  

Researcher 2: develops an algorithm that obtains the result R2 with respect to a phenomenon F. 

The probability of getting a result equal to or better than R2 in a random way is 100%.  

Reviewer: defines a new result RT= R1∩R2. The probability of getting a result equal to or better 

than RT in a random way is 2%. Consequently, the uncertainty of the result RT is 2%. 
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Quantitative trading 
 

In this chapter, we will apply the statistical concepts discussed previously in the development of 

a quantitative trading system. 

  

The first article “Description of a method of econophysics as a technique for verifying a financial 

strategy” deals with all the fundamental topics in the development of a quantitative trading system. 

Indeed, in addition to evaluating a trading strategy, this article also talks about many other aspects, 

such as the development of control methods on a running strategy. 

 

The successive articles concern the non-ergodicity of the financial markets. In this situation, the 

data can be non-independent, so their statistical significance is difficult to define. Under these 

conditions, the risk associated with a trading algorithm is defined by its ability to predict the 

evolution of the system. Whenever a correct forecast is made on an evolution of the system, this 

forecast generates data that is independent of the previous data. From a statistical point of view, the 

independence of the data determines a lower probability of obtaining an equal or better result 

randomly. Consequently, this probability value is indicative of the number of correctly predicted 

system evolutions. As we have seen in the statistics articles, this parameter also represents the 

uncertainty of the statistical data. 

 

In the last article, the Binomial evolution function is described, the purpose of which is to define 

a simple method to evaluate a trading algorithm. This function applies all the concepts described 

previously, allowing us to understand whether our trading algorithm is operating randomly or 

deterministically. 
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Description of a methodology from Econophysics as a verification 

technique for a financial strategy 

 
Andrea Berdondini 

 

 ABSTRACT.  In this article, I would like to draw attention to a method inspired by the analysis of stochastic models 

typical of quantum physics, and to utilise it to test a financial strategy. We start from the principal question asked by 

anyone involved in financial investments: Are the results obtained due to a correct interpretation of the market, or are 

they merely fortuitous? This is a plain question and it can be given an equally clear answer. The results obtained are 

due to a correct interpretation of the market if the probability of obtaining equal or better results randomly is very 

small (i.e. tends to zero as the number of times the strategy is used increases). 

 

Description of the methodology  
    

   The logic underlying this method is very simple in essence: it consists in calculating the 

probability of obtaining the same results randomly. As we will see in the examples below, this 

technique is applied not only to results from a trial phase: it is also applied as a control method 

when the strategy is used on a real trading account. 

   In what follows, I present a short logical proof of the soundness of this method. The term 

‘soundness’ was introduced by the famous mathematician David Hilbert and is used to indicate the 

absence of any contradiction within a mathematical logical proof. Indeed, contradiction is one of 

the main defects of methods of analysis based on equity line (performance) assessment. 

   The short demonstration I’m going to outline is based on two fundamental axioms: 

1) Whenever we understand any kind of deterministic market process, the probability of our 

financial operation being successful increases by more than 50% (Von Mises’ axiom of disorder 

from the early 1920s). 

2) The probability of randomly obtaining a result that has been obtained through cognitive 

awareness of a deterministic market process tends to zero as the number of times the strategy is 

used increases. 

   The first axiom is derived from the famous “axiom of randomness” (or the ‘principle of the 

impossibility of a gambling system’) formulated by the mathematician Von Mises, whose original 

definition I quote: “the essential requirement for a sequence to be defined as random consists in the 

complete absence of any rules that may be successfully applied to improve predictions about the 

next number”. 

   As a consequence of the two axioms given above, any correct market analysis will always tend 

to increase the probability of our prediction beyond the 50% mean, and this results in a consequent 

decrease in the probability of obtaining the same result randomly. 

   I will demonstrate this to you with a simple example. Suppose we are playing heads or tails with 

a rigged coin that gives us an above-50% probability of winning (let’s say it’s 60%). What is the 

probability of losing out after 10 coin tosses? Approximately 16.6% ...and after 50 tosses? 

Approximately 5.7% ...and after 100 tosses? Approximately 1.7%. As you can see, the probability 
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tends to zero, and here the rigged coin represents a financial strategy that is implementing a correct 

market analysis. 

   By basing our method of assessment specifically on the calculation of this probability, we develop 

a method that is by definition free of contradictions. The absolute value of the probability turns out 

to be a sound estimate of the validity of our strategy. 

   The term ‘deterministic process’ which I used during the proof refers to the utilisation of a correct 

financial strategy, definable as the identification of a deterministic and non-random component that 

regulates the system we are studying (in our case, a financial market). 

   Methods based on studying the equity line may produce a positive outcome and at the same time 

have a 50% probability of obtaining the same amount of profit by chance. In this way, such methods 

lead to a contradiction, given that obtaining the same outcome randomly implies the absence of a 

cognitive process, which is just what is meant by assuming a “correct interpretation of the market”. 

  These kind of methods are often based on the market stationary hypothesis (ergodic hypothesis). 

This hypothesis is considered by many experts not correct, on this topic have been written many 

articles the most famous is that written by the Nobel prize for physics Gell-Mann [1], two other 

interesting articles on this topic are [2], [3]. 

   Figure 1 shows an equity line obtained with a purely random strategy. The algorithm is defined as 

follows: Each day you toss a coin to decide whether to open a buy position on the Nasdaq Index. 

The interval time chosen is from 1 January 2016 to 31 July 2017. If the position is opened, you toss 

another coin the next day to decide whether to close it or leave it open. As you can appreciate, this 

strategy functions in a completely inane and random way. Nevertheless, the equity line achieved is 

satisfactory: indeed, if we calculate the probability of obtaining an equivalent or better result 

randomly, we get a probability of approximately 50%. We therefore know that the result is void of 

significance, in spite of the equity line. 

   To conclude, it follows that the parameter to be linked to the validity of a financial strategy is not 

its performance but its statistical property of generating non-reproducible results in a random way. 
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Figure 1: shows the equity line of a purely random trading system in which operations are opened and closed by simulating the toss 
of a coin. 

 

 

Description of the techniques used in operational practice of this verification method 
 

   How does one calculate the probability of randomly generating an equivalent or better 

performance? There are two ways: the first (and more precise) is to estimate this probability using 

the Monte Carlo method. The accuracy of this method is linked to the number of times we carry out 

the simulation. Its strength is the ability to obtain very precise values: its drawback is due mainly to 

the long calculation times required to obtain the estimate of probability. 

   The second method (which I have identified) uses exact formulae taken from statistics; each 

formula is applied to a particular class of random variables. Unfortunately, financial operations do 

not fall under any type within this class of variables. This problem is solved by applying a transform 

to the financial operations, which renders them suitable for the chosen analytical formula. 

   This transform adds an error to the calculation of our probability, but it has the advantage of being 

calculable in one single equation and therefore without requiring massive computational resources, 

as do the Monte Carlo methods. 

 

 

Use of the method as a control parameter of a strategy 

 
   This method is utilised not just during the test phase, but is also extremely useful as a way of 

monitoring the trading system. Each time we carry out an operation, we update the probability value 

for obtaining that result randomly. We do not calculate this probability across the whole sample of 

operations conducted, but extrapolate it from to the N most recent operations. The optimal value for 
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N depends on the strategy, and in particular on the frequency with which operations are conducted 

over time. Once N has been set, we calculate our probability and compare it with a probability we 

have established that represents the level of risk we take to be acceptable (this definition of risk will 

be explained in a separate section). If the probability value exceeds the parameter set by us, the 

trading system locks itself and continues trading in virtual mode only. When the probability falls 

below the threshold parameter we have set, the trading system resumes actual trading. In this way, 

trades are effected only when the market is understood, and the trading system is blocked when we 

are operating in a regime considered to be random. 

   This method is much more efficient than the usual performance-based methodologies; such 

methods carry the risk of allowing themselves to incur unnecessary losses. It may happen with this 

method that the strategy is blocked even when trading at a profit, given that a random regime has a 

50% probability of success. 

   Having said this, obviously a trading system will have its internal performance controls, but their 

purpose is purely to monitor for possible system crashes or any programming bugs. 

   What we have described thus far can be fine-tuned. A characteristic of all good quantitative trading 

systems is to be capable of operating even at high frequencies while leaving unchanged the logical 

schema on which the trading system is based. This enables us to run a trading system solely as a 

method of monitoring (hence in virtual mode), at a very high frequency of operations, and to obtain 

thereby a much more numerous statistical sample in less time, increasing the reactivity of our method 

of control. 

 Use of the method to in the process of developing a financial strategy 

    

  This approach has another great merit, which is to help us direct our research in the right direction. 

Let us assume we develop two strategies: 

1) The first has profits on a historic series of 10% annuities, but with a very high probability of 

obtaining the same results randomly; 

2) a second, instead, has low profits of 1%, but with an extremely low probability of obtaining the 

same results randomly. 

   It is perfectly obvious that, if we follow the theory we have expounded, we will discard the first 

strategy, as there is a very high probability that the 10% profit has been obtained by mere chance. 

The second strategy yields low profits but the low probability value obtained means we are on the 

right track for understanding a deterministic and non-random market process (which, if studied more 

closely, could lead to more profitable financial strategies). 

   If we had not applied this method, we might have thought that the first strategy (with higher gains) 

was the right one. But this would have been at risk of losing money over the medium to long term. 

We would have ended by discarding the second strategy and missing an opportunity to study and 

understand something important we had sensed about the market. 

 

Example of the use of this methodology 

 

      I report the following practical example; the figure shows the trend of a hypothetical stock. The 

value of this stock on a thousand time intervals rises one unit 60% of the time and goes down by one 

unit 40% of the time. In order to simplify the calculations the price movement is unitary. Now let us 

look at two strategies that execute 500 trades, each trade lasts an interval of time. The first strategy 
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execute only buys  and in order to choose when to buy, flips a coin, if it win opens a trades if loses 

it waits for the next unit of time and repeats the operation. The second strategy, on the other hand, 

is a strategy that sells only, but does not do it in a random way, it uses information that allows it a 

10% advantage in determining the drops of the value stock. 

   The first strategy gets a profit of 100 by winning 60% of trades. Now we calculate the probability 

of obtaining a better result in a random way, to do this we use the binomial cumulative distribution 

function with the following parameters: 

p = 60% (probability of win) 

k > 300 (number of wins) 

L = 500 (total number of tests) 

   The probability of victory is 60% because in the graph shown the value of the stock rises by one 

unit 60% of the time and goes down by one unit 40% of the time. 

   Using these data, we get a probability to get better results randomly of the 48.3%. 

   Now let us consider the second strategy, this strategy has a total result of zero in practice it 

performs 250 winning trades and 250 losing trades (the 10% advantage allows it to increase the 

probability of victory from 40% to 50%). Also in this case, we calculate the probability of obtaining 

better results randomly, to do this we use the formula of the binomial cumulative distribution 

function with the following parameters: 

p = 40% 

k > 250 

L = 500 

   Using these data, we get a probability to get better results randomly of the 2.5 ∙ 10−4 %.  

 

 

   Analyzing these results it is clear that the profit of 100 made by the first strategy is not significant 

and this evaluation is correct because we know that the strategy flip a coin in order to decide whether 

Figura 2: trend of a stock that rises 60% of the time and falls the remaining 40%. 
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to open a buy position. The second strategy does not make any profit but such a low probability 

makes this result significant and even this evaluation is correct, in fact we know that this strategy 

implements useful information that allows it to increase the probability of victory by 10%. 

   What would have happened if we had used the competition evaluation method? We will have 

discarded the second strategy and reward the first strategy, a completely random strategy. Where is 

the error? The error derives from considering result as an always useful element for future profits 

instead the fundamental element to be winning is to be able to understand the rules to which a system 

is subject, in this case the financial market. This knowledge allows us to act in a non-random way 

and this feature can be detected only if we calculate the probability of obtaining better results at 

random. 

 

A new definition of risk 
 

   There are many definitions of risk in the financial field: risk is in any case seen as the probability 

(uncertainty) of incurring a given loss. If we recall the statistical example given above of tossing the 

rigged coin, we can see how risk is intimately linked to our understanding of the market and as such 

how it tends to zero the more times we repeat the statistical experiment described above.  

   The value of this probability can never be zero: think, for example, of the actions we perform in 

our daily lives, actions that all have a certain level of risk – understood as the probability of bringing 

about a negative event. We take these actions into consideration nevertheless, because we know that 

the risk associated with them is so low as to be statistically acceptable – for example the risks 

associated with travelling by plane. 

   It therefore becomes extremely important to implement methods that evaluate the validity of our 

strategy in a sound way, so that we can estimate risk and plan the investment correctly. 

 

Conclusion 
   

  In this article, I wanted to draw your attention to a different way of viewing the performance of a 

trading system, a way that is not bound to its absolute value, but linked to one of its statistical 

properties. As I demonstrated in the first section, this involves well defined behaviours when we 

operate with cognitive awareness on the market. The approach is a fundamental one because it 

recognises the high likelihood of being successful on financial markets, even over long periods, in a 

completely random way. Let’s not forget that financial markets have only two possible directions. 

This implies that, even fortuitously, there is a 50% chance of making the right choice. Furthermore, 

such trends can continue for years. Therefore, it is crucial to look away from the profit line and to 

appreciate in a rigorous and scientific way whether our strategies are the product of chance or of a 

true understanding of the market. One thus trades only if one understands the market, thereby actually 

reducing the element of fortuitousness. Investing in this way has nothing to do with chance but 

becomes cognitively aware and more secure. 

   Gambling is defined as follows: 

“The gaming activity in which profit is sought after and in which winning or losing occurs 

predominately by chance, skill being of negligible importance” 

   From this definition, it follows that if the element of fortuitousness is not factored into the 

investment decision-making process, it is never possible to prove that money invested is free of 
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exposure to chance, and therefore to uncontrolled risk. The calculation of probability illustrated 

above therefore becomes an essential and irreplaceable requirement for bringing investment out of 

the area of gambling, making it more cognitively aware, and therefore less risky. 
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The professional trader’s paradox  

 
Andrea Berdondini 

 

 ABSTRACT: In this article, I will present a paradox whose purpose is to draw your attention to an important topic in 

finance, concerning the non-independence of the financial returns (non-ergodic hypothesis). In this paradox, we have 

two people sitting at a table separated by a black sheet so that they cannot see each other and are playing the following 

game: the person we call A flip a coin and the person we'll call B tries to guess the outcome of the coin flip. At the end 

of the game, both people are asked to estimate the compound probability of the result obtained. The two people give 

two different answers, one estimates the events as independent and the other one considers the events as dependent, 

therefore they calculate the conditional probability differently. This paradox show how the erroneous estimation of 

conditional probability implies a strong distortion of the forecasting skill, that can lead us to bear excessive risks. 

 

The professional trader’s paradox 
 

   In order to explain how much danger is considering the financial returns as independent, I want 

to present to you this paradox. We have two people sitting at a table separated by a black sheet so 

that they cannot see each other and are playing the following game: the person we call A flip a coin 

and the person we'll call B tries to guess the outcome of the coin toss. This game lasts an arbitrary 

time interval and the person A has the freedom to choose how many tosses to make during the 

chosen time interval, the person B does not see the coin toss but can at any time, within the time 

interval, make a bet. When he makes a bet if he guesses the state the coin is in now, he wins. The 

person A decides to make a single coin flip (just at the beginning of the game) we say that the result 

is head, the person B decides within the same time interval to make two equal bets, betting both 

times on the exit of the head. The result is that B made two winning bets. 

 Now we ask ourselves this question: what is the correct compound probability associated with the 

result of this game? Let us ask this question to the person B who answers: every time I had bet I 

could choose between head and cross so I had a 50% chance of winning the bet; I won two bets so 

the compound probability is  0.5 ∙ 0.5 = 25%. Now let us say the same question to A the person 

who flip the coin, he replies: the probability is 50% I have flip the coin only one time within the 

defined time interval, so its prediction probability cannot be higher at 50%. The fact that the other 

player has made two bets has in practice only divided a bet in two is a bit 'as if to the racecourse 

we are made two distinct bets on the same horse on the same race, this way of acting does not 

increase the forecasting skill. Both answers seem more than reasonable, but as every mathematical 

paradox, the two answers contradict each other. At this point, will you ask yourself which of the 

two answers is correct?  

 We can resolve this paradox using the mathematical formula of the compound probability: 

P(E1 ∩ E2) = P(E1 | E2) P(E2) = P(E2 | E1) P(E1). 

 The probability that both events (E1, E2) occur is equal to the probability that E1 occurs P(E1) 

multiplied by the conditional probability of E2 given E1, P(E2 | E1). 

 Seeing the formula, we immediately understand that the difference in response given by A and B 

is due to the different estimation of conditional probability P(E2 | E1). Person B estimates the 
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conditional probability in this way P(E2 | E1) = P(E2) treating the events as completely 

independent, while person A estimates the conditional probability in this other way P(E2 | E1) = 1 

treating the events as completely dependent. 

 Which of the two answers is correct? The right answer is given by the person who has the 

knowledge to correctly estimate the conditional probability P(E2 | E1) and between the two players 

only the person that flip the coin can correctly estimate the conditional probability. Player B, on 

the other hand, not being able to see A that flip the coin, therefore he does not have the necessary 

information to estimate this probability correctly. Another way to understand this result can be 

found analysing the following question: what is the probability in this game of winning twice in a 

row by betting both times on the head? 

 The answer to this question is not always the same but it depends if after the first bet the person 

that flip the coin performs a new launch or not. If you make a new launch, the probability is 0.5 ∙
0.5 = 25% if instead as in the case of this paradox no further coin flip is performed the probability 

is 50%. So, in order to answer correctly, you need to know the number of launch made and this 

information is knows only from the person (A) that perform the coin flip and he's the only one can 

be correctly calculate the conditional probability. 

 If we bring this paradox on the financial markets, we understand that player A represent the 

financial instruments and player B represent the traders who try to beat the market. This gives us 

an extremely important result: all the traders make the same mistake, doing the same thing that 

player B did in this paradox. They consider their trades as completely independent of each other 

and this involves as we have seen, a strong distortion of the forecasting skill that can lead the traders 

to acquiring a false security that may lead them to bear excessive risks. 

 Player B, like the traders, think that the statistical information about his forecasting skill depends 

on his choice (I choose head instead of cross, I buy instead of selling) this is a big mistake because 

this statement is true only when these kinds of bets are independent of each other. In practice, this 

statement is true only when I place a bet by event in this case, the results are independent of each 

other and therefore these bets have a statistical meaning.  

 The problem is that in everyday life this equivalence is always respected. Therefore, our brain 

considers this equivalence always true so when we make trading we mistakenly consider our 

operations as independent despite the statistical evidence of non-independence (non-normal 

distribution of the results). 

 

Conclusion 
   

  In this short article, I wanted to introduce one of the most important topics in finance, which 

concerns the non-independence of the results. Considering the financial returns as independent is 

equivalent to considering the financial markets stationary (ergodic hypothesis). 

 This hypothesis is considered by many experts not correct, on this topic have been written many 

articles [1], [2], [3]. What is the reason why such significant statistical evidence has been ignored, the 

main reason is the total lack of methods able to estimate the conditional probability P (A | B). 

 In my previous article [4] I have explained an innovative method used in order to evaluate a financial 

strategy under the condition of the market non-stationary hypothesis (non-ergodic hypothesis). This 

approach is based on the axiom of disorder (von Mises), this mathematical axiom applied on financial 

markets can be enunciated in this way: 
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"Whenever we understand any kind of deterministic market process, the probability of our financial 

operation being successful increases by more than 50%" (Von Mises’ axiom of disorder from the 

early 1920s). 

 As a consequence of this axiom given above, any correct market analysis will always tend to increase 

the probability of our prediction beyond the 50% mean, and this results in a consequent decrease in 

the probability of obtaining the same result randomly. To conclude, it follows that the parameter to 

be linked to the validity of a financial strategy, is not its performance but its statistical property of 

generating non-reproducible results in a random way. 

   I will demonstrate this to you with a simple example. Suppose we are playing heads or tails with a 

rigged coin that gives us an above-50% probability of winning (let’s say it’s 60%). What is the 

probability of losing out after 10 coin tosses? Approximately 16.6% ...and after 50 tosses? 

Approximately 5.7% ...and after 100 tosses? Approximately 1.7%. As you can see, the probability 

tends to zero, and here the rigged coin represents a financial strategy that is implementing a correct 

market analysis. 

 Now we return to the paradox that I exposed and we note how the presence of a dependence between 

the first and the second bet has modified the conditional probability of the second one from 0.5 to 1. 

This increase of the conditional probability has the consequence that the result of the second bet can 

be obtained randomly. 

 In fact, if we move the second bet randomly within the time interval from the first bet to the second 

one, the result is always the same because the player who flip the coin (player A) does not execute 

other coin tosses in this time interval. Consequently, the second bet cannot be considered to evaluate 

the forecast skill. Therefore, considering a system not stationary involves a reduction of the number 

of events to be considered for a statistical evaluation so if a data set proves to be statistically 

significant under the condition of stationarity of the system, the same data set may no longer be 

statistically significant if the system is considered non-stationary. 
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Application of the Von Mises’ axiom of randomness on the forecasts 

concerning the dynamics of a non-stationary system described by a 

numerical sequence 

 
Andrea Berdondini 

 

 ABSTRACT: In this article, we will describe the dynamics of a non-stationary system using a numerical sequence, in 

which the value of terms varies within the number of degrees of freedom of the system. This numerical sequence allows 

us to use the Von Mises’ axiom of randomness as an analysis method concerning the results obtained from the forecasts 

on the evolutions of a non-stationary system. The meaning of this axiom is as follows: when we understand a pattern 

about a numerical sequence, we obtain results, intended as forecast on the next sequence number, which cannot be 

reproduced randomly. In practice, this axiom defines a statistical method capable of understanding, if the results have 

been obtained by a random algorithm or by a cognitive algorithm that implements a pattern present in the system. This 

approach is particularly useful for analysing non-stationary systems, whose characteristic is to generate non-independent 

results and therefore not statistically significant. The most important example of a non-stationary system are financial 

markets, and for this reason, the primary application of this method is the analysis of trading strategies. 

 

Introduction 

 

 The first problem that must be faced, in order to apply the axiom of randomness of Von Mises as an 

analysis method, is to be able to describe the evolution of a system using a numerical sequence. For 

this purpose, we use a sequence in which the value of terms can change within the number of degrees 

of freedom of the system. Then we also introduce a temporal progression represented by a series of 

increasing integers. With these two sequences, we can characterize a dynamic that describes the 

evolution of the system that we are studying. In this way, we can apply the Von Mises’ axiom of 

randomness, which defines the statistical characteristic of a random sequence. The axiom is as 

follows: “the essential requirement for a sequence to be defined as random consists in the complete 

absence of any rules that may be successfully applied to improve predictions about the next number”. 

 This axiom tells us that when we understand a pattern about a numerical sequence, we can obtain 

results, intended as forecast on the next sequence number, which cannot be reproduced randomly. 

Knowing that the values of our numerical sequence represent the dynamics of a system, we have 

found a method to evaluate the results. Therefore, if the probability of obtaining equal or better results 

randomly is very small (i.e. tends to zero as the number of times the strategy is used increases), it 

means that the forecasting method uses rules present in the system. Consequently, we can use the 

developed method in order to predict the evolution of the system; this approach is fundamental in the 

study of non-stationary systems. In fact, if we are in a condition of non-stationarity, the results can 

be non-independent, the consequence of which is a reduction in their statistical value. In order to 

explain such a complex topic in a simple way, I have created a paradox [1], in which two players 

challenge each other in a game, where is possible to move from a stationary to a non-stationary 

condition by changing the rules of the game. The consequence is that the data at the beginning are 

independent, and then once the changes are made, they become dependent on each other and therefore 

useless for statistical purposes. 

 For that reason, a large number of data obtained under these conditions, can be not statistically useful 

in order to understand if the method that produced the data is not random. In this case, the performance 
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of the forecasting algorithm is no longer a reliable data; therefore we need to find a new statistical 

indicator in order to evaluate the results. In fact it happens very often in finance, that a strategy that 

despite having obtained excellent results by performing a numerous number of operations, suddenly 

stop working generating large losses, proving in this way to be a completely random strategy. There 

are many researches on the non-stationarity of the financial markets; some articles about this topic 

are [2], [3], [4], [5]. 

 

Description of the dynamics of a non-stationary system by means of a numerical 

sequence 

 

 We start by considering a non-stationary system characterized by two degrees of freedom. We made 

this choice for two reasons: first in order to simplify the treatment, second among the systems with 

two degree of freedom there are the financial markets, that represent the primary application of the 

method that we will go to expose. 

 Then we associate to this system a succession of values that can vary between 1 and 2. In practice 

when on this system there is a change in the direction in which a deterministic process is acting, we 

have the result that the value of the succession change respect to the previous term. When we speak 

of "deterministic process", we indicate a deterministic and non-random force that acts on the system. 

We also introduce the simplification that the deterministic process acts as a constant force, without 

variations in intensity in the direction of the two degrees of freedom; this allows us to characterize 

the dynamics of the system with a single numeric succession. 

 Finally, we add a temporal metric to the system; we can do this by using a series of increasing integer 

numbers, in this way every value of my succession unambiguously corresponds to a value in my 

temporal progression. 

 The result obtained is the following: we have two sequences, one that describes the direction of the 

force acting on the system F and the other one that describe the progression of the time T: 

 

F 1   1   1   1   1   1   1   2   2   2    2    2    1   1   1   1    1   1   1   2 

T 1   2   3   4   5   6   7   8   9  10  11  12  13 14 15 16 17  18 19 20 

 

 Analysing these two sequences we can note that the force (deterministic process) that acts on the 

system changes direction three time, the first at time T = 8, the second at time T = 13 and the third at 

time T = 20. Figure 1 shows the dynamics described by the two sequences; the temporal progression 

has also been included in the graph. 
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Figure 1: The dynamics of the system described by the two sequences. 

 

Application of the Von Mises’ axiom of randomness as an analysis method concerning 

the results obtained by a forecasting algorithm  

 

 At this point, we are going to apply the Von Mises’ axiom of randomness in order to evaluate the 

results obtained by a forecasting algorithm. According to the axiom, reported and analysed in the 

introduction of this article, if we have developed a non-random method that implements a pattern 

present in the system, we will be able to predict when the term of the succession varies respect the 

previous term. 

 This statement is crucial, because we are saying that only the forecasts concerning system changes 

are useful in order to understand whether the method used is random or not. In fact, if we make two 

forecasts about two terms of the succession at time 8 and 12, betting that the value of the succession 

is two, we obtain two successes. Are these two results independent of each other? This question is 

fundamental, because only if they are independents are useful for statistical purposes in order to 

evaluate the forecasting method. 

 In order to answer to this question we must use the formula of the compound probability that we 

report: 

P (E1∩E2) = P (E1 | E2) P (E2) = P (E2 | E1) P (E1)                        (1) 

 The probability that both events (E1, E2) occurs, is equal to the probability that E1 occurs P(E1), 

multiplied by the conditional probability of E2 given E1 occurs P(E2 | E1). 

 Seeing formula (1) we understand that the correct calculation of conditional probability P (E2 | E1) 

depends on whether the events are independent or not. In fact, in the case of independent events P(E2 

| E1) = P(E2), instead in the case of events completely dependent on each other P (E2 | E1) = 1 or 0. 
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 In our example the probability P(E1) = 1/8. In fact, the probability of winning in a random way 

betting that the value of the sequence within the first 8 time positions is equal to 2 is 1/8, since in the 

first seven positions the sequence has value 1 and only at the eighth position has value 2. In practice, 

we can see this value like the probability of a random draw of a marble with the value 2 from a bag 

that contains eight marbles, seven of them with the value 1 and one with the value 2. Therefore, P 

(E1) represents the probability of obtaining the same result using a random strategy. In this way, we 

are able to derive a probability from a succession of data concerning the dynamics of the system. 

 Now we try to calculate the value of P (E2); studying the time interval from the ninth position to the 

twelfth position, we see that the system remains constant. Therefore, the probability of betting 

randomly on the value 2 and win, within of this time interval, it is equal to 1. This is because all 

positions have value two, so a random strategy obtains the same result with a probability of 100%. In 

this case, we can treat the second bet as completely dependent from the first bet.  This means that we 

can consider the two bets, from the statistical point of view, like a single bet. 

 Now let's try to shift the second bet from the twelfth position to the twentieth position, in this case 

we will have P(E2) = 5/7. In fact, in the time interval from the ninth position to the twentieth position, 

there are seven values equal to 1 and five values equal to 2. With this variation in the second forecast, 

the compound probability will be equal to: 

P (E1∩E2) = P (E1) P (E2 | E1) = P (E1) P (E2) = 1/8 ∙ 5/7 = 0.089                                                 

 The two events in this case are independent of each other, so they are useful for statistical purposes 

in order to understand if the method used can predict the evolution of the system. 

 From these two examples, we can deduce the following conclusion: when we want to study a 

deterministic process, every time that it determines a change in the system, we have the possibility to 

execute a prediction on the evolution of the system, whose probability of success with a random 

strategy turns out to be minor 1. This involves a decrease in the compound probability whose 

meaning, according to the Von Mises' axiom of randomness, is to indicate the presence of a 

deterministic process that acts on the system. 

 In practice, whenever that a deterministic process changes the system status, we can detect it by 

making a prediction. Consequently, in order to detect a deterministic process with a low error, it is 

necessary that it has produced a statistically significant number of variations in the system. On which 

our forecasting method has carried out a large number of independent predictions. Therefore, every 

forecast must concern a single variation of the system. 

 This approach is crucial for non-stationary systems where the forecasts may be not independent. For 

that reason, it is fundamental to calculate the compound probability, which is the probability of 

obtaining the same results in a random way. We also remember that within the compound probability 

(1), there is the calculation of the conditional probability, in which it is taken into account if the events 

are dependent or independent from each other. In fact, the goal of this method is to discard all non-

independent forecasts, whose contribution is to make me overestimate the forecast skill of the 

algorithm. The consequence of this erroneous evaluation can lead us, for example in the financial 

field, to bear excessive risks. 
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Conclusion 

 

 The analysis of results, concerning the evolution of a non-stationary system, represents one of the 

most important problems of applied mathematics still unresolved. In this article, I propose the use of 

the Von Mises’ axiom of randomness as a method of evaluating the data obtained under these 

conditions. This axiom, as explained previously, defines a statistical characteristic that assumes a 

well-defined behaviour when we operate consciously. In practice, the results generated by a non-

random forecasting algorithm, that implements knowledge about the considered system, cannot be 

reproduced randomly. Consequently, the probability of obtaining equal or better results randomly 

tends to zero as the number of times the strategy is used increases. In this way, we shift our attention 

from the value of the result, which under the non-stationary condition may have been produced with 

non-independent forecasts, to its statistical characteristic correlated to its non-random behaviour. 

 In order to apply this method, we have defined a simple mathematical model whose task is to describe 

the dynamics of a system by means of a numerical sequence. Using this mathematical model, we have 

shown how to compute compound probability from a series of results obtained with a forecasting 

algorithm. Then, analysing some examples, we have deduced some important considerations. In 

particular, we have seen that when there is a change in the system, we have the possibility to make a 

prediction whose probability of success is less than 1. The consequence of this is a decrease of the 

compound probability whose meaning, according to the Von Mises’ axiom of randomness, is to 

indicate the presence of a pattern on the system. Therefore, if we want to detect it with a low error 

we must have made a statistically significant number of independent predictions, concerning each a 

single variation of the system. In this way, the forecast algorithm proves to be able to predict future 

system evolutions. This characteristic, therefore, becomes fundamental in estimating the risk of a 

strategy that operates on a non-stationary system, such as the financial markets. In fact, a correct risk 

assessment must always take in considerations the forecast skill of the algorithm about the future 

evolutions of the system. 

 In the next article, we will introduce a purely random component within the dynamics of a non-

stationary system. In this way the deterministic process will be replaced by a stochastic process 

described by a probability density function. This step is essential in order to apply this method in the 

financial field. 
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Binomial evolution function 

(The only function you need to evaluate a trading strategy) 

Andrea Berdondini 

 

Introduction 

 

One of the biggest requests, I have received over the years, has been to develop a function that 

could easily understand whether an algorithm is operating randomly or deterministically. This 

discrimination is essential to understand whether the algorithm will be able to generate profits in 

the future. In fact, acting deterministically means that the algorithm has useful information on the 

financial markets that allow it to make winning predictions. 

The key to solving this problem is to shift the focus from the simple outcome (profit/loss) to the 

algorithm’s ability to predict market evolution, assuming that markets are non-stationary. Being 

“non-stationary” implies that trades are dependent on each other (market dynamics change over 

time), and as a result the data collected may lose statistical significance. When dependencies are 

created, that are unknown to us, traditional statistical analysis risks leading to incorrect conclusions. 

Therefore, the main goal of any function that wants to give a qualitative assessment on a trading 

algorithm is to transform the results into a series of independent data.  

 

Trade Transformation 

   

To make trades independent in a non-stationary market context (where we do not know the 

evolution of the system), there is a simple and effective method: if we have N forecasts on a system 

with K degrees of freedom, our forecasts must be transformed into a series in which each forecast 

“bets” on an evolution different from the immediately preceding one. 

In the case of financial markets, there are two degrees of freedom: up (buy) or down (sell). 

Consequently, in our new series, there can never be two operations of the same type (two buys or 

two sells) in a row. Therefore, the sequence must alternate buy and sell. From a practical point of 

view, this transformation is applied by inserting an opposite operation between two 

consecutive trades in the same direction. For example, if we have two consecutive buys with a 

time interval ΔT between the closing of the first and the opening of the second, a sell trade of 

duration equal to ΔT is introduced in between.  

 

Why this transformation? 

• If after a bullish phase (buy), we think that the trend has ended, inserting an opposite operation 

(sell) for the period ΔT allows us to test our hypothesis of “end of trend”. 

• If the market remains bullish, this intermediate operation will have a probability of loss greater 

than 50%. However, if our assumption is correct and the bullish trend has ended, the intermediate 

sell will have a probability of about 50% of being winners or losers. 

In conclusion, each intermediate operation inserted tests the hypothesis that the two consecutive 
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operations (in the same direction) are truly independent.  

 

Practical example  

Let's imagine an algorithm that, in a trading week, generated four consecutive buy operations, 

with a few days of pause between each one. The original sequence would be: 

 

Buy Waiting ΔT1 Buy Waiting ΔT2 Buy Waiting ΔT3 Buy 

 

According to the transformation method, we need to insert sells in the waiting periods between 

buys: 

 

Buy Sell ΔT1 Buy Sell ΔT2 Buy Sell ΔT3 Buy 

 

In this way, each buy is “separated” from the next by an opposite trade (sell). If the uptrend had 

actually been continuous, the intermediate sells would have a probability more than 50% of 

closing in loss, indicating dependence between one buy and the other. If instead each buy really 

happens in a new market condition (independent from the previous one), then those intermediate 

sells will have a probability of about 50% of being winners or losers. Therefore, from a statistical 

point of view, on a high number of trades, their statistical relevance will be negligible. 

 

Convert to a binary sequence  

   

After creating the new sequence of operations (all alternating), we proceed to convert it into a 

binary sequence: 

• We assign the value 1 to trades closed in profit.  

• We assign a value of 0 to trades closed at a loss.  

This additional step is to avoid overestimating the impact of some individual results that 

may depend on random market events. By making each trade equal, we reduce the effect of large 

isolated gains or losses. 

 

Testing for Randomness with the Binomial Function  

   

Finally, we calculate the probability of obtaining an equal or greater number of successes through 

a purely random process (tossing a fair coin with a 50% chance of winning). For this purpose, we 

use the binomial distribution, where the parameters are: 

• k is the number of successes (trades with value 1), 

• n is the total number of trades, 

• p is equal to 50% (assuming fair coin). 
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If the probability obtained is low, it means that the algorithm has a good chance of being 

deterministic (able to predict the market). On the contrary, if the results can be obtained easily 

through a random process, we have no sufficient statistical reason to consider it capable of 

generating profits. 

 

To summarize, the function performs these 3 fundamental steps: 

1. Transforms the trade sequence by inserting an opposite trade between two consecutive 

trades. This allows us to test the real independence between two forecasts of the same type (two 

consecutive Buys or two Sells). 

2. Converts to binary (1 for winning trades, 0 for losing trades). Avoid distortion of statistical 

results by single large gains or losses.  

3. Apply the binomial distribution (with p=0.5 fair coin). It allows us to verify if the number 

of successes is compatible with a random process or if there are elements that suggest a real 

predictive capacity.  

 

In this way, we obtain a clear and quantitative tool to distinguish a potentially deterministic 

algorithm (capable of predicting the market) from a random one, without being fooled by 

momentarily favorable results but lacking long-term statistical consistency. 

 

In conclusion, this function allows us to answer the following fundamental question: 

 

Am I betting on different events or am I simply splitting a bet on the same event? 

 

If we do not know the answer to this question, any analysis of the results is useless. 
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Psychology 
 

The first article deals with the mental predisposition called "dissociation from the result" that 

characterizes professional traders. This attitude is fundamental, because in the financial markets, 

being characterized by a low number of degrees of freedom, it is particularly easy to obtain good 

results randomly. Therefore, in these conditions, the result can be a little significant. Consequently, 

developing a dissociation from the result is essential in order not to overestimate your trading 

strategy. Indeed, future results depend on our knowledge of the system on which we make 

predictions and not on past results. 

In the second article, we show how meditation is an efficacious mental training method to 

improve our approach to problem solving. The importance of this type of practice derives from its 

ability to reduce our irrational and therefore random actions. As we have seen in previous articles, 

acting randomly is not only useless but also increases the uncertainty of future results. Therefore, 

this last article, despite talking about a topic that seems to be distant from the topic covered in this 

book, completes all the concepts discussed previously.  
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The psychology of the professional trader 

 
Andrea Berdondini 

 

 ABSTRACT: In this article, we will analyze a mental attitude that distinguishes professional traders. This 

characteristic can be summarized with the following concept: "dissociation from the result". This type of 

mental predisposition is very important, because the way we relate to the result affects our ability to behave 

rationally. 

 

The basic feature of the human mind  
 

To understand how the mind behaves in relation to the result of the actions, we must understand 

the environment in which it evolved. Man has evolved in a context in which the link between action 

and result has always been very strong. 

The non-randomness of the result has an important consequence: if the action leads to a benefit, 

the action that generated it turns out to be correct. Therefore, a very strong connection is created 

between the action and the result. Consequently, to a useful result for our survival we are led to 

consider the action performed as rational and correct. The brain also strengthens this bond in a 

physiological way by producing a physical sensation of happiness. In practice, the brain rewards 

us for the action done and wants it to be repeated over time because considered useful for our 

survival. 

 

How the mind is deceived  
 

Now we analyze how a mind, evolved under the circumstances described in the previous 

paragraph, behaves when it has to face situations in which the outcome of the result is subject to a 

significant random component. In these situations, an extremely important thing happens: the result 

of our action will never be constant but will have a certain degree of randomness. 

In this situation, the link between action and result is broken, and it is no longer true that a useful 

result corresponds to a rational action. Situations in which there is no link between the rationality 

of the action and the result are situations almost exclusively created by man as in the case of 

gambling. For example, if we play heads or tails, we have 50% of probability to win and 50% to 

lose, and obviously, there is no rational link between action and result. However, for the brain it 

makes no difference, if you win a bet it will reward you with a feeling of happiness and this is 

because for our mind the link between result and action still exists. For this reason, the 

psychological pathology called ludopathy, that afflicts gamblers, is the direct consequence of an 

evolved mind in an environment where there is a very strong link between action and result. 

In this situation, the mind is deceived and considers actions that are irrational and destructive as 

rational and useful. This behavior is also called cognitive distortion, and the people who are affected 

are really convinced that their irrational actions can lead them to victory. 
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At this point, you will surely have understood that the main problem is due to the direct link that 

the mind associates between action and result. Therefore, it is precisely on this key element that 

arises the difference in approach between an ordinary person and a professional trader. 

People who understand this problem understand the importance of training their mind about the 

dissociation from the result. In this way, they develop a new awareness about the result, which 

allows them to maintain a rational and winning response even in situations where the result is 

subject to a random component. 

 

The mind of a professional trader  
 

In the previous chapter, the cognitive characteristic that distinguishes an ordinary person from a 

professional trader was identified. This characteristic can be summarized with the following 

concept: "dissociation from the result". In other words, it is about breaking the link that our brain 

creates between action and result. 

This mental approach is present among professionals from very different sectors; for example, it 

is normal for a professional poker player to get angry when he makes a stupid play and to be happy 

when he makes an intelligent play, regardless of the outcome of the individual plays. In fact, these 

players have perfectly understood that there is no direct link between the result of a single operation 

and the action performed. What makes them successful is always being able to perform a series of 

rational and correct actions without getting involved in emotions. About this argument, I also report 

an interesting statement by the professional trader Linda Raschke whose interview was featured in 

the 06-2017 issue of Trader Magazine. When asked, "Is Trading a game for you?” Linda Raschke 

replies “Yes. I barely check the account balance. Because this unnecessarily affect me both 

positively and negatively and does not change the fact that I have to make the right decision again. 

And if you always make the right decisions, performance becomes simple in the long run”. As you 

can see, there is such a strong dissociation from the single result that she does not even care about 

its balance (an amateur trader checks his balance every 5 seconds). 

Viewed from this point of view, trading is no longer random, but is a purely cognitive process, 

where you only operate if you understand the financial markets by always performing rational and 

never emotional actions. At this point, becomes easy to understand the difference between an 

amateur trader and a professional trader: the first is obsessed by the result, while the second is 

obsessed by the knowledge. 
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How meditation can improve our problem-solving skills  

 
Andrea Berdondini 

 

 ABSTRACT: The goal of this article is to try to explain easily, how the practice of meditation affects our 

problem-solving skills. To do this, I use a mathematical logical method to characterize problems based on 

the number of their possible solutions. In this way, it easy to explain the two primary approaches that the 

mind uses in solving problems. The first approach is iterative, optimal in solving simple problems 

(problems with a low number of solutions). The second approach is the logical one, optimal in solving 

complex problems (problems with a high number of solutions). The interesting aspect of these two methods 

is that their mode of action is the opposite. The iterative method is based on action, while the logical method 

is a reflective approach, in which any unnecessary action takes us away from solving the problem. 

Consequently, we will see how through the practice of meditation, we can shift our mental predisposition 

towards the logical approach by inhibiting our propensity for the iterative approach. This is a very important 

result because it can allow us to improve our ability to solve complex problems. This type of attitude is 

fundamental in a society where technological progress is making all simple and repetitive jobs less 

indispensable. 

 

The two fundamental methods used by the mind in solving problems 
 

From a mathematical logical point of view, the problems can be divided according to the number 

of possible solutions they can have. Therefore, using this approach, we can define two classes of 

problems: 

1) “Simple” problems: the problems in which the space of possible solutions is constituted by a 

small number of elements. Where the time required to try all possible solutions iteratively, is limited 

and acceptable. Example: a padlock that has 100 possible combinations, if I can try a different 

combination every 5 seconds, I will try all the combinations in an acceptable time. 

2) “Complex” problems: the problems in which the space of possible solutions is constituted by 

a large number of elements. Where the time to try all possible solutions iteratively, tends to infinity 

or to an unacceptable time. Example: proving a mathematical theorem, doing it iteratively trying 

random solutions, takes a time that tends to infinity. 

Thanks to this classification, we can study, in a simple way, the two fundamental approaches that 

the mind uses in solving problems. 

The first approach is iterative, the mind does not try to solve the problem but tries all possible 

combinations. This approach is the optimal one for solving “simple” problems and was 

fundamental in the initial part of human evolution. 

The second approach is the logical one; the mind creates a model of the problem and tries to solve 

it. This approach is the optimal one for solving “complex” problems, and its importance has 

increased in the course of human evolution. Consequently, this category of problems is also the one 

that most characterizes our problem-solving skills. 

Comparing these two methods, the interesting thing we notice is that they act oppositely. The 

iterative method is based on action, faster I act, faster I solve the problem. Instead, the logic-based 
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method is thoughtful; any incorrect action takes us away from the solution. 

To explain the importance of not acting irrationally, when trying to solve a complex problem, I 

like to give the following example: imagine that you are a hiker who got lost in the jungle, what 

are you going to do? If we try to ask this question to a survival expert, he will answer that the best 

thing to do is to do nothing, and wait for help, because any of your actions will only tire you and 

put you in danger. The same thing happens in solving complex problems, in which every irrational 

action is not only useless but it makes us lose energy and time. This example makes us understand 

how different the two mental approaches are, and how fundamental our mental predisposition is to 

be successful in situations where a type of problem predominates. 

Another useful point of view, to understand the importance of these two mental approaches, is to 

comprehend why there is so much interest in algorithms based on artificial intelligence. The reason 

for such interest stems from the fact that through artificial intelligence the algorithms are moving 

from an iterative approach to a logical approach. In fact, for example, the software developed to 

play chess, until recently used iterative approaches. In practice, the software simulates all possible 

combinations and chose the best move. This method had two important limitations: it needed a very 

powerful computer and could not be applied to games like the “go” in which the possible move 

combinations are very high. With the advent of artificial intelligence, these virtual players have 

gone from an iterative approach to a logical approach with incredible results. Google’s Deepmind 

research team has developed the first software capable of beating the human champion of “go”, on 

this topic I recommend reading the article published on nature “Mastering the Game of Go without 

Human Knowledge”. 

Now you can understand why the knowledge of these two different mental approaches is 

fundamental for studying the dynamics that involve our problem-solving skills. 

 

Meditation as mental training to improve the problem-solving skills 
 

In this section, we will try to explain the implications of meditation on problem-solving skills. 

The term meditation refers to a large number of techniques, even very different from each other, 

whose task is to bring complete awareness of the present moment. One of the oldest and best-known 

techniques, and consequently among the most practiced, is called vipassana. The practice of this 

meditation is performed by sitting cross-legged while remaining completely still in a mental state 

in which we observe everything that happens. Mainly the observation is directed towards thoughts 

that tend to manifest themselves and towards one’s breathing. 

If we now analyze the two mental approaches, described in the previous paragraph, it is easy to 

understand how the practice of this type of meditation tends to be in contrast with the iterative 

method used in solving problems. As described in the previous paragraph, this approach is based 

on action, in practice, I act as quickly as possible without ever stopping. Hence, sitting still for no 

purpose represents the opposite of this method. 

Consequently, the constant and repeated practice of this type of meditation leads over time to 

inhibit our propensity to act impulsively. There are many scientific studies on this topic that show 

how meditation reduces our propensity to multitasking (hyperactivity) and all those irrational and 

emotional behaviors. This is an important fact because the iterative approach is based on random 

(irrational) and continuous actions with a strong emotional component. 

Meditation in this way modifies our problem-solving skills making us more reflective, 
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consequently increasing our propensity towards the use of the logical approach in solving problems. 

This result is significant because when we talk about problem-solving we are talking, in most cases, 

about the ability to solve complex problems. In fact, in a society where technological progress has 

an exponential trend, our ability to solve problems of this type becomes an increasingly important 

and requested skill. 

Another fundamental aspect to keep in mind, regarding the importance of training the mind to a 

more reflective approach, is to understand the impact that new technologies have on our minds. To 

answer this question, we need to understand how most of the applications that are used on 

smartphones, tablets, etc. are developed. 

The main purpose of these applications is to create an addiction, and to do this they take advantage 

of the iterative approach that the mind uses to solve simple problems. This is done because, in this 

situation, the person is forced to perform a continuous series of actions, which will correspond to a 

series of results, the consequence of which is a stimulation of the reward system present in our 

brain. With this technique, the user of the application will compulsively experience a succession of 

emotions, the result of which is to create a real addiction.  

In conclusion, this type of technology is changing the approach to solving the problems of the 

new generations, favouring the iterative approach over the logical one. For this reason, it is essential 

to counteract the conditioning caused by these applications with techniques such as meditation, 

which inhibit our propensity to solve problems iteratively. 

 

Conclusion 
 

In this article, I have used a simple mathematical logical analysis to relate our problem-solving 

skills and the practice of meditation. In this way, we find a similarity between two very different 

realities. On the one hand, we have a scientific formalism, in which through the analysis of a 

mathematical data the optimal approach is found to solve a class of problems. On the other hand, 

we have meditation, which represents a topic mainly studied in the philosophical field. So we have 

two extremely distant points of view which, however, as we have seen, tend to have incredibly 

similar elements of convergence. Indeed, the practice of meditation represents a way of acting 

contrary to the iterative approach. Consequently, meditation acts by inhibiting our propensity to act 

iteratively, making us prefer the logical approach, fundamental in solving complex problems. We 

have also seen how modern technologies are influencing new generations to hyperactive and 

compulsive approaches. So, it becomes essential to contrast this type of mental conditioning, with 

something that goes to act in the opposite direction leading us to act more thoughtful. Meditation, 

from this point of view, can be seen as a practice that acts on some primary aspects used by the 

mind in many of its processes, such as problem-solving. In this way, we can partly understand why 

something so simple has such profound implications in many areas of the brain. For these reasons, 

I believe that meditation will become an increasingly important formative practice. 
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Risk Management (Good News) 

 

In this final chapter, we talk about risk management, one of the topics that most interests the investor. 

In addition, this chapter summarizes all the concepts discussed above. 

As you may have noticed, I have inserted the phrase "good news" in the background, the reason for 

this sentence is the following: in a world like that of trading where it is difficult to have certainties, 

risk management is defined by some irrefutable rules. For this reason, it represents a solved problem. 

The action of investing can be divided into two parts: 

1 the choice or development of an investment method.  

2 The allocation of capital to be associated with the chosen investment method. 

The first fundamental rule of risk management is as follows:  

“Risk management concerns solely the choice of the ratio between invested capital and liquidity”  

So, it's just about point 2. As a result, it only comes into play when we need to decide how much 

money to invest on the chosen investment method. 

The second fundamental rule of risk management is as follows:  

"Risk management should not influence in any way the choice or development of an investment 

method”. 

The most common mistake made in finance is to introduce risk management into the choice of an 

investment method. In this way, the emotional component, which is part of risk management, alters 

our ability to rationally choose the best investment method.  

A similar behaviour happens in poker, also in this case, we must choose a game strategy and a capital 

to invest. The mistake that the amateur poker player makes is the following: the player is afraid of 

losing money, consequently he plays in a very closed way (never bluffing) and therefore his plays are 

easily predictable. Furthermore, he plays at tables with very high stakes. In this way, the player 

performs risk management by changing the game strategy and not on the invested capital (stakes with 

which he sits at the table). 

The investor makes the same mistake as the amateur poker player, by implementing risk management 

in choosing the investment strategy and not in choosing the capital to invest. As a result, he finds 

himself in a situation where he is investing too much money on a strategy that is not the best. 

I conclude with a very simple example: let's take one hundred investors, all with different 

characteristics both from an emotional and economic point of view. These hundred investors can 

access the same investment strategies. What is the optimal situation for these investors? The optimal 

choice, for these investors, is that everyone should use the same strategy, the best strategy (less 

random), but they should invest different amounts based on their emotional and economic 

characteristics.  

In summary, the choice of investment strategy is independent of the characteristics of the investor. 

Instead, the choice of the amount to invest depends on the characteristics of the investor and 

determines risk management.  
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Sticker for your monitor 

Cut out the sentence below and apply it on your work monitor. 

 

 

Trying to create knowledge randomly is one of the most favourite hobbies for traders. This 

sentence is intended to remind you of the uselessness of this way of acting. 

 


	Introduction
	Structure of the book
	Statistics
	Introduction (1)
	Definition of uncertainty
	Conclusion
	Introduction (2)
	The Fundamental Problem of Causal Inference
	Conclusion (1)
	Quantitative trading
	Description of the methodology
	Description of the techniques used in operational practice of this verification method
	Use of the method as a control parameter of a strategy
	Example of the use of this methodology
	A new definition of risk
	Conclusion (2)
	The professional trader’s paradox
	Conclusion (3)
	Psychology
	The basic feature of the human mind
	How the mind is deceived
	The mind of a professional trader
	The two fundamental methods used by the mind in solving problems
	Meditation as mental training to improve the problem-solving skills
	Conclusion (4)

