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In Science and Philosophy, all new ideas and the reasoning and 
evidence in their support are entitled to testing and scrutiny of debate 
and informed and qualified review and the courteous judgement of those 
qualified by knowledge and skill to give it. 

In this spirit I dedicate this compendium, as I did originally with 
DIVISION THREE, to PARMENIDES OF ELEA with the wish that this 
time the debate will end in his favour.  
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Foreword and Introduction 

 

This compendium of my writings is somewhat like a travelogue 
emulating the travels of the princes of Serendib.  

My journey started when I was fortunate enough to study at the 
University of Potchefstroom from 1960. This was the time when 
Academia was on the cusp of changing from places that defined 
themselves as “places of learning” into places that defined themselves 
as “places where knowledge is generated and sold”. The vice chancellor 
at that time was an educationist of international standing and the 
University resisted the trend by introducing a compulsory course which 
exposed me to basic Philosophy, the Philosophy of Science and the 
History of the Natural- and Mathematical Sciences. My post graduate 
study was in Physics. This turned me into a scientist because my natural 
inclination is that of an Epicurean which made me to automatically 
embrace the Scientific Method as it is described in DIVISION ONE. I 
then drifted into Mathematics and Applied Mathematics (Mechanics in 
those days). When I was 41 years old I returned to Academia to teach 
Mathematics at the University of Pretoria in South Africa. 

My real quest started while reading up on the Foundations of 
Mathematics at that time and I realised that while Cantor1 used 
subscripted variables to prove that it is not possible to make a list of all 
real numbers between zero and one, I can make that same list in the 
same notation by using the actual digits instead of subscripted variables 
and so to generate a list of all possible infinite permutations of strings of 
digits. This list was countable. An apparent contradiction like this made 
me turn to the scientific method to look for the cause of the discrepancy. 
However, I also realised that Cantor’s proof has been accepted by all 
Mathematicians for more than a century, which implied overwhelmingly 
that it was I who must be in the wrong. I then classified myself as just 
another “crackpot” and distanced myself from the practice of 
Mathematics as well as from the mathematical community while I earned 
my keep by doing more than my share of teaching. 

 
1 Georg Ferdinand Ludwig Philipp Cantor  February 19, 1845 – January 6, 1918 
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In December of 1999 I constructed Example A of DIVISION THREE, 
PART ONE Section 1. This convinced me that I was not a “crackpot”, 
and that Cantor’s proof is simplistic. I considered his proof to be 
simplistic because Cantor assumed that an infinite vector that differs on 
the main diagonal from any given row vector in an infinite matrix, differs 
from all row vectors in the matrix.  This is a direct generalisation of a 
property of finite dimensional matrices which is not valid for matrices 
with more rows than columns. The infinite matrix of Example A is the 
limit of finite matrices where the number of rows is many more than the 
number of columns. But my colleagues did not share my opinion, and 
most of them would not even listen to me.  

At first I focussed on finding the fallacy in Cantor’s argument itself. At 
last I concluded that the most likely error was this: Cantor proved that a 
list of all real numbers cannot be made. From this he concluded that 
there must be more than countable many real numbers. But an equally 
valid conclusion from his proof is that real numbers cannot be listed at 
all, i.e. a list of one real number cannot be made. An investigation into 
this possibility led to the analysis in section 2 of DIVISION TWO which 
led in turn to the introduction of the classification of real numbers either 
as value specified or as component specified, and everything that 
followed from that. 

 

The origin of the expression “elephant in the room” is a Russian story of 
a man in a museum who was so intrigued by the small exhibits that he 
never noticed the presence of an elephant in the hall. Therefore the real 
serendipitous moment in my thinking happened when a colleague, in 
exasperation, one day told me that I did not understand what 
Mathematics is. After consideration I realised that he was right, and at 
that moment the Elephant came into view. 

I was intent on looking for the discrepancy in the details of Cantor’s 
argument because at that time I considered Mathematics to be a 
science and as such subjected to the scientific method. Thus I was 
looking for the assumption in the argument that would clear up the 
discrepancy when changed. But Mathematics originated in Philosophical 
Antiquity, as discussed in DIVISION ONE, and therefore its assumptions 
are considered to be fixed and true. Apart from Geometry and numbers, 
Mathematics is not subjected to the constraints of how we experience 
reality, and therefore Mathematics is not a science. Hence it is not 
subjected to the Scientific Method. It therefore never needed nor 



5 
 

experienced “reality checks”2 like those that Alchemy got from 
Mendeleev and Astrology got from Kepler.  

It is simplest to consider Mathematics to be a logical structure built on 
fundamental philosophical (or Metaphysical) assumptions about Space 
and Numbers. Thus different but equally valid assumptions in this regard 
could have been made while Mathematics as such remains “true”.  

The elephant, when at last I saw it clearly, was that two different 
assumptions about the nature of space and hence two different sub-
models based on these assumptions, could and should be formed for 
Mathematics. In the end it turned out that Cantor’s proof belongs to one 
model, called here the Euclidean Model (Based on assumptions about 
Space called here the Euclidean Cosmology), and that my list belongs 
to a different model, called here the Leibnitzean Model (Based on 
assumptions about Space called here the Leibnitzean Cosmology). The 
conclusions about the two lists of numbers are therefore not comparable 
and each is correct in its own model.  

This insight also revealed that Infinitesimals and Calculus, as perceived 
today, are the uncomfortable embedding of Leibnitz’ work, which is 
fundamentally continuous, in the Euclidean sub-model, which is 
fundamentally discrete.  

Then it dawned on me that the implications of my insight are even wider 
and that it extends to Metaphysics – in particular Ontology - where it has 
a revolutionary impact. While traditional Metaphysics assumes that 
whatever is continuous is composed of discrete entities called points, my 
work does not assume the existence of points but assumes conversely 
that whatever is discrete can be analysed using continuous entities 
(volumes, areas or lines). 

This compendium constitutes some form of “reality check” for 
Mathematics: Apart from the baby elephant called here the “Cauchy 
numbers” that were introduced as an extension to the number system 
for use in the Leibnitzean Cosmology, there is almost nothing of 

 
2 Although Mathematics is not a science, the Mathematical Sciences, like Mathematical Physics, 
are. A reality check for the Mathematical Sciences - according to the scientific method - means that 
contradictions should not only be checked against physical assumptions, but should also be 
checked against Mathematical assumptions. It turned out that the particle/wave duality of 
Mathematical Physics does not pose a fundamental problem when using the Leibnitzean 
Cosmology and the Metaphysics of Parmenides of Elea.  
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consequence that is presented in these documents that is anything else 
but a rearrangement of known Mathematics to suit the constraints of the 
two cosmologies, with a few new definitions added to assign names to 
entities that were not named before. 

 

It is unfortunate that I now have to ask the reader’s indulgence with how 
these documents are presented. I was born in 1942 which now puts me 
in my seventies. I am acutely aware that whatever is in my head will 
vanish when my mind is lost in the not-so-distant future either through 
death or through senility, and that anything that is not printed on proper 
paper will therefore be gone within a few years. This lends an urgency to 
my writing and this, together with the loss of clarity that comes with age, 
may make these writings onerous to read. Furthermore, many of the 
thoughts shared here are still not that far removed from the intuitive level 
and will in future need a lot of clarification by minds better than mine. 
Therefore please look on reading these writings as a serendipitous 
journey for the reader too. 

It was also never possible to find a peer with whom I could argue my 
ideas in a proper academic manner. This means that I can claim all the 
credit for myself, but I also have to assume sole responsibility for all the 
mistakes. Therefore all the mistakes that were not discovered by myself 
are still in the script and in the logic. Please look on this as a challenge 
to be overcome. However, the positive result of not being able to interact 
with peers was that I was never distracted and I could fit the progress of 
more than one lifetime into one. 

 

Chronologically, the article presented in DIVISION THREE was posted 
on VIXRA in January 2015 when all my various thoughts finally gelled 
into one coherent structure. I posted it in the hope of eliciting criticism – 
which did not happen – and also to have the ideas posted somewhere 
where they can be accessed by others. It was only after 2015 that I 
clearly saw the elephant in the room and my focus moved from 
discrediting Cantor’s proof to formulating the new alternative model for 
Space (Surprisingly, it turned out that the first part of DIVISION THREE, 
which was a critique of Cantor’s work, became an argument for the 
existence of two sub-models in Mathematics). I then wrote a second 
article presented in DIVISION TWO in order to express my thinking after 
this change of focus and citing the relevant arguments and examples. 
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Later, after wasting the time of two very able colleagues, I realised that it 
is not fair of me to expect from anybody to extract from my work in one 
hour what took me almost 40 years to see. I also realised that a 
paradigm drift in my thinking was the main impediment to successful 
communication – I was talking in an altered paradigm. I therefore wrote 
a third document presented in DIVISION ONE in an effort to describe 
this paradigm and make it easier for others to follow my thoughts. 

 

I therefore recommend reading DIVISION ONE first and then DIVISION 
TWO referring to DIVISION THREE where some of the ideas are 
presented more fully though immature, and then read DIVISION 
THREE. A complete description of my original thinking is presented in 
DIVISION THREE which I inserted here in full and unaltered – apart 
from changing some outlay and spelling - as it was when first published 
on VIXRA3  in 2015. 

As noted above, my ideas matured more after 2015. Since then I was 
trying to get them into a form in which they can be preserved and 
shared. Because of my declining mental abilities it was not possible to 
combine all my ideas into a single well-ordered document, so that I 
finally decided to simply put everything that I have written in a single 
compendium with the intention to print it on paper. The price to be paid 
for this is ad nauseam repetition.  

In the process of getting my thoughts onto paper the friend of my old 
age in my new country, Trevor Roberts, was of inestimable4 help. 
Seeing that he is a lawyer, it is appropriate that I thank him for aiding 
and abetting me. I also thank him for the quote from a radio discussion 
of his used on the title page at the dedication to Parmenides of Elea. 

  

 
3 It can be found on the link http://viXra.org/abs/1501.0153 
4 An expression that is trite but, in this case, literally true. 
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In A Nutshell 

 

An Alternative Model for Space and the Consequential Extension of 
the Number System 
 

When intelligence dawned on the human race, the harshness of 
existence and the lack of understanding of how things happen must 
have been overwhelming. Somewhere in the chaos of this perceived 
randomness the early humans would have seen the vague shadows of 
recurring patterns and then transformed them into superstitions. Like a 
baby learning to speak, these superstitions were guesses about causes 
and consequences and, as experience increased, these assumptions 
were probably refined. The scientific method, which emerged millennia 
later, could have had its roots in this original inquisitiveness and the 
consequential assumptions about cause and effect.  

Mathematics emerged from such times, and it is only natural that 
alternative assumptions about the basic phenomena that are described 
by Mathematics should be made – especially if contradictions emerge 
that have to be explained away. Such a contradiction motivated this 
study. It started when it emerged that, using numerals of the digits, a list 
of all infinite permutations of digits can be made, thus showing them to 
be countable. But, using subscripted variables, Cantor proved that the 
cardinality of the set of all infinite permutations of digits is more than 
countable. Investigation of this apparent contradiction finally led to the 
conclusion that Mathematics divides into two irreconcilable subsystems 
based on two different ways that Space can be described: one in which 
Cantor’s proof is valid (Called the Euclidean Cosmology), the other in 
which the list of permutations of numerals is valid (Called the 
Leibnitzean Cosmology). 

The following is a description of the intellectual path that led to this 
conclusion: 
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About two and a half millennia ago the foundations for the modern 
Mathematical Sciences were laid down in ancient Greece. Two of the 
assumptions that were made then were described by Euclid5 as (a) 
there exists a piece of space with no extent called a point and (b) Space 
is synthesised from such entities. These assumptions had two strange 
consequences: firstly that there exist more than countable many such 
points and secondly that it is possible to override the limitations of 
inductive logic and perform infinitely many operations to completion 
(here “infinity” is a synthetic6 natural number that is larger than all other 
natural numbers). These assumptions underpin the Mathematical 
Sciences at present. 

Looking more closely at this, one sees that having no extent means that 
points have zero volume, area or length. This made Space complete 
because any set of nested intervals of which the lengths tend to zero 
now had a point as limit. The model of Space that results from the 
fundamental assumption that it consists of points is called the Euclidean 
Cosmology. The two consequences mentioned above are results of this 
assumption because the non-zero length of a line has to be the sum of 
the zero lengths of its constituent points. This necessitated the 
introduction of the concept of “more than countable” and also caused 
the implicit introduction of the Axiom of Choice into Mathematics. 

 

About two millennia later Leibnitz7 set out to determine the tangent to 
the graph of the function y = f(x) in the XOY – plane when x=a. In this 
quest he ended up with sequences of lines of which the lengths {𝛿𝑥#} 
and {𝛿𝑦#} tend to zero and of which the ratio of their limits was the 
gradient of the required tangent. This posed a dilemma for him. Firstly, 
the paradigm of the Euclidean Cosmology required that the limits of 
these lines must be points and hence be of zero length. Secondly, he 
intended to use these limits as variables in his theory and, by their very 
nature, variables cannot be identically zero and be of any use. He 
resolved the dilemma by introducing a new entity which he called an 
“infinitesimal” (Which is pidgin Latin for “the little thing at infinity”) to be 
the limit of the sequences at the place where the tangent touches the 

 
5 Euclid Ca. 400 to 300 BC 
6 Die ganze Zahl shuf der liebe Gott, alles uebrige ist Menschenwerk. - Leopold Kornecker 
7 Gottfried Wilhelm (von) Leibniz  1/7/1646 – 14/11/1716 
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graph. In so doing he avoided dividing a zero by a zero. To him 
infinitesimals were intervals that are short enough to be the limits of 
sequences of intervals of which the lengths converge to zero, but not so 
short that manipulation of their lengths is meaningless.  

But this created a structural discrepancy in the Euclidean Cosmology: 
While zero and infinitesimal numbers can comfortably co-exist in a 
number system, a point and an infinitesimal are two different spatial 
entities and a sequence of nested intervals of which the lengths tend to 
zero cannot have two different spatial entities as limits. These conflicting 
requirements are resolved here by formulating an alternative model for 
Space based on infinitesimals rather than on points. 

This alternative model for Space (the Leibnitzean Cosmology) is based 
on using “being continuous” as the fundamental property of space. It is 
described by two alternative assumptions: Firstly that all spatial entities 
have extent and, secondly, that Space is such that any piece of space 
can always be divided into two pieces of space of which the total extent 
equals the extent of the original piece.  

In this alternative model for Space, infinitesimals can be re-introduced 
by defining them as sets of nested intervals of which the lengths 
converge to zero. This is an extension of the ideas of Bernhard 
Riemann8. Therefore, in this model Space can be analysed using nested 
spatial entities. The two consequences of the Euclidean assumptions do 
not occur in this model and “infinite” regains its literal meaning of “not 
bounded”. 

Thus, in contrast to points that are discrete by nature, infinitesimals are 
continuous by nature. This alternative model for Space, and the 
resulting alternative paradigm, is a unification of the work of Leibnitz, 
Riemann and L’Hospital9, with insights from Topology and Functional 
Analysis - both of which were developed after the deaths of Leibnitz and 
L’Hospital.  

The contribution from L’Hospital is that he pointed the way to define the 
infinitesimal numbers. He realised that the value assigned to an 
indefinite form generated at x=a by the quotient h(a)/g(a) of two 
functions h and g with the values h(a)=0 and g(a)=0, does not result 

 
8 Georg Friedrich Bernhard Riemann 17 September 1826 – 20 July 1866 
9 Guillaume François Antoine, Marquis de l'Hôpital 1661 – 2 February 1704 
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from the values of h and g at x=a but depends on Cauchy sequences of 
numbers {h(𝑥#)} and {g(𝑥#)} generated by a Cauchy sequence of points 
{𝑥#} that converges to the point a.  The value that is then assigned to the 
indefinite form follows from a comparison of the rates of convergence of 
{h(𝑥#)} and {g(𝑥#)}. 

This insight into the nature of indefinite forms was used to revisit the 
standard theory for the development of the real numbers in order to 
define a new (abstract) type of number that represents rate. This was 
achieved by defining the Cauchy sequences that form the equivalence 
classes that are the real numbers to be a new type of number called 
Cauchy Numbers. Cauchy numbers that are equivalent to zero are then 
identified as the Infinitesimal numbers (Thus the lengths of the intervals 
that form an infinitesimal are the components of an infinitesimal 
number). Rules for the manipulation of these numbers in a way that 
suits the needs of the theory of Leibnitz then follows from the rule of 
L’Hospital.  

This relationship between the work of Leibnitz and L’Hospital was never 
exploited, and Leibnitz’s work is at present still embedded in the classic 
Euclidean paradigm. 

In the alternative paradigm based on the Leibnitzean Cosmology, 
whatever is discrete is formed from continuous entities and it is never 
required to sum zeros to a non-zero number. Therefore inductive logic is 
not violated and, as mentioned, the word “infinite” has its original 
meaning of “not bounded”. Furthermore the real numbers are countable 
in this cosmology.  

In Physics a particle can be defined as an infinitesimal, and with this 
definition a particle is not discrete but is continuous and this fits in with 
the ideas of Parmenides of Elea that were rejected in ancient Greece. 
This may therefore potentially eliminate the particle/wave duality 
because such a particle can now exist throughout all space. 

 

From all this it can be seen that the Leibnitzean Cosmology is a much 
simpler model of Space than the Euclidean Cosmology. One should 
expect that the application of Mathematics in the Mathematical Sciences 
will divide between these two models depending on which one is best 
suited to the problem. This should be much like the way in which one of 
the three models for Mechanics in Physics is selected on the basis of 
which one is the most appropriate to use under given circumstances. 
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DIVISION ONE: Paradigm Description 

 

1. Introduction 
 

1.1 An Alternative Paradigm 
Why did an alternative paradigm develop? 

To answer this question one has to look at the history of Mathematical 
thought for the last two-and-a-half millennia. The main players in this 
narrative are Euclid10, Leibnitz11 and L’Hospital12  

A paradigm is a standard pattern on which thinking is based. The 
current paradigm of Mathematics is based on the fundamental 
assumptions about space as described by Euclid. This paradigm 
expresses the fundamental assumption that whatever is continuous is 
formed from discrete points. This assumption is here called the 
Euclidean Cosmology.  

One should note that once someone is used to a specific paradigm, any 
thinking that is not in accordance with that paradigm somehow feels 
“wrong”. The most obvious example of this is when a person who is 
steeped in Newtonian Mechanics is exposed to Quantum Mechanics for 
the first time. It takes some time to realise that, although this model for 
Mechanics is “strange”, it is equally valid as a model because its results 
are more accurate than those of Newtonian Mechanics when it is 
applied on a sub-atomic scale. 

 

Euclid is the first player in the history that is looked at here. He wrote a 
text on Geometry that remained the standard basic work on the topic for 
almost two and a half millennia. In this text he defined a point as “That 

 
10 Euclid Ca. 400 to 300 BC 
11 Gottfried Wilhelm (von) Leibniz  1/7/1646 – 14/11/1716 
12 Guillaume François Antoine, Marquis de l'Hôpital 1661 – 2 February 1704 
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which has no extent”. Since any non-spatial entity, e.g. smell, has no 
extent, this should be interpreted as “A piece of space that has no 
extent”. The present paradigm for thinking about space is - as it was at 
the time of Leibnitz - built on the assumption that these entities are the 
fundamental building blocks of space: Space itself is formed by 
combining points; surfaces by combining single layers of points; and 
lines by combining strings of points. 

In this paradigm a set of nested lines of which the lengths tend to zero 
has a point as limit. Therefore the limit of the set of lines is a line 
consisting of a single point and hence it is a line of zero length. 

The second player was Leibnitz. His quest was to determine both the 
tangent to the graph of the function y = f(x) at the point x=a in the XOY - 
plane, and the area under the graph of the function between x=a and 
x=b. In this quest he ended up with sequences of lines of which the 
lengths {𝛿𝑥#} and {𝛿𝑦#} tend to zero. This posed a dilemma for him. 
Firstly, the paradigm of the Euclidean approach required that these 
limits must be lines of zero length. Secondly, he used these limits as 
variables in his theory called Calculus and, by their very nature, 
variables cannot all be identically zero. He solved this dilemma by 
introducing a new entity which he called an “infinitesimal” (Which is 
pidgin Latin for “the little thing at infinity”). To him infinitesimals are 
intervals that are short enough to be the limits of sequences of intervals 
of which the lengths converge to zero, but not so short that manipulation 
of their lengths is meaningless.  

The third player is L’Hospital. His contribution is short and decisive: In 
certain cases quantities that are zero or infinite can be manipulated to 
yield valid results that are not themselves either zero or infinite. These 
cases are called the indefinite forms 0 0⁄  and 0 ∙ ∞. Note that this 
notation is purely symbolic because it does not refer to actual values of 
any functions. If an indefinite form should result from function values at 
the point a, then these symbols refer to the limits of the values of these 
functions at sequences of points that converge to the point a.  

 

Today, having the advantage of our knowledge of transfinite numbers, 
we can recognise that an infinitesimal number is a second type of 
cisfinite number (the first being the number zero). It is a number that is 
equivalent to zero in the sense that it can be the length of the a line that 
is the limit of a sequence of nested intervals of which the lengths 
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converge to zero, but it differs from the number zero in that it is not 
identically zero. According to the first part of DIVISION TWO the 
cardinality of the set of all points is ℵ* while the cardinality of the set of 
infinitesimals is ℵ+.  
 
The number zero can coexist with infinitesimal numbers in the same 
number system. However, any set of nested intervals of which the 
lengths converge to zero can have only one limit. Therefore Leibnitz’ 
infinitesimals and points cannot coexist in the same model for space. 
This is the reason for the development of a second paradigm for use in 
Mathematics where the role of points is taken over by infinitesimals and 
space is no longer synthetized by combining points, but is analysed by 
using infinitesimals. This change implies that any discrete object is 
formed from continuous space and hence it rules out the existence of 
points as spatial entities. This defines the Leibnitzean Cosmology. 
 
But the relationship between the work of Leibnitz and L’Hospital was 
never exploited, and Leibnitz’s infinitesimals remained embedded in the 
classic paradigm which still precludes such a link. The alternative 
paradigm described here unifies the work of Leibnitz and L’Hospital.  
The example given in paragraph 4.4 below should help to clarify this 
connection. 

 

 

Remark 

It took more than thirty years to develop the Leibnitzean Cosmology and 
its accompanying paradigm. The reason for writing a description of this 
alternative paradigm is to help the reader to develop this paradigm in the 
span of a few days by reading the results stated in the other divisions. 
Therefore this is an attempt to describe an initial paradigm for thinking in 
the Leibnitzean Cosmology. The hope is that this will save the reader 
some time and effort and make the Leibnitzean Cosmology feel less 
“strange”. 

Note that, in the context of this exposition of the alternative paradigm, 
the short discussion on logic and the structure of science given in 
paragraph 3 below validates the use of the word “Model” when referring 
to science or to human insight into perceived reality. 
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2. Space 
 

This alternative paradigm is distinguished from the current paradigm in 
the way that space is modelled. Whereas the current paradigm is based 
on discrete points, the alternative paradigm is based on continuous 
lines, surfaces and volumes. 

Between 600 B.C. and 500 B.C. there were already discussions in 
ancient Greece about how to best describe space. One of the proposals 
at that time was that lines (vectors) should be the tools for describing 
space. This idea was not exploited. However, if this would have been 
done, an alternative model for space, and thus an alternative paradigm 
for thinking about space, would have been formed with lines as the 
fundamental descriptive tools for space and not points. In such a 
paradigm the concept of “point” as a piece of space would be redundant 
and the assumption that space is formed from points would not be 
present. This approach has been revived here because it turned out to 
be the natural setting to examine the consequences of the ideas of 
Leibnitz about space.  

 

Space is extent.  

Some of the properties that we assign to space from our experience are: 

• A piece of space can be isolated, and every piece of space has a 
measurable (non-zero) volume. 

• Any piece of space can always be divided into two pieces of 
space of which the sum of the volumes equal the volume of the 
original piece. 

• The interface between adjacent pieces of space is a surface, 
which is a property of the two pieces of space and has an area. 

• The interface between two intersecting surfaces is a line which is 
a property of the two surfaces and has a length. 

• The interface between two intersecting lines is a point which is a 
property of the two lines and has a place in space. 
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• Space also has the properties of direction and distance. 

 

This is but a short partial list of the properties of space as we experience 
it. Note that this list attempts to describe the properties of space outside 
of the present paradigm. Therefore in this list a point is not a spatial 
entity but simply the place in space where a line ends – i.e. the point of 
the line. 

 

 

3. A List of Some Aspects of the Alternative 
Paradigm 
 

• A realisation that there are two irreconcilable ways to model 
space in Mathematics. The first way is a discrete model based 
on the introduction of the concept “point”. The second is a 
continuous model based on the introduction of the concept 
“infinitesimal”. This creates two irreconcilable substructures in 
Mathematics. (This conclusion is motivated in the first section of 
DIVISION TWO)  

• The first model is a discrete model which is based on the 
assumption that spaces, surfaces and lines are synthesized from 
points, and that points are spatial entities that are the discrete 
limits of nested spaces, surfaces and lines of which the 
maximum diameters of their volumes, areas or lengths tend to 
zero. This will be called the Euclidean Cosmology.  

• The second model is a continuous model that is based on the 
assumption that space can be analysed using nested spaces, 
surfaces and lines of which the maximum diameters of their 
volumes, areas or lengths tend to zero and are focussed at 
places in space. These places can be indicated by discontinuities 
like the ends of a lines. These nested sets of spaces, surfaces or 
lines of which the maximum diameter of their volumes, areas or 
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lengths tend to zero are called Infinitesimals13. This will be called 
the Leibnitzean Cosmology. 

• This use of the concept of two substructures emulates Physics 
where there are three substructures for Mechanics: one based 
on the hypothesis that mass is independent of motion, the 
second that the speed of light is independent of the motion of the 
observer and the third that energy can only change by discrete 
quantities. 

• The realisation that irrational numbers cannot be represented by 
numerals in the same way as rational numbers. This is based on 
the reasoning at the end of DIVISION TWO and partially 
motivates the extension of the number-concept to define and 
include the Cauchy numbers. 

• The number system is extended by defining a Cauchy Number 
as any Cauchy sequencei (i.e. Cauchy numbers are the elements 
of the equivalence classes of Cauchy sequences that are the 
real numbers) written in vector form. 

• Addition, subtraction, multiplication and division for Cauchy 
numbers are defined. 

• An infinitesimal number is defined as a Cauchy number that 
belongs to the equivalence class of Cauchy sequences that 
forms the real number zero. (Or, to put it differently, it is a 
Cauchy number that is equivalent to zero). Thus the lengths of 
the nested intervals forming an infinitesimal is an infinitesimal 
number. 

• An infinite Cauchy number is a sequence that diverges to infinity. 
(i.e. it is the inverse - under division - of an infinitesimal number) 

 
13 This definition of an infinitesimal changes an infinitesimal from being a spatial entity into a 
sequence. Thus a point, if defined, can be the limit of an infinitesimal. Hence the division of 
Mathematics into two cosmologies as described above is no longer necessary on the grounds that 
a sequence cannot have more than one limit. Therefore it is only the fundamental assumption in the 
Euclidean Cosmology that space is formed from points that prevents these two cosmologies from 
being unified. 
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• It is re-asserted that the word “number” refers to an abstract 
entity and that the word “numeral” refers to a symbol that depicts 
a number in some way.  

• This extension of the concept of number to include the Cauchy 
numbers was done in order to extend the scope of numbers 
according to the following scheme of objectives: A natural 
number is introduced to describe an abstract property of a set of 
discrete objects; a rational number to describe the concept of the 
relativity of two numbers; a real number to describe the abstract 
property of extent for volumes, surfaces and lines. These classes 
of numbers are now augmented by defining Cauchy numbers to 
describe the abstract concept of rate. 

• The principal Theorem of the Integral Calculus is re-interpreted 
by defining cascades of infinitesimals that form directed sets on 
which an integral can be defined as a net. This is done in 
DIVISION THREE. 

• It is pointed out that, if the Leibnitzean Cosmology is used in the 
physical sciences to model a particle, an alternative assumption 
about the nature of particles is obtained when a particle is 
modelled as an infinitesimal and not as a point. In this case the 
particle/wave duality becomes meaningless because a particle, 
when defined as an infinitesimal, is not localised or discrete but 
is continuous and can extend through all space. The particle 
would merely be perceived as being at the focus of an 
infinitesimal. It is pointed out that this is in accord with the 
Metaphysics of the Greek philosopher Parmenides of Elea. 

 

 

4. Background 
 

In order to make sure that the relevant background to the material that is 
presented here is stated in a common format, the following is a short 
synopsis of what should be familiar to any practicing scientist and 
mathematician. 
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4.1 Philosophy 
The Mathematical sciences originated in ancient Athens and was 
founded by philosophers who insisted on rigorous logic. There are three 
logical processes involved here: 

• Deduction: The sure (forward) way of inference, e.g. 1) When it 
rains it is wet 2) It is raining 3) Hence it is wet. 

• Induction: The unsure (backwards) way of inference, e.g. 1) 
when it rains it is wet 2) It is wet 3) Hence it may be raining.  

• Abduction: an inspired guess. E.g. when it was hot and humid in 
old Rome and the air got muggy, a fever spread that was 
assumed to be caused by the “bad-air” (Mal aria).  

 

Note that any deductive argument must of necessity start with abduction 
– a first statement (also called a principle, a hypothesis or an axiom) that 
is accepted as true – for example “When it rains it is wet”. 

The time before the enlightenment (roughly before 1750) is called 
philosophical antiquity. In those days a statement was taken to be either 
a truth or a lie. Therefore, when the Greeks defined an axiom as a “self-
evident truth” they implied firstly that it is an abductive statement 
because nothing else is evidence for it (this means that it does not follow 
deductively or inductively from any other statement), and secondly that it 
is true (it is not a lie).  

After the enlightenment philosophical thinking developed to the point 
where the initial abductive statement is considered to be true (in order to 
start the sequence of statements in a deductive argument) but that it is 
only true as far as the argument is concerned and that the result of the 
argument is only true modulo the truth of this initial assumption.  

Note that all our knowledge are the results of inductive arguments: 
Everything we know is the result of what we consider to be the cause of 
the information gathered by our senses and transmitted to our brains (all 
knowledge are therefore conclusions that were drawn from evidence 
gathered by our senses). 

Legal trials are good examples of processes based on evidence using 
inductive reasoning. In the practice of law it is accepted that 
circumstantial evidence cannot lead to necessarily true conclusions. In 
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court, evidence is presented to “prove” the guilt of the accused, but 
unless the accused confesses his guilt or was caught in the act, his guilt 
can never be known. Hence the legal requirement is that, when based 
on circumstantial evidence, the accused can only be found guilty 
“beyond reasonable doubt”. 

4.2 The Scientific Method 
The scientific method splits the inductive process of accumulating 
knowledge into a sequence of deductive processes14. A new deductive 
process in such a sequence is started whenever evidence appears 
which implies that the abductive first assumption of the current 
deductive argument cannot deductively explain this new evidence. The 
current abductive assumption is then replaced by a new abductive 
assumption which is such that the deductive argument still yields all the 
results of the old deductive argument, but in addition explains the new 
evidence. In this process an ever better understanding of the cause of 
the observed evidence is formed without ever finding the “true” cause – 
or even ever progressing to the stage of “beyond reasonable doubt”. In 
this scheme the abductive assumption is usually called a hypothesis and 
in a specific case the argument is sometimes called a model. 

One should note that this creates a tree of hypothesis since the results 
of preceding arguments can be used in later arguments. Thus, 
whenever a discrepancy occurs, it is necessary to identify the relevant 
hypothesis in the line of assumptions that will cause the argument to 
explain the new evidence without contradicting any of the old evidence. 
The set of all trees of assumptions (and the evidence supporting them) 
is the body of Science. 

Only disciplines which are based on evidence can use the scientific 
method. This immediately rules out religious systems and some aspects 
of Mathematics. All these disciplines originated during philosophical 
antiquity and hence are regarded as incontrovertible truths by their 
“believers”. In these systems evidence contrary to the original abductive 
assumptions are usually ignored, replaced by fallacies15 (untrue 

 
14 An illustration of this method is divining the meaning of unknown words without the use of a 
dictionary: At the first encounter the meaning of a word is guessed from its context and every time 
the word is encountered thereafter the concept of what it means is refined by using the new context. 
This is also the only possible way that a baby can learn to speak. 
15 Cantor’s fallacy as described in DIVISION THREE belongs to this class. See the EPILOGUE TO 
DIVISION ONE. 
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statements universally accepted as true) or are dogmatically classified 
as lies.  

Therefore these systems cannot be adapted, but parallel systems based 
on new abductive assumptions have to be founded – as is evidenced by 
the plethora of different religions and sects. 
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5. The Euclidean and the Leibnitzean Cosmologies 
 

5.0 The Basic Construction 
Start with any line and cut it at a convenient place. This introduces a 
discontinuity that defines a place in space called the origin. This place in 
space is indicated by the end of either of the two resulting lines. Name 
this place in space as the origin O and the line as the X-axis.  

With the choice of a suitable scale it is then possible to construct a line 
of which the length is any given rational number. Hence, for a given 
rational number a, a line OA of length a can be constructed on the X-
axis. With the usual conventions about axes applied, the interval formed 
by the line OA on the X-axis can be indicated by (0;a) i.e. the line 
starting at x=0 and ending at x=a. Note that, because this argument is 
solely about lines and their lengths, the concept of “point” is not 
involved, hence the concept of open and closed intervals is absent.  

Let δ = (δ1; δ2; δ3; δ4;…) be a Cauchy sequence of rational numbers that 
converges to zero but is written in vector form; hence it is a Cauchy 
number equivalent to zero and as such it is an infinitesimal number. 

Using the method above, the lines OBn and OCn of lengths a-δn and 
a+δn can be constructed for each component of δ. The line BnCn forms 
the interval (a-δn; a+δn). As δn takes ever smaller values when n gets 
larger and larger, a nested set of intervals, here called an infinitesimal, is 
formed and this infinitesimal is focussed at the end A of the line OA. 

5.1 The Euclidean Cosmology 
The foundations of the Mathematical Sciences were laid during the era 
of philosophical antiquity in Greece – mainly in Athens. There the 
“truths” of Mathematics were discovered by intellectual philosophical 
debate and formulated as axioms. 

The process was driven by philosophers in Athens who would, in terms 
of the present classification of sciences, be called “Geometers”. For all 
practical purposes the philosophers in Athens revered geometry.  

Thus the “truths” of Mathematics are based on the insights of geometers 
whose aim was to study unchanging discrete geometrical figures and 
who drew their geometric figures in sand.  
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Not all philosophers of the era agreed with their conclusions – notably 
the philosopher Parmenides who lived in Elea in Italy. His Metaphysics 
also included specific views on motion and on “coming into being”. 
Today these thoughts would be considered as relevant to Physics, so 
that he would probably be called a Physicist today. Very little of his own 
writings survived and our knowledge of his ideas come almost entirely 
from his detractors and from the well-known paradoxes posed by his 
eromenos Zeno.  

The remark in section 1 about Euclid’s definition of a point can now be 
extended: Euclid defined a point as “that which has no extent” which 
was seen to mean “a piece of space with no extent”. But because this 
definition belongs to philosophical antiquity, it should by right have been 
formulated as “There exists a piece of space with no extent”, and this 
statement was to be taken as true in the absolute sense. 

After the enlightenment, this statement could not be taken as true in the 
absolute sense anymore, so that it became an abductive statement to 
be taken as true in order to start a deductive sequence of arguments. In 
this case the tree of arguments following from this assumption will be 
called the Euclidean Cosmology which, in current times, can be taken as 
true modulo this assumption. 

(In order to justify the use of the word “Cosmology” here, one notes that 
the Greek word “cosmos” means “order” or “world” and the word “logos” 
means “to talk about”). 

 

In the Euclidean cosmology the set of nested intervals constructed 
above in paragraph 5.0 is focussed at a place in space which is at the 
end of the line OA. But the numbers δn converge to zero and hence the 
length of the intervals converge to zero. In the Euclidean cosmology the 
point at A belongs to all these intervals and hence it belongs to the limit 
when n tends to infinity. Thus there is a piece of space of length zero, 
the point at A, to serve as limit for the sequence of nested intervals. In 
this sense space is complete in the Euclidean cosmology. 

The Euclidean cosmology then posit the following assumption: “Space is 
formed from points”. This implies that any continuous entity is formed 
from discrete entities. However, note that the linguistic use of the word 
“discrete” implies that any discrete entity is identifiable.  

This assumption is the source of the concept “more than countable”: 
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Consider the unit interval and let A be the set of points that form this line 
of unit length. Then the sum of the lengths of all the points in A, (not the 
limit!) must be one. But the length of every point is zero, so that the sum 
of the lengths of a finite number of points is zero, which implies that the 
total length of a countable number must also be zero. Therefore, for all 
the zeros to add up to the non-zero number “one”, the cardinality of A 
must be more than countable. 

Note that the Euclidean cosmology is excellent for describing discrete 
states, e.g. the places where motion starts and ends, but is awkward in 
describing the rate of movement between these places, where it 
assumes that every point of a body is positioned at some point of space 
at every instant of time. 

 

5.2 The Leibnitzean Cosmology 
If the concept of point (as a spatial entity) is not introduced, then the set 
of nested intervals above has no limit and it becomes a never-ending 
sequence of intervals that is focussed at the end A of the line OA. Thus, 
space is not complete anymore. 

Each interval in this never-ending set of intervals is a continuous line of 
non-zero length. Note that, In the Leibnitzean cosmology, whenever a 
line is cut it divides into two sublines both of non-zero length. Hence the 
Leibnitzean model is based on continuous intervals that are all of non-
zero length. This is also true for volumes and areas, and hence discrete 
objects can always be analysed into continuous entities in this 
cosmology.  

One should also note that in this cosmology the absence of points 
precludes the existence of open and closed volumes, areas and 
intervals in geometric space. However, note that other types of spaces, 
for example probability spaces, are not inherently geometric spaces, but 
are models formed using concepts from geometric spaces. 

Any finite straight line has a length because it begins and ends 
somewhere in space. However, in this cosmology, the line itself is not 
necessarily discrete because it cannot be identified unless additional 
information is available. To motivate this statement, one should look at 
section 2.1 of DIVISION TWO where the line of length √2 is identified 
from a geometrical construction, but the line of which the length 
represents the value of the real number formed from the Fibonacci 
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sequence cannot be known and hence this line is unidentified even 
though it exists. 

 

Central to the Leibnitzean cosmology are the differences in the 
implications from deductive and inductive processes: 

When the length of a line is known, like √2 above, then it is easy to find 
a sequence of lines of which the (rational) lengths converge to this 
length – as was done in section 2.1 of DIVISION TWO. This is a 
deductive process since the limit of this Cauchy sequence of rational 
numbers is known a priori (is said to be identified). 

When the length of a line is unknown, as in the case of the line based on 
the Fibonacci sequence in that paragraph, then a sequence of lines of 
which the lengths converge to the desired length can still be set up, but 
the length of this line can never be known a posteriori – not “beyond a 
reasonable doubt”. This is an inductive process. 

 

In the Leibnitzean cosmology a real number is still defined as the limit of 
a Cauchy sequence of rational numbers (or equivalently as an 
equivalence class of Cauchy numbers), and from the above follows that 
every real number is associated with the length of a line (hence with a 
place in space). In line with the constraints of deductive and inductive 
reasoning, the value of the real number – which is the length of the line - 
is only known if the Cauchy sequence that defines it is set up to 
converge to that value. Hence the value of a real number, as the limit of 
a given Cauchy sequence, always exists but can never be known 
(identified) unless additional information is available. 

 

Thus there are two classes of real numbers: Value described real 
numbers where the limit of the Cauchy sequence is given a priori, and 
Component described real numbers where only the Cauchy sequence 
is given a priori. Value described real numbers are identified and can be 
tested for equality. Component described real numbers are not identified 
and cannot be tested for equality unless additional information is 
available. Note that a component described real number is the 
equivalence class to which the Cauchy sequence that describes it 
belongs. Two such real numbers can only be shown to be equal by 
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showing that the two Cauchy sequences that define them belong to the 
same equivalence class of Cauchy sequences - as is discussed in 
section 5.4 below. 

The real line is still defined, but every real number now corresponds to 
the end of some line from the origin – i.e. there is a one-to-one 
correspondence between the real numbers and lines from the origin. 

 

5.3 The Cauchy Numbers 
As noted above, the Euclidean cosmology is based on the concept of 
discreteness: in the Euclidean cosmology all numbers are associated 
with points on the real line and as such are discrete. This is ideal for 
modelling discrete quantities such as marbles in a jar, money in an 
account and ratios like odds at the racetrack. This model is however not 
easy to use when modelling continuous abstract concepts like rates of 
change.  

But rates of convergence/divergence can be defined for 
convergent/divergent sequences, and hence sequences are ideal 
vehicles for modelling rates. Extending the concept of number to include 
the sequences that form the equivalence classes that are the real 
numbers (and then later extending the definition of Cauchy numbers to 
include divergent sequences), enable numbers in the Leibnitzean 
cosmology to describe rates.  

These numbers are the Cauchy numbers. They can be described more 
fully as: 

• Each non-infinite Cauchy number is a convergent sequence of 
rational numbers. 

• The real numbers are equivalence classes of Cauchy numbers 
(as usual).  

• The Cauchy numbers that converge to zero are called 
infinitesimal numbers, 

• The Cauchy numbers that converge to non-zero real numbers 
are called the rated numbers. 

• The Cauchy numbers that diverge to infinity are called the 
infinite numbers. 
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This structure can be illuminated by looking at a compactification of the 
real numbers as presented in section 3.1.2.1 of PART TWO of 
DIVISION THREE. 

 

5.4 Arithmetic for Cauchy Numbers 
Arithmetic for Cauchy numbers is defined component-wise as shown in 
section 3.1.1 of PART TWO of DIVISION THREE. For example: 

If a = (a1; a2; a3…) and b = (b1; b2; b3;…) then a/b = (a1/b1 ; a2/b2 ; a3/b3 ;…) 
provided that not more than a finite number of the rational numbers bn 
are zero.  

The same holds for the other three arithmetic operations. 

A Cauchy sequence is a never ending sequence of rational numbers, 
and as such it is not a symbol and thus it cannot serve as the numeral 
for a number. Therefore equality of two Cauchy numbers cannot be 
determined directly. However, two Cauchy numbers are equivalent if it 
can be shown that they belong to the same equivalence class. This 
constitutes the concept of “equality” for Cauchy numbers in a way similar 
to rational numbers, where “equality” also means that two rational 
numbers belong to the same equivalence class. 

Arithmetic for Cauchy numbers enable the calculation of rates using 
algebraic operations in lieu of limit operations.  In essence this is an 
extension to, and generalisation of, the rules of L’Hospital (or L’Hopital).  

In Euclidean cosmology numbers are considered to be equal if they 
have the same value – i.e. if they are represented by the same point on 
the real line or if their difference is equal to zero. As argued above, 
numbers in Leibnitzean cosmology, being Cauchy sequences, are 
considered to be equal if they belong to the same equivalence class (or 
if their difference is an infinitesimal number – see DIVISION TWO 1.6.3). 

For example: 

In the Euclidean cosmology, L’Hospital states that if h(a) =0 and g(a)=0 
then  

lim	
0→2

	
ℎ(𝑥)
𝑔(𝑥)

= 	
ℎ8(𝑎)
𝑔8(𝑎)
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As indicated in paragraph 1.6.1 of DIVISION TWO, this equality in the 
Leibnitzean cosmology means that the Cauchy sequence formed by the 
left hand side as x converges to a, belongs to the same equivalence 
class as the right hand side when written as a Cauchy number. 

Let 

dx = (δ1; δ2; δ3; ….)  with δn → 0 

be an infinitesimal number and let 

a = (a1; a2; a3; ….) 

be the number a written as a Cauchy number. 

Then: 

lim	
0→2

	
ℎ(𝑥)
𝑔(𝑥)

= 	 lim	
#→:

ℎ(𝑎 + 𝛿#)
𝑔(𝑎 + 𝛿#)

 

	 = 	 lim
#→:

	
ℎ(𝑎# + 𝛿#)
𝑔(𝑎# + 𝛿#)

 

 

Provided that h and g are differentiable. This limit is a real number and 
therefore is an equivalence class of Cauchy numbers. The Cauchy 
sequence 

	 {	
ℎ(𝑎# + 𝛿#)	
𝑔(𝑎# + 𝛿#)

	; 		𝑛 = 1, 2, 3, ….		} 

 

has this real number as limit and it therefore belongs to this equivalence 
class.  

 

But this Cauchy sequence is the Cauchy number 

ℎ(𝑎 + 𝑑𝑥)
𝑔(𝑎 + 𝑑𝑥)

 

 

So that the Left Hand Side (as a real number) is the equivalence class 
containing the Cauchy number 
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ℎ(𝑎 + 𝑑𝑥)
𝑔(𝑎 + 𝑑𝑥)

 

 

For the right hand side one notices that h(a) = 0 and g(a) = 0 so that dh 
and dg can be written as functions of a and dx as: 

 

dh(a,dx) = h(a+dx)-h(a) = h(a+dx) 

dg(a,dx) = g(a+dx)-g(a) = g(a+dx) 

 

Substituting: 

ℎ(𝑎 + 𝑑𝑥)
𝑔(𝑎 + 𝑑𝑥)

= 	
𝑑ℎ(𝑎, 𝑑𝑥)
𝑑𝑔(𝑎, 𝑑𝑥)

	= 		
𝑑ℎ(𝑎, 𝑑𝑥)

𝑑𝑥
	 ∙ 		

𝑑𝑥
𝑑𝑔(𝑎, 𝑑𝑥)

	= 		
ℎ8(𝑎)
𝑔8(𝑎)

 

Where all the equal signs mean “is in the same Equivalence class” and 
hence mean “is the same Cauchy number” 

Thus the above rule of L’Hospital, when written using Cauchy numbers, 
is 

ℎ(𝑎 + 𝑑𝑥)
𝑔(𝑎 + 𝑑𝑥)

= 	
ℎ8(𝑎)
𝑔8(𝑎)

 

Meaning that these two Cauchy numbers belong to the same 
equivalence class.  
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6. Matter in the Leibnitzean Cosmology 
 

In Greece of old, the geometers considered moving bodies to be 
geometrical shapes of which every point of the body is located at some 
point of space at every moment of time. Today this description of motion 
still forms part of Euclidean Cosmology and of Physics.  

Parmenides16 also studied motion, but from a physical perspective 
rather than from geometry. Through the ages his ideas about this were 
considered as laughable because he said among other things that (1) 
motion is an illusion because everything is one and that (2) nothing can 
come into being where it has not existed before. Looking at these ideas 
of Parmenides one can understand why they were not accepted, 
because anyone who ever stubbed his toe knows that motion is not an 
illusion and by looking through a window at passing people, one can see 
them to come into being where they have not existed a second before!  

However, looking through a window one can also see that the earth is 
flat. 

Therefore one should note that the word “illusion”, as used here, can 
have more than one interpretation: For instance, seeing a wave moving 
over water for the first time can be interpreted as an illusion because 
water is seen to move over water, but after the wave has passed all the 
water is still where it was. Nothing actually came into being where it did 
not exist before and it is only our interpretation of what we see that 
noted change. Therefore our interpretation of what we see is biased by 
what we expect through comparison with other experiences. Thus an 
illusion may happen when the brain is not necessarily misled, but when 
the brain does not have the right information to correctly interpret what is 
seen because what happens is outside the range of human perception. 

In the Euclidean cosmology a particle is modelled as a point and as 
such it is discrete, has mass and it is localised; hence it is common to 
think of an electron as a little solid sphere. Points (as spatial entities) do 
not exist In the Leibnitzean cosmology and modelling a particle as an 
infinitesimal is the only viable choice. Hence, in the Leibnitzean 
cosmology, a particle is continuous and is not localised but consists as a 

 
16 Parmenides of Elea. Born c. 515 B.C. 
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set of nested volumes focussed at the place in space where the particle 
is observed. Therefore everything is one because the nested volumes 
reach out through all space, and movement is simply the changing of 
where in space the infinitesimal is focussed. This makes movement an 
illusion because nothing actually moves, and neither does the particle 
come into being where it did not exist before! 

This gives a different perspective on the particle/wave duality. This 
duality has been with us since Huygens’ Principle and the photoelectric 
effect. But these two cases did not bother us, because light has no mass 
and therefore a photon is not a “real” particle. However, the converse 
seems wrong when something that is supposed to be solid 
“dematerialises”. This conflict is eliminated when a particle is modelled 
as an infinitesimal. Therefore the particle/wave duality should not exist in 
the Leibnitzean Cosmology. 

This reveals a possible alternative way of handling this discrepancy in 
Physics - namely starting from an alternative abductive assumption 
about the fundamental nature of space and in so doing also of matter. 
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7. Epilogue to division one 
 

 
What is referred to as “Cantor’s fallacy” in DIVISION THREE belongs to 
the class of fallacies where, in systems stemming from philosophical 
antiquity, evidence contrary to the original abductive assumptions are 
replaced by untrue assumptions that are then universally accepted as 
true. On first sight the (well hidden) logical fallacy is the assumption that 
the limit of a Cauchy sequence can be inferred from the terms of the 
sequence - contrary to the correct use of the appropriate inductive 
argument.  
 
This fallacy is hidden in the common practice of using a Cauchy 
sequence as a numeral for an irrational number, irrespective of whether 
the number is value specified or component specified. It is further 
obscured by the different meanings of the word “Infinite” when used in 
Mathematics. 
 
But, looking closer at the underlying cause of this fallacy, it appears to 
be even more fundamental. 
 
As pointed out above, the assumption of Euclidean Cosmology that 
continuous space is composed of points has as a consequence that 
more than countable many zeros must be summed to a non-zero sum. 
The process of addition requires that the points of (say) the unit interval 
must be identified one by one and for each such point a zero must be 
added to the sum. When the last of the points forming the interval has 
been processed, the total of all the zeros is exactly one and the interval 
has been completely deconstructed. This implies that it is possible to 
perform an infinite (more than countable) number of actions 
(identifications followed by additions). This is an implicit introduction of 
the axiom of choice into the Euclidean cosmology. This is discussed in 
more detail at the end of DIVISION TWO. It also implies that the result of 
these more than countable number of actions is discrete and can be 
identified a posteriori. 
 
Therefore the meaning “never ending” for the word “infinite” does not 
exist in the Euclidean Cosmology. In the Euclidean Cosmology the word 
“infinite” means only “a natural number larger than all other natural 
numbers”, and the phrase “infinite decimal fraction” refers to a string of 
digits of infinite length in some abstracted reality where the values of all 
the digits are known. This could explain why ‘Abstract Mathematics’ is 
such a suitable name to use for Euclidean Cosmology. However, it also 
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raises concern about the use of ordinary digits and numerals in Abstract 
Mathematics. This concern is reflected in the non-acceptability of the 
proof of Theorem 4.1 of Section 4 of Part One of DIVISION THREE in 
the Euclidean Cosmology.  
  
In the Leibnitzean cosmology it is never required to add zeros to get a 
non-zero sum, and the rules of logical induction prohibits the a posteriori 
identification of the limit of a component specified real number. 
Therefore a real number, in the Leibnitzean cosmology, is a place on the 
axis where a “never ending” Cauchy sequence is focussed. In the 
Leibnitzean Cosmology the expression “Infinite string of digits” means 
“never ending string of digits” and the expression “a natural number 
larger than all other natural numbers” has no meaning. 
 
Thus, in the end, “Cantor’s Fallacy” is the assumption that 
Mathematics is a single model and therefore the application of the 
concepts of Euclidean Cosmology to Leibnitzean Cosmology and 
vice versa is acceptable in certain situations. 
 
It is therefore highly appropriate to use Cantor’s name for this fallacy, 
even though his diagonal proof turned out to be simplistic only when 
viewed from the perspective of Leibnitzean Cosmology. In the Euclidean 
Cosmology his argument is not simplistic but is absolutely correct, but 
the list of all decimal fractions in Theorem 4.1 in DIVISION THREE cited 
above is not acceptable. In the Leibnitzean cosmology Cantor’s diagonal 
proof is not acceptable and Theorem 4.1 is correct.   
 
Therefore Cantor’s correct use of the concepts of Euclidean Cosmology 
opened the door to where the Leibnitzean Cosmology was found even 
though the fallacy was mine – looking at the Euclidean cosmology from 
the perspective of the Leibnitzean Cosmology. 
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DIVISION TWO: Space and Numbers 

 

1.  Models of Space 
 

Science’s fundamental assumption about space is that it is infinitely 
divisible. This assumption is accepted by all scientists and 
mathematicians. It means that any piece of space, be it volume, area or 
line, no matter how small, can be divided over and over without ever 
changing its nature. 

 

1.0 Introduction: Basic Construction 
Start with any line and cut it at a convenient place. This creates a 
discontinuity that defines a place in space. This place in space can be 
indicated by the ends of either of the two half-lines formed. Name this 
place in space as O and call it the origin.  

With the choice of a suitable scale it is then possible to construct an 
interval of which the length is any given rational number.  Hence, using 
the line as axis and keeping the usual rules for axes in mind, the line OA 
of length a can be constructed for any given positive rational number a. 
As per conventions, the interval formed by the line OA on the X-axis can 
be indicated by (0;a) i.e. the line (or vector) starting at x=0 and ending at 
x=a. Note that this argument is solely about lines and their lengths so 
that the concept of “point” is not involved and that therefore the concept 
of open and closed intervals is absent as well. Thus x=0 means “at the 
origin” and x=a means “at the end A of line OA of length a” 

Let δ be a positive rational number that is less than a. Construct the 
lines OB and OC of lengths a-δ and a+δ. The line BC forms the interval 
(a-δ; a+δ) of length 2δ on the X-axis with its centre at x=a. Intervals like 
these are then used in the following construction:  

Consider the unit interval from 0 to 1 on the X-axis. Thus d(0;1) = 1 
where d is the distance between the two ends of the interval. This unit 
interval can now be partitioned repeatedly, i.e. cut up into shorter lines, 
by forming sub-intervals in the following way: 
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Starting with the whole interval as partition zero, form successive 
partitions by dividing each interval of the previous partition into three 
equal parts. In this way the nth partition will consist of 3n intervals, each 
of length 3-n. If x = ai

n is at the centre of the ith interval of the nth partition, 
then 

      For i = 1, 2, 3, …, 3n and n = 0, 1, 2, …. [1.0.1] 

But the length of the whole interval is the sum of the lengths of the parts 
so that: 

   1 = 	∑ 𝑑(𝑎H# −		
J
KL
MNLN

HO* 	 , 	𝑎H# +	
*
P
3Q#) for n=0, 1, 2, …. [1.0.2] 

Therefore 

   1 = lim
#→:

∑ 𝑑(𝑎H# −		
J
KL
MNLN

HO* 	 , 	𝑎H# +	
*
P
3Q#)	   [1.0.3] 

The equation [1.0.3] is based solely on the property of space that any 
given line can always be sub-divided. 

 

There are two fundamentally different approaches to describing the 
infinite divisibility of space. The first way is a consequence of what was 
decided in Athens at about 500 B.C. It is a process of synthesising 
space and is studied directly below. It is referred to here as the 
approach of Euclid. The other is a process of analysing space, as is 
done above, and the above construction follows from the approach of 
Leibnitz at about 1700 A.D.  

 

1.1 Euclid 
The basic assumptions of the Mathematical sciences as practiced today 
were made in ancient Greece. At that time the concept of “point” as a 
spatial entity was introduced by philosophers who were fundamentally 
geometers. A notable exception was Parmenides of Elea who also 
argued about the nature of motion (change and coming into being) and 
thus, in today’s classification, was fundamentally a Physicist. 

 The Athenians looked at volumes, areas and lines that extend in three, 
two and one directions and then extended this triplet to include a fourth 
entity. This entity was defined as “That which has no extent”.  

nn
i

ia --
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In DIVISION ONE sections 1 and 4.1 it is argued that this is not a 
definition, but should be treated as an axiom: “There exists a piece of 
space with no extent”, and that in this axiom the word “exists” has its 
literal meaning, namely that a point is a spatial entity, i.e. it is a piece of 
space. 

The introduction of this concept not only gave a tool to refer to a specific 
place in space, but made space complete in the sense that any nested 
sequence of spheres, discs or lines of which the volumes, areas or 
lengths converge to zero in such a way that their maximum diameters 
converge to zero, will have a spatial object (a point) as limit.  

For intervals as used in section 1.0, this means that, if a is any point, the 
sequence of nested intervals  

   {(𝑎 −	*
P
3Q# ,𝑎 +	*

P
3Q#) : n= 0,1,2,3…}  

has an interval (a), consisting of the single point a, as limit. This is 
because a is a point that belongs to all of these intervals.  Thus 

   (𝑎 −	*
P
3Q#	, 𝑎 +	*

P
3Q#)#→:

RHS  = (a) 

Also 

   d(𝑎 −	*
P
3Q# ,𝑎 +	*

P
3Q#) = 3Q# 

 

So that 

   		d(𝑎 −	*
P
3Q#	, 𝑎 +	*

P
3Q#)#→:

RHS = 𝑑(𝑎)   [1.1.1] 

Here d(a) is the length of a single point and thus d(a) = 0. 

 

But a second assumption about space was made by the philosophers in 
Greece. This assumption was that space is formed (synthesised) from 
points. This implies that any interval consists of a string of points.  

This is a second fundamental assumption about the nature of space 
(The first was that space is infinitely divisible). On a philosophical level 
this assumption means that anything that is continuous is formed from 
discrete entities. This assumption will be called the Euclidean 
Cosmology. 
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This second assumption is the reason why the concept of “more than 
countable” had to be introduced into Mathematics: 

 Let B = { αβ } be the set of points forming the unit interval and let the 
cardinality of B be Γ. Each αβ is a point and thus d(αβ) = 0. But, 
according to the second assumption above, the total length of the 
interval must be the sum (not the limit) of the lengths of all the points 
forming the interval: 

   1 = 	∑ 𝑑(𝑎UV
U )      [1.1.2] 

(Where the notation does not conform to any standards, but is hopefully 
self-explanatory.)  

In this sum every d(αβ) is zero. But the sum of a finite number of zeros is 
zero, and the sum of a countable number of zeros, being the limit of its 
partial sums, must then also be zero. This implies that Γ cannot be either 
finite or countable. Thus Γ has to be more than countable i.e. it requires 
more than countable many zeros to add up to the non-zero number one. 

Equation [1.1.1] is also true for any one of the real numbers αβ  so that 
the same argument as above results in 

    	d(𝑎U −	
*
P
3Q#	, 𝑎U +	

*
P
3Q#)#→:

RHS = 𝑑(𝑎U) 

So that equation [1.1.2] becomes 

   1 = 	∑ 	d(𝑎U −	
*
P
3Q#	, 𝑎U +	

*
P
3Q#)#→:

RHSV
U    [1.1.3] 

 

Note that this assumption is also an implicit introduction of the axiom of 
choice into the Euclidean Cosmology: In order to perform the sum of 
zeros, consecutive points from the interval has to be chosen one by one 
and for each a zero has to be added to the sum. Moreover, when the 
last point is processed, the interval would have been deconstructed and 
the sum would be exactly one. Thus it is not only possible to perform an 
infinite number of operations, but in the end the result is discrete and 
identified. 
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1.2 Leibnitz: Integrals 
Leibnitz and Newton both developed tools to study motion. Newton used 
fluxions and Leibnitz used infinitesimals to describe the rates at which 
bodies moved and accelerated. Although Newton’s notation is still 
sometimes used in Mechanics, the notation introduced by Leibnitz 
survived in general use. 

The word “infinitesimal” is pidgin Latin for “a little thing at infinity” and, 
even today when physicists use the word, the intended meaning is “a 
number that is zero, but not completely so”. 

Leibnitz introduced the notation  

W 𝑓(𝑥)𝑑𝑥
Y

2
 

for his process to determine the area under the graph of y=f(x) between 
the values x=a and x=b. This is called an integral and dx is an 
infinitesimal number (and hence f(x)dx is an infinitesimal number too) 
and the integral sign is an elongated “S” to denote an infinite (but also 
not completely so) sum of infinitesimals. Therefore an integral can be 
imagined to be an (almost) infinite sum of (almost) zeros, and hence it is 
alike to the indefinite form ∞ ∙ 0 as studied by L’Hospital. This aspect is 
discussed in more detail in the following paragraphs. 

The evaluation of integrals like these is done using Riemann sums. To 
do this the interval (a,b) is partitioned into sub-intervals and the areas of 
rectangles, each with a part of the partition as base and with its height 
equal to the function value at some point of that part of the partition, are 
summed to approximate the area under the curve. The required area 
under the curve is then the limit of these sums as the number of parts in 
the partition tends to infinity in such a way that the length of each part 
tends to zero. 

In order to come to an understanding of the way that Leibnitz was 
thinking, one notes that Leibnitz introduced the concept of “infinitesimal” 
to study integrals and rates of movement. Thus it is advantageous to 
look at a simple integral In order to get a grip on his thinking about this 
concept. The following is the simplest possible integral. It is to determine 
the area under the line f(x)=1 between the values x=0 and x=1: hence it 
is the area of a square of side length one.   
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Thus:  

W 1 ∙ 𝑑𝑥
*

+
= 1 

In this case the height of all the rectangles in the Riemann sum is one, 
and the Riemann sum is not an approximation anymore but is exactly 
one for all possible partitions. Thus, using the set of partitions as 
described in section 1.0 the integral becomes: 

   1 = lim
#→:

∑ 1 ∙ 𝑑(𝑎H# −		
J
KL
MNLN

HO* 	 , 	𝑎H# +	
*
P
3Q#)   [1.2.1] 

Which turns out to be a restatement of equation [1.0.3]. 

This is an extremely simple set of partitions, but as such they are 
suitable to study the process of refining partitions: 

Drawing a few lines of unit length and filling in the partitions for n=0, 
n=1, n=2… the following conclusions become obvious (but can 
rigorously be shown to be true): 

• Once x=𝑎H# is in the middle of a part of a partition for some value 
of n and some value of i, it will be in the middle of a part of a 
partition for all subsequent values of n and the consequential 
value of i.  

• This property can be used to generate sequences of nested 
intervals using parts from consecutive partitions as n increases, 
e.g. 

{(*
P
 −	*

P
3Q# , *

P
 +	*

P
3Q# ) ; n=0, 1, 2, ….} ;  

{(*
Z
 −	*

P
3Q# , *

Z
 +	*

P
3Q# ) ; n=1, 2, 3, ….} ;  

{([
Z
 −	*

P
3Q# , [

Z
 +	*

P
3Q# ) ; n=1, 2, 3, ….} ; 

etc 

 

In DIVISION THREE such sets of nested intervals are called 
infinitesimals, which are defined in DIVISION THREE: PART TWO: 
Section 3.1.3 as:  
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Definition 
A sequence of nested volumes, areas or lines of which the maximum 
diameters converge to zero is called an infinitesimal volume, - area or 
- line (or simply an “infinitesimal” as is the common practice) 
        
1.3 The need for two models for Space 
There are two fundamentally different abductive assumptions about the 
nature of Space to be considered here. The first is what was decided in 
Athens at about 500 B.C. and is referred to here as the approach of 
Euclid. The other follows the approach of Leibnitz at about 1700 A.D. 
The approach of Leibnitz turns out to be in line with the thoughts of the 
Greek philosopher Parmenides of Elea who lived during the sixth and 
the fifth century B.C. 

These two models are distinguished in that the Euclidean approach 
leads to Space being synthesised using points while the Leibnitzean 
approach leads to Space being analysed using infinitesimals. The 
question arises of whether these two models for space are compatible. 

Two heuristic arguments to evaluate the compatibility of the Euclidean 
cosmology and the Leibnitzean approach can be based on the previous 
paragraphs: 

• The first relate to the question of whether the concept of “point”, 
as defined in the Euclidean cosmology, should be used in the 
Leibnitzean approach. To judge this, one should note that any 
number that is not of the form specified in expression 1.0.1 will 
eventually fall outside the intervals of any given infinitesimal as n 
becomes larger and larger. Therefore, if points as defined in the 
Euclidean approach should be introduced into the Leibnitzean 
approach, only points on the real line corresponding to numbers 
of the form 1.0.1 can be the limits of the infinitesimals. This 
implies that, should the limit of equation 1.2.1 as n tends to 
infinity be considered, the sum of the lengths of all points of this 
form will add up to one. But these points form a subset of the set 
of rational numbers and hence the set of these points is 
countable. Therefore, if space is assumed to be synthesised 
from points in the Leibnitzean approach, a countable number of 
zeros will sum to a non-zero total. This indicates that the 
assumption that space is formed from points should not be made 
in the Leibnitzean approach. 
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• The second relates to a comparison of equations 1.2.1 and 1.1.3: 

1 = lim
#→:

∑ 𝑑(𝑎H# −		
J
KL
MNLN

HO* 	 , 	𝑎H# +	
*
P
3Q#)  [1.2.1] 

And 

1 = 	∑ 	d(𝑎U −	
*
P
3Q#	, 𝑎U +	

*
P
3Q#)#→:

RHSV
U   [1.1.3] 

These two equations relate to the same analysis of the unit interval and, 
apart from some imaginative indexing, are identical but for the order of 
the sums and the limits. But these two equations cannot be 
converted into each other because the sums and the limits cannot 
be interchanged in these equations. (a conclusion underscored by the 
need for improvised indexing).  

These two heuristic arguments suggest that the Euclidean- and the 
Leibnitzean approaches are not compatible. Thus two alternative and 
parallel sub-models for Mathematics, based on two non-compatible 
abductive assumptions about the nature of Space, follows from these 
two approaches. 

1.4 The Leibnitzean Cosmology 
There are two things to notice about expression 1.2.1: 

The first is that the sum ranges over non-zero quantities – no matter 
how large the value of n. Therefore there is no need here to introduce 
the concept “more than countable”. 

The second is that the limit is taken for the sum, and not for the 
partitions. Therefore there is also no need to introduce the concept of 
“point” as a property of space. 

Hence, if Remark 1.3 above is taken into consideration, this leads to the  

Leibnitzean Cosmology: 

Any continuum, no matter how big or how small, is composed of smaller 
continua, no matter how small17. 

 
17 It is fun to pun the well-known quip about fleas: 
Big fleas have little fleas upon their backs to bite them, and little fleas have lesser fleas, and so ad 
infinitum 
As: Big space has little space that sum to what is in it, and little space has lesser space and so on 
without limit. 
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This implies that a point, as a spatial entity, cannot form part of the 
Leibnitzean Cosmology because a point cannot be divided into two parts 
of non-zero extent. 

Without the concept of “point” as a spatial entity, any discrete object has 
extent and is a continuum. Thus, on the philosophical level, in the 
Leibnitzean Cosmology whatever is discrete is formed from continuous 
entities. 

 

1.5 Remark: Points and Infinitesimals 
The concept of “point” is central to the Euclidean Cosmology but it has 
no role as a spatial entity in the Leibnitzean Cosmology. However, 
“point” is a handy word to use to refer to a “place in space”.  

The way that the concept of “point” was introduced above, was done on 
purpose in such a way that the point was at the end of a given line. In 
Geometry the endpoints of lines, or vectors, are handy discontinuities to 
indicate places in space.  

Note 

While discussing the expression on the right in paragraph 1.1, a point 
(as per the Euclidean Cosmology) was identified with the following limit: 

(𝑎 −	*
P
3Q#	, 𝑎 +	*

P
3Q#)#→:

RHS  = (a) 

 

Where the right hand side, denoted by (a), is an interval of length zero 
consisting of the point a as a spatial entity. This point a, being a limit for 
the set of nested intervals of which the maximum diameters converge to 
zero, made space complete in the Euclidean Cosmology. 

The intervals in the left hand side of this equation form a nested 
sequence of intervals, focussed at the endpoint a of the line (0;a) (as per 
the Leibnitzean Cosmology).  

Thus, in the Euclidean Cosmology this limit exists as the spatial point a, 
but in the Leibnitzean Cosmology there is no corresponding spatial 
entity that can serve as a limit. Thus the sequence of nested intervals is 
a never ending sequence that is focussed at the endpoint of the line at 
a. Therefore space is not complete in the Leibnitzean cosmology. 
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Thus an infinitesimal is a never-ending sequence of volumes, surfaces 
or intervals for which no limit exists. 

In the Leibnitzean Cosmology there is no harm in retaining the word 
“point” (as a shortening of “endpoint of a vector”) to have available for 
use when working with numbers; as long as it is used only to indicate 
the place in space where a line ends and is not used as a building block 
for a continuum. Therefore, in the Leibnitzean Cosmology, a point is 
simply the place in space where a line ends and thus a point is a 
property of a line and not a property of space. 

Note that every infinitesimal is focussed at a place in space that can be 
indicated by a discontinuity like the end of a line.  

 

1.6 Leibnitz, Riemann and L’Hospital  
These three are the originators of all the ideas formulated here, but they 
never realised that they should move away from the Euclidean 
Cosmology. A look at a possible analysis of their thinking is in order.  
The ultimate goal of this is to motivate the extension of the number 
system that is in use in the Mathematical Sciences, to include the 
Cauchy Numbers of which the infinitesimal numbers form a subset.  

1.6.1 Leibnitz 
Leibnitz and Newton lived in the same era. That was the time when 
Newton’s Laws were formulated during a renewed interest in Mechanics 
due to the introduction of the heliocentric model for our solar system. 
The aim was to describe and predict the motion of particles and bodies. 
Both Newton and Leibnitz developed tools to study Mechanics. In their 
systems of describing the way that bodies moved, Newton used fluxions 
and Leibnitz used infinitesimals. Although Newton’s notation is still 
sometimes used in Mechanics, the notation introduced by Leibnitz 
survived in general use. 

To describe the motion of a particle Leibnitz18 had to find ways to 
determine the gradient of the tangent to the graph of the function y = f(x) 
at the point x=a in the XOY–plane and the area under the graph of 
y=f(x) between the values x=a and x=b.  

 
18 Gottfried Wilhelm (von) Leibniz  1/7/1646 – 14/11/1716 
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To find the gradient of the tangent, he started with a sequence of 
numbers 

	{𝛿𝑥# ; n=1; 2; 3 …}  

that converges to zero. He used this sequence to generate two 
sequences of nested intervals 

  {(a , a+𝛿𝑥#) ; n=1; 2; 3 …}  

each of length 𝛿𝑥# and  

{(f(a) , f(a+𝛿𝑥#)) ; n=1; 2; 3 … } 

each of length 𝛿𝑦# = f(a+𝛿𝑥#) - f(a) using the usual sign conventions. 

The gradient of the tangent at x=a is then 

lim
#→:

𝛿𝑦#
𝛿𝑥#

 

This limit is of the indefinite form 0/0. 

At this point Leibnitz must have realised that lim
#→:

𝛿𝑥# and lim
#→:

𝛿𝑦# 
cannot be the number zero of the Euclidean Cosmology. He therefore 
defined a new class of numbers to augment the number zero and called 
them the Infinitesimal numbers.  

Leibnitz introduced the notation dx and dy to denote the infinitesimal 
numbers that are the limits of the above sequences	{𝛿𝑥#} and	{𝛿𝑦#}. 
Thus 

lim
#→:

\]N
\0N

 = ^]
^0

 

 

Note 

This new kind of number was defined as a purely abstract concept by 
Leibnitz. In the present paradigm of the Mathematical Sciences there 
are no numerals for infinitesimal numbers, but they are visualised by 
some as numbers that are small enough to be the limits of sequences 
that converge to zero, but are still large enough to use in calculations. 
The limits of the sets of nested intervals above can then also not be 
points, but must be new spatial entities called infinitesimals which are 
visualised as intervals of almost zero length. However, with our 
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awareness of the existence of transfinite numbers in the paradigm of 
Mathematics, these new infinitesimal numbers are immediately 
recognised as a separate class of cisfinite19 numbers.  

The introduction of infinitesimals and infinitesimal numbers created a 
structural discrepancy in the Euclidean Cosmology: While zero and 
infinitesimal numbers can comfortably co-exist in a number system, 
points and infinitesimals are two different types of spatial entities, and a 
sequence of nested intervals of which the lengths tend to zero cannot 
have two different spatial entities as limits20.  

The only way in which this conflict can be resolved is to formulate a 
second alternative model for Space in which a nested sequence of 
intervals of which the lengths converge to zero does not need to have a 
point as limit. This alternative model for Space is the Leibnitzean 
Cosmology.  

Another reason why Leibnitz would have wanted to have an infinitesimal 
of length dx available to use as an interval of length almost zero at the 
point x on the X-axis, is to be able to calculate the area under the graph 
of the function y=f(x) between the values x=a and x=b. In this case, the 
product f(x)dx is an infinitesimal representing the area of a rectangle 
based on the infinitesimal and with height equal to the value of the 
function at that place on the axis. An “almost infinite” sum of these 
“almost zero” areas will then be the required area under the graph. 
Leibnitz used the notation  

W 𝑓(𝑥)𝑑𝑥
Y

2
 

for this process. The integral sign is an elongated “S” to indicate this 
“almost infinite” sum. 

This operation is an indefinite form of type ∞ ∙ 0. 

1.6.2  Riemann 
The repeated partitioning of an interval into subintervals to generate 
repeated approximations to the value of the integral was proposed by 

 
19 A cisfinite number is defined as a non-negative number that is less than all positive numbers. 
20 The proper study of Topology happened only after the death of Leibnitz so that he probably was 
not aware of this discrepancy. 
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Riemann. The limit of these approximations was the value of the 
integral. 

The value of his insight is that he moved away from the sum of the 
limits, as Leibnitz did, to the limit of the sums. But he failed to notice the 
relationship between the various parts of consecutive partitions so that 
he never noticed the possibility of defining infinitesimals as sequences 
of intervals instead of as intervals like Leibnitz did. 

Once the sequences of intervals that are called infinitesimals in the 
Leibnitzean Cosmology is recognised it is but a small step to realise that 
they can be organised to form a directed set by introducing a pre-order: 

Let A and B be two infinitesimals. Then A > B means that all intervals 
forming the infinitesimal B are subintervals of an interval that is a part of 
the infinitesimal A 

In the set of partitions of the basic construction of SECTION 1.0 the first 
infinitesimal of the directed set of infinitesimals is 

A = {(*
P
 −	*

P
3Q# , *

P
 +	*

P
3Q# ) ; n=0, 1, 2, ….}    (a) 

The second and third members of the directed set are 

 

B1 = {(*
Z
 −	*

P
3Q# , *

Z
 +	*

P
3Q# ) ; n=1, 2, 3, ….}    (b) 

 

and 

 

B2 = {([
Z
 −	*

P
3Q# , [

Z
 +	*

P
3Q# ) ; n=1, 2, 3, ….}    (c) 

 

Thus A > B1 and A > B2 but B1 and B2 are not comparable, e.t.c. 

The integral is then defined as a net defined on this directed set into the 
real numbers like in DIVISION 3 where the net is into the Cauchy 
numbers that are still to be defined here.  
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1.6.3  L’Hospital 
L’Hospital studied the indefinite form 0/0 that is formed from the quotient 
of two functions h and g at the point x=a when both h(a)=0 and g(a)=0.  

The rule of L’Hospital then states that 

lim	
0→2

_(0)
`(0)

= 	 _
a(2)

`a(2)
      [A] 

Let {𝛿#} be a sequence of rational numbers that converges to zero. Let 
𝑎# = 𝑎 + 𝛿#. Then the sequence of numbers X = {𝑎#} is a Cauchy 
sequence that converges to a and the lines (𝑎, 𝑎#) form a nested 
sequence of intervals of which the lengths converge to zero (Thus the 
set of intervals is an infinitesimal focussed at a).  

Also, if the functions h and g are smooth enough, then H = {ℎ(𝑎#)} and 
G = {𝑔(𝑎#)} are two Cauchy sequences of numbers that converge to 
zero because both h and g are zero at x=a. 

Using this notation, the Rule of L’Hospital [A] can be stated as 

lim
#→:

_(2N)
`(2N)

= 	
bcd
N→e

f(gN)
hN

bcd
N→e

i(gN)
hN

		j= 	
kf
kl(2)
ki
kl(2)

m    [B] 

 

Stated like this, the rule of L’Hospital points out a way to find numerals 
for infinitesimal numbers and a useful definition of infinitesimals by the 
following argument: 

The equality [B] is an equality of real numbers. This means that the 
equivalence class of Cauchy sequences on the left hand side is the 
same as the equivalence class of Cauchy sequences on the right hand 
side. 

The equivalence class formed by the left hand side is the limit of the 
Cauchy sequence 

{
ℎ(𝑎#)
𝑔(𝑎#)

; 	n = 1,2, … } 

and hence this Cauchy sequence belongs to this equivalence class.  
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But this Cauchy sequence is a comparison of the rates of convergence 
of the two Cauchy sequences 

𝐻 = {ℎ(𝑎#): 𝑛 = 1,2,3, … } 

And 

𝐺 = {𝑔(𝑎#): 𝑛 = 1,2,3, … } 

Which both converge to zero. 

Define division of these two Cauchy sequences of rational numbers as 
term-wise division (provided that not more than a finite number of the 
values of g are zero): 

𝐻
𝐺
= r

ℎ(𝑎#)
𝑔(𝑎#)

∶ 𝑛 = 1,2,3, . . t 

Let 

𝑋 = {𝛿#: 𝑛 = 1,2,3, … } 

Then, twice using the same argument as above, the two limits appearing 
in then right hand side  

lim
#→:

_(2N)
\N

   and  lim
#→:

`(2N)
\N

 

Become 
v
w
   and  x

w
 

So that the rule of L’Hospital can be written as 

v
x
= 	

v
w
x
w

y   

In this form the rule of L’Hospital states that the rates of convergence of 
two Cauchy sequences that converge to zero can be obtained by 
comparing their rates of convergence relative to a “gauge” Cauchy 
sequence that converges to zero. He thus transformed the process of 
determining rates of convergence to algebraic operations on known 
rates of convergence. 
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Notice that comparison of the two forms of the right hand side implies 
that 

v
w
= 	 ^_

^0
   and  x

w
= 	 ^`

^0
 

So that the infinitesimal numbers dh, dg and dx can be defined as the 
Cauchy sequences 

dh = {ℎ(𝑎#)} ; dg = {𝑔(𝑎#)} and dx = {𝛿#}  

 

which all converge to zero: i.e. they are all equivalent to 0 = {0; 0 ;0; ….} 

The above motivates the following definition of the Cauchy Numbers 
(This is fully done in DIVISION THREE; PART TWO Section 3.1.1): 

The Cauchy sequences that are the elements of the equivalence 
classes that form the real numbers, are defined as the Cauchy 
Numbers. The Cauchy numbers that are equivalent to zero are the 
infinitesimal numbers and the arithmetical operations for Cauchy 
numbers are performed component wise. 

With this definition, the component-wise application of the arithmetical 
operations implies that the limiting process can be replaced with an 
arithmetical process and the rule of L’Hospital can be derived as follows: 

It was shown above that because h(a)=0 and g(a)=0 the Cauchy 
numbers dh, dg as well as dx are all infinitesimal numbers. Therefore, at 
x=a 

𝑑𝑓
𝑑𝑔

= 	
𝑑𝑓
𝑑𝑔

∙
𝑑𝑥
𝑑𝑥

= 	
𝑑𝑓
𝑑𝑥

𝑑𝑔
𝑑𝑥

y  

 

Note that the sign “=” means “is the same equivalence class” when used 
with real numbers and has the meaning “belong to the same 
equivalence class” when used with Cauchy numbers. With this and the 
definition of the arithmetical operations for Cauchy numbers in mind, the 
above operation is validated by the fact that the rational numbers that 
form two equivalent Cauchy numbers are asymptotically equal.  
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One should also note that this implies that these operations are not 
limited to infinitesimal numbers only, but are valid for all Cauchy 
numbers. For example, division of a rated number21 by an infinitesimal 
number will have an infinite Cauchy number (a divergent sequence) as 
result. 

  

 
21 A rated Cauchy number is a Cauchy sequence that has a finite non-zero real number as limit. 
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2.  Numerals and the numbers they represent 
 

2.0 Introduction 
The ideas mentioned here about numerals are best explained when 
limited at first to natural numbers. 

The word “numeral” has all but disappeared from the English language, 
and its place has been taken by misuse of the word “number”. The word 
“number” denotes an abstract22 concept, best explained by referring to a 
natural number as a class of sets with the property that they can be 
mapped one-to-one onto each other. The word “numeral” denotes a 
physical entity, usually a symbol, which is associated with a number. For 
example the class of sets which can be mapped one-to-one onto the set 
{X ; X ; X} has as numerals the symbols 3 (a morph of the original 
symbol ≡), the roman numeral III, the binary numeral 11 and even 
FFFFFFTT as a byte in computer storage. 

Addition, subtraction, multiplication, division and checking for equality of 
numbers can only be done by counting (mapping sets onto each other). 
When numerals are used certain actions (Arithmetic or computer 
operations etc.) for the manipulation of numerals can be performed to 
form new numerals and in so doing eliminate the necessity to count. 
(The Romans used tiles on tables as abaci. Therefore roman numerals 
are essentially a notation for abacus settings and are not amenable to 
arithmetic as we know it.) 

In modern culture numerals for natural numbers, whole numbers and 
rational numbers have evolved over time so that these numerals are 
now standardised for the western decimal system. As a result the most 
important properties that we require that numerals should have now are 
(1) that each should identify the number that it represents uniquely, (2) 
that it should denote the value of the number unambiguously (3) that it 
allows a simple arithmetic and (4) that different numerals should be 
easily distinguishable. (Here the phrase “denote the value of a number” 
means that, given any two numerals, it can be decided which of the 

 
22 The word “abstract” is of Latin origin and its literal meaning is to “pull out of” - in this case it is 
pulled out of the reality that is experienced day to day – and thus it describes the nature of some 
essential property of reality. 
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numbers that they represent is the larger or whether they are equal. This 
is usually done using subtraction)  

The numeral of a positive rational number is called a common fraction 
and it is formed by writing the numerals of two natural numbers one 
above the other with a line between them indicating division. The 
numeral on top is called the numerator and the one below the line is 
called the denominator.  

Note that two rational numbers are equal if their difference is zero. 
Subtracting the two numerals 2

Y
  and z

^
 and setting the result to zero, 

shows that the set of rational numbers is divided into equivalence 
classes where these two numbers are equal iff they belong to the same 
equivalence class: i.e. if and only if ad = bc. 
 

When the division used in the numeral is actually performed by using 
the arithmetical process of “long division” the result is a decimal fraction. 
This decimal fraction is either of finite length or it is never ending. In the 
latter case it is an “infinite decimal fraction”. 

Note that an infinite (never ending) decimal fraction cannot be a 
numeral, as described above, without additional information because the 
value of the number cannot be inferred unambiguously from such an 
infinite decimal fraction. This is illustrated by the following example as 
given in DIVISION THREE, PART ONE Section 1: 

Example A 

Let 

b = 0.b1b2b3b4… 

Be an infinite (never ending) decimal fraction. 

Consider a second infinite decimal fraction that is derived from b: 

b* = 0.b*1b*2b*3b*4… 

where 

b*n = 7 if the two strings of digits “b1b2b3b4….bn” and 
“bn+1bn+2bn+3bn+4….b2n” are identical  

and  

b*n = bn if these two strings are not identical. 
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It is in principle possible to detect if b ≠ b* but it is impossible to detect if 
b = b*.          

■ 

Thus it appears to be possible to change the numeral of a rational 
number into a non-numeral. But it is well known that an infinite decimal 
fraction generated from a rational number is a never ending repetition of 
an unchanging substring of digits, where the length of the repeating 
substring cannot exceed the value of the denominator. This allows the 
infinite decimal fraction to be changed back into a numeral by writing 
this repeating string only once, but with dots over the first and last digits 
of the string. 

For example 7. 1
•
23
•
 is a numeral for the never ending decimal fraction 

7.123123123…..and therefore it is known that the string “123” is 
repeated indefinitely. 

This numeral can be transformed back into a common fraction as 
follows: 

let 

𝑎 = 7. 1
•
23
•
  

Then 

1000𝑎 = 7123. 1
•
23
•
  

Subtracting: 

999𝑎 = 7116. 

Thus 

 

 

There are two important points underlined by this example.  

333
2372

999
7116

==a
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The first is that two infinite decimal fractions were subtracted from each 
other contrary to the requirement that only numerals can be subtracted 
using arithmetic, even though it was argued above that an infinite 
decimal fraction cannot be a numeral as is required. This indicates that 
the important aspect of infinite decimal fractions is not the presence of 
infinitely many digits, but rather that the information about the number 
should be complete.  

Definition 

An object will be called identified if all relevant information about it are 
known. 

 

The second is that, if the repetitive nature of “123” is not stated explicitly, 
this procedure cannot be done. Looking at the symbol 7.123123123…... 
without knowing that the string “123” is repetitive, adding the next digit to 
the symbol may well result in 7.1231231239….. This introduces an 
insurmountable obstacle in Mathematics: it is not possible to identify 
the nature or the limit of a sequence by looking at the terms of the 
sequence.23 

Notice that this is the reason why equality cannot be decided in Example 
A.  

The nature of this enigma is investigated in the next paragraph by 
looking at an example that illustrates on a fundamental level some 
aspects of its impact on Mathematics. 

Note that when a numeral exist for a number, there is a one-to-one 
relationship between the words “number” and “numeral” up to 
equivalence of the numerals, hence nothing is lost using the word 
“number” for both, as has become common but may be misleading. 

 

  

 
23 This is an inherent property of all inductive reasoning. In the medical profession it appears in 
diagnosis and in the legal profession circumstantial evidence can prove a case only “beyond 
reasonable doubt”. 



58 
 

2.1 Real Numbers 
The study of real numbers is based here on an analysis of the following 
example: 

 

 

 

 

 

 

 

Using Pythagoras’ Theorem for a right triangle of which both catheti are 
of length one, the hypotenuse - and hence also the line OA - has the 
length √2.  

However, it is easy to prove that the number √2, i.e. the value of the 
square root function f(x)=√x at x=2, cannot be a rational number.  

Thus it is necessary to extend the number system beyond the rational 
numbers in order to make it possible to assign a value to the length 
(extent) of the hypotenuse of this triangle. In this extension of the 
number system, the value assigned to √2 must be such that the square 
root function f(x) = √x is continuous at the value x=2. This requires that 
the new number should be such that its square equals 2.  

Note that the value of the number assigned to √2 is a number and not a 
numeral.  

The quest for a numeral to represent this number can be investigated by 
looking at the following example, where the value of √2 is approximated 
to any required degree of accuracy from below by a sequence of rational 
numbers: 

Since 12 = 1 and 22 = 4 it is clear that the value of the number that is to 
be used in this approximation is somewhere between 1 and 2. The 
following list of numbers can then be tried as candidates for the next 
approximation: 

1.12 = 1.21 ; 1.22  = 1.44 ; 1.32 = 1.69 ; 1.42 = 1.96 ; 1.52 = 2.25 

0 1 A  X 

√2  
1 
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Since 2.25 is larger than 2, it is clear that the value of the number that is 
to be used is somewhere between 1.4 and 1.5 and the number 1.4 
differs by less than 10-1 from the targeted value while still being less 
than the number itself.  

This process can be repeated indefinitely and yields a sequence of 
numbers  

1.4 ; 1.41 ; 1.414 ; 1.4142 ; 1.41424 ; ….. 

Of which the nth term deviates by less than 10-n from the targeted value. 
These are all rational numbers and form a non-decreasing sequence. 
This sequence is a Cauchy sequence in the difference topology on the 
rational numbers. 

On the given X-axis the points corresponding to each of the terms in the 
above sequence can be identified. The first term coincides with the point 
at x = 1, the second with the point at x = 1.4 and so forth. The length of 
the line OA is √2 and A is the point representing the number √2. 

The difference topology for the rational numbers and the Euclidean 
topology for points on the line are identical under the mapping described 
above. Thus these points also form a Cauchy sequence in the Euclidean 
topology on the line and therefore converge to the endpoint A of the line. 
Hence, on the x-axis, there exists a limit point for the Cauchy sequence 
of points, and this limit is identified as the point A. 

Note that in the Euclidean Cosmology this point is a spatial entity and in 
the Leibnitzean cosmology it is the place in space indicated by the 
endpoint of the line (vector) OA. 

Remark: The possibility to identify the limit point for the Cauchy 
sequence is rare. In the case above it follows from the geometrical 
construction and not from numerical considerations.  

In the above example the value of a function was given as the desired 
number and a Cauchy sequence of rational numbers (numerals) was 
generated to approximate it. But, according to Jacobi, “Mann muss 
immer umkehren”. Therefore one should also start from a given Cauchy 
sequence of rational numbers and from there progress to its unknown 
limit.  

Thus, using the never-ending Fibonacci sequence 

1 ; 1 ; 2 ; 3 ; 5 ; 8 ; 13 ; 21 …. 
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a never-ending string of digits 

1123581321…. 

can be formed. This string can then be used to form the a never-ending 
sequence of numerals 

1 ; 1.1 ; 1.12 ; 1.123 ; 1.1235 ; 1.12358 ; 1.123581 … 

These numerals all represent rational numbers. They form a Cauchy 
sequence of non-decreasing rational numbers and, as before, the 
corresponding points on the x-axis can be identified. They also form a 
Cauchy sequence in the Euclidean topology and, as before, the 
sequence converges to a point. But although this point exists it cannot 
be identified. 

This leads to the familiar 

Definition: The limit of a Cauchy sequence of rational numbers is called 
a real number.  

 

To emphasise: This is a number and not a numeral. 

 

Note: 

The Cauchy sequence 

1.4 ; 1,41 ; 1.414 ; 1.4142 ; 1.41424 ; …..   [a] 

is usually written in condensed form as 

1.41424 …..       [b] 

And the Cauchy sequence 

1 ; 1.1 ; 1.12 ; 1.123 ; 1.1235 ; 1.12358 ; 1.123581 … 

In condensed form as 

1.123581321…. 
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Definition 

Either one of the above forms [a] or [b] will be called the Cauchy Base 
for the real number √2.  

Thus, for a specific real number, the form of the Cauchy base is unique 
and is distinct from all other Cauchy sequences converging to that real 
number. 

Definition 

The vector 

(1.4 ; 1,41 ; 1.414 ; 1.4142 ; 1.41424 ; …..) 

will be called the Cauchy form for the number √2. 

In the first case studied above, a required value √2 was given and a 
Cauchy base for this number was formed by constructing a Cauchy 
sequence that converges to this number.  

Definition 

When the value for a real number is specified the number is called 
value specified. 

Note that this specified value is used to construct the Cauchy base. 
Therefore this is a deductive process. 

 

In the case of the Fibonacci sequence a Cauchy base was constructed 
and this then defined the real number that is its limit.  

Definition 

When a real number is specified as the limit of a given Cauchy 
sequence, the real number is called component-specified. 

Note that in the latter case the Cauchy base is constructed using the 
Cauchy sequence. The value of the limit is unknown and therefore this 
is an inductive process. 

 

To sum up: 

For a value specified real number, the number is given and a Cauchy 
sequence of rational numbers is set up to have the number as a limit. 
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And: 

For a component specified real number, a Cauchy sequence of rational 
numbers is specified and the real number is its (usually unknown) limit. 

 

The real Line 

In the Euclidean cosmology the above definition of a real number 
causes the set of points corresponding to the rational numbers to be 
dense in the set of all points of the line. Thus a sequence of such points 
can be found to converge to any given point on the line. Hence there is 
a one-to-one order preserving homeomorphism between the real 
numbers and the points of a line. This correspondence is called the real 
line.  

In the Leibnitzean cosmology it is assumed that every line has a definite 
length. Thus any given Cauchy sequence of rational numbers can be 
used to set up an infinitesimal that is focussed at the endpoint of some 
line. Conversely, any given line from the origin can be used to set up a 
Cauchy sequence of rational numbers to form an infinitesimal that is 
focussed at its endpoint, as was done in the introduction. Hence there is 
a one-to-one correspondence between the real numbers and all 
possible lines from the origin on the axis. This correspondence is also 
called the real line in the Leibnitzean cosmology. 

 

Remark: 

In the Euclidean Cosmology, there are more than countable many value 
specified real numbers. This is because, in this case, there are more 
than countable many points on the real line and for any given point a 
Cauchy sequence can be set up to converge to that point.  

In the Leibnitzean Cosmology, Theorem 4.1 of DIVISION THREE, PART 
ONE Section 4 shows that there are countable many Cauchy Bases for 
real numbers. The following theorem extends this result to the set of all 
Cauchy sequences and hence that the set of the limits of all given 
Cauchy sequences is countable. 

Not every Cauchy sequence that defines a real number is necessarily a 
Cauchy base for that number because a Cauchy base is required to be 
of a specific form - it has to be a never ending string of digits: 
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Theorem: Any Cauchy sequence of rational numbers is equivalent to 
the Cauchy base of some real number. 

Proof: 

Let {an} be any Cauchy sequence of rational numbers.  

In the definition of a Cauchy sequence, set εn = 10-n. Then there exists a 
natural number Nn such that |ar – as| < 10-n for all r,s ≥Nn. Thus all the 
numbers in the subsequence {as : s ≥Nn} can only differ after digit 
number n, and by an amount of at most 10-n. Let bn be the rational 
number formed by truncating any one of these fractions, say fraction 
number Nn, after digit number n. Then {bn} is a Cauchy sequence of non-
decreasing rational numbers equivalent to {an} and it is the Cauchy form 
of some real number b. Because of the ambiguity that may arise 
between the digits 9 and 0 at position n+1 the proof is easily adapted 
(remembering that a Cauchy Base is non-decreasing) by selecting the 
larger of the two possible forms of the number bn when required.  

■ 

Conclusion:  

In the Leibnitzean cosmology the set of equivalence classes of Cauchy 
sequences is countable. 

Proof: 

Let a be any equivalence class of Cauchy sequences and let {an} be a 
Cauchy sequence in a. Then {an} is equivalent to at least one Cauchy 
base. Thus every equivalence class of Cauchy sequences contains at 
least one Cauchy base, and this defines a component described real 
number. But two equivalence classes of Cauchy sequences cannot 
share a Cauchy base because of transitivity. Thus there exists a one-to-
many mapping from the set of equivalence classes into the set of 
component specified real numbers, and the latter set is countable.  

■ 

Hence theorem 4.1 of DIVISION THREE mentioned above shows 
algebraically that the set of real numbers in the Leibnitzean cosmology 
is countable. 
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3. Infinity 
 

3.1 Infinity In The Leibnitzean Cosmology 
In the Leibnitzean Cosmology the word “infinite”, used as an adverb or 
adjective, means “never ending” or “unbounded”. This is how 
infinitesimals and Cauchy numbers are defined in the Leibnitzean 
cosmology. The noun “infinity” refers to the imaginary ‘place’, indicated 
by the end of an axis, where infinite Cauchy numbers are focussed. This 
is geometrically shown in the compactification of the real numbers 
shown in DIVISION THREE: PART TWO: Section 3.1 in the Subsection 
3.1.2.1. 

This is in agreement with our primitive perception of “infinite” which 
stems from at least two relevant sources:  

The first source is our perception of continuous space – a line of any 
length drawn in any direction can always be extended by any amount. 
This is also how we perceive the nature of time, which we experience to 
be without beginning and without end. 

The second source is the existence of discrete symbols (like for the 
natural numbers) where it is possible to set up procedures whereby 
symbols can be systematically changed in such a way that a new 
symbol, which perceptibly differs from all previous symbols, can always 
be formed. 

As introduced in DIVISION THREE and expanded in DIVISION ONE, in 
the Leibnitzean cosmology the phrases: ”the function f is zero” or “the 
function f is infinite” at the point x=a in general means that a is a Cauchy 
number and that f(a) is an infinitesimal number (possibly the infinitesimal 
number zero depending on the situation)24 or f(a) is an infinite Cauchy 
number. 

 

 
24 I.e. if the fractional part of a is a finite string of digits, then f(a) has to be the infinitesimal number zero. 
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3.2 Infinity in the Euclidean Cosmology 
In section 1.1 above it is argued that the assumption of the Euclidean 
Cosmology that space is synthesised from points leads to the necessary 
conclusion that an infinite number of operations can be performed and 
that the result of these operations is identified and discrete (or 
complete). 

This then implies that the operation of finding ever increasing strings of 
digits to approximate √2 in section 2.1 above can be performed to 
completion. The string of digits that is so obtained will be of infinite 
length, where “infinite” means “a natural number larger than all other 
natural numbers”.  

Such a string of digits cannot exist in the reality of our experience where 
it would be possible to manipulate it: for even if a digit could be etched 
on every atom in the galaxy, the string would still not be of infinite 
length. Therefore this string can only exist in an idealised reality, 
commonly referred to as “Abstract”. 

Note that the ability to perform an infinite number of actions means that 
the restrictions of inductive logic does not apply to all aspects of 
Euclidean Cosmology. This makes it possible, in Cantor’s diagonal proof 
as given in DIVISION THREE PART ONE Section 1, to make the 
transition from “the infinite decimal fraction b differs from any given 
number in the list” to “the infinite decimal fraction b differs from all 
numbers in the list”. This validates Cantor’s proof in the Euclidean 
Cosmology.  

But the list of strings of digits in Theorem 4.1 of DIVISION THREE 
mentioned above cannot be constructed to completion. Thus this 
Theorem does not form part of the Euclidean Cosmology.  

Conversely, Cantor’s proof is invalid in the Leibnitzean Cosmology 
where the restrictions of inductive logic apply. 

 



66 
 

DIVISION THREE: Cantor’s Fallacy and the 
Leibnitzean Cosmology 

 

 

 

Adriaan van der Walt, D.Sc. 

Professor Emeritus 

Department of Civil Engineering 

University of Pretoria 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to PARMENIDES of ELEA 

 

 

 



67 
 

Foreword, Synopsis and Acknowledgement 
 

When a crime is committed the existence of a criminal is automatically 
known. It is then the function of the forces of justice to identify the 
criminal.  

 

In Mathematics this distinction between “To exist” and “To be identified” 
is often vague or ignored.  

Whenever a Cauchy sequence of points is specified, it is known that its 
limit exists because of the completeness of the real line. But it is also 
known that this limit cannot necessarily be identified. 

In part one the consequences of this vagueness between existence and 
identification of real numbers are studied. The analysis starts with an 
example showing that the equality/inequality of two real numbers can 
only be decided if both are identified. It is then concluded that the 
similarity of the infinite decimal fraction of the example to the fraction 
that is constructed in the diagonal proof indicates, in a simplistic way, 
that the argument of the diagonal proof is itself simplistic. 

 

Some relevant concepts are then discussed and new concepts are 
introduced to facilitate the analysis. This discussion culminates in a 
proof that the set of equivalence classes of Cauchy sequences is 
countable. 

 

In the final section of part one it is shown that the use of the axiom of 
choice in the construction of a real number leads only to the existence of 
the number and not to its identification. This is done by showing that, if 
the Euclidean topology is taken into account, a contradiction results 
when it is assumed that the real number which is constructed in the 
diagonal proof, is identified. As a consequence of this it is concluded 
that the diagonal proof, in the presence of limits, is invalid. 

 

In part two the conundrum that the real numbers are countable 
according to number theory but more than countable according to the 
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real line, is addressed. This is done by looking at the infinite divisibility of 
space according to Euclid and according to Leibnitz. It is concluded that 
these two approaches lead to two different models for Mathematics 
because the circumstances do not allow the order of sums and limits 
that occur to be inverted. These two models are then called the 
Euclidean- and the Leibnitzean Model for Mathematics, and they would 
lead ultimately to two different cosmologies. 

 

The concept of infinitesimal is introduced and then a re-interpretation of 
standard Number Theory is used to generalise the concept of number to 
what is called here the Cauchy numbers. It is shown that the Cauchy 
numbers consist of three classes of numbers, namely the infinitesimal 
numbers, the rated numbers and the infinite numbers and that these 
three classes describe the real continuum. The relationship between 
these classes of numbers is then studied in the spirit of L’Hospital. The 
concept of differential is introduced. Finally cascades of infinitesimals 
are introduced and the fundamental Theorem of Calculus is studied in 
the Cauchy number context. 

 

In part three the Leibnitzean cosmology is introduced. It is pointed out 
how the Leibnitzean cosmology fits in with the philosophy of Parmenides 
of Elea and Zeno. It is pointed out that the remark by Parmenides that 
there can be no motion (because everything is one) and the paradox of 
the arrow are explained by the Leibnitzean cosmology. It is also pointed 
out that some of the intractable problems of Physics - like the 
particle/wave duality and action at a distance - are consequences of the 
Euclidean cosmology that become tractable in the Leibnitzean 
cosmology. 

 

In part four it is pointed out that once the Euclidean Cosmology is 
discarded, those results of the Euclidean model of Mathematics which 
are not related to the Euclidean cosmology, still form part of the 
Leibnitzean model; thus creating once again a single model for 
Mathematics, but without the Euclidean Cosmology. 
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Finally, I should point out that the ideas presented in this document were 
never subjected to proper scientific scrutiny. This is because these ideas 
are completely contrary to current group-thinking in the scientific 
community and thus no willing peers could be found. In that aspect this 
document should be looked at as a discussion document with the 
objective of soliciting criticism from the scientific community at large. 
However, I would like to thank my good friend Dr Anneke Roux of the 
Department of Civil Engineering at the University of Pretoria for 
supporting me in this by always having been willing to listen to me; no 
matter how weird my ideas were. 
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PART ONE: The Fallacy in Cantor’s Diagonal Proof 
for Real Numbers 
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Section 1: Introduction 
 

Cantor’s (well known) Theorem.  

The real numbers are more than countable. 

 

Proof 

Assume that the real numbers are countable. Hence a list containing all 
the real numbers larger than or equal to zero and less than or equal to 
one can be made. Each such real number is an infinite decimal fraction, 
so that a list of all the infinite decimal fractions between zero and one 
inclusive can be made: 
 

0.a11  a12  a13  a14  a15  a16  a17   a18 ....... 

0.a21  a22  a23  a24  a25  a26   a27  a28, ....... 

0.a31  a32  a33  a34  a35  a36  a37  a38 ....... 

0.a41  a42  a43  a44  a45  a46  a47  a48 ....... 

0.a51  a52  a53  a54  a55  a56  a57  a58 ....... 

0.a61  a62  a63  a64  a65  a66  a67   a68 ....... 

. 

. 

. 

Where each aij is one of the digits 0, 1, 2…, 9 

 

Let b be that real number (infinite string of digits) 0,b1b2b3b4....  which is 
such that  

bi=2 if aii ≠ 2 and bi=5 if aii = 2.    [A] 
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This real number b differs from any number in the list in at least one 
place. Thus b does not belong to the list. This contradicts the 
assumption that all real numbers larger than zero and less than one 
belong to the list. Thus all real numbers between 0 and 1 cannot be 
listed, and hence these numbers are more than countable.   

■ 

 
The counterbalance to this theorem is the following example: 

 

Example A 

 

Let 

a = 0.a1a2a3a4a5.... 

be an irrational number between 0 and 1 as in Cantor’s theorem.  

 

Choose the digits of the infinite decimal fraction  

a* = 0.a*1 a*2 a*3 a*4 a*5.... 

as follows: 

a*i = ai if the two strings of digits “a1a2a3a4 ….. ai” and  
“a(i+1)a(i+2) …..a2i” are not identical 

and 

a*i = 7 if these strings are identical.     

■ 
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Note: 

The fractional part of an irrational number is a pseudo-random string of 
digits – i.e. even though the order of the digits is fixed, there may be no 
regularity in their occurrence. However, for any random string of digits of 
length 2n, the probability that the string consisting of the first n digits is 
the same as the string consisting of the last n digits is 10-n. Thus, from a 
probabilistic point of view, the probability that a*n differs from an is 10-n. 
Therefore the probability that the fraction a* differs from the fraction a 
diminishes rapidly with the length of the substrings under consideration. 
But this probability never becomes zero.  

 

In the light of this, it can be concluded that it is in principle possible to 
determine for a given infinite decimal fraction, a, whether a* is smaller or 
larger than a. This is done by generating the digits one after another 
until two is found that are not the same. But if no such digits appear, 
nothing at all about the equality/inequality of the numbers can be 
deduced. Hence it is not even in principle possible to determine whether 
a* is equal to a, nor is it possible to determine the value of a* should it 
differ from a. 

 

This example shows that the equality/inequality of two infinite decimal 
fractions can only be decided once they are identified, i.e. all their digits 
are known. Or, to put it milder, specifying the finite digits of an infinite 
decimal fraction does not provide enough information to decide the 
question of their equality/inequality. 

 

This example reveals the simplistic nature of the argument in Cantor’s 
diagonal proof. It shows that the information contained in the strings b 
and b* is not sufficient to determine whether b and the associated 
fraction b*, which by assumption belongs to the list, are equal or 
different. Consequently the argument in the proof becomes suspect25. 
This is looked at in formal detail in section five.  

 
25 This example is enough to destroy the logical structure of the proof. See the addendum at the 
back of the monograph. 
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A possible reason why this simplistic proof has been accepted 
without objection is because, according to the real line, the 
theorem is true. 

 

 

Section 2: The Real Line 
 

As an addition to the existence of volumes, areas and lines that extend 
in three, two and one directions, Euclid defined a point as ‘That which 
has no extent’. This implies that a point is a thing (and consequently a 
piece of space) of which the volume, area and length are all zero. It is 
then required that a volume, area or line be formed by the combination 
of points. These assumptions will be called the Euclidean Cosmology. 

For a line, the total length of a finite number of its points must be zero 
because it is a finite sum of zero’s. But then the total length of a 
countable number of its points must also be zero because this length is 
the limit of the total lengths of the partial sums which are all zero. 
However, the total length of all the points on the unit interval of the line 
must be the length of the line, and hence it must be one. Thus the 
number of points on a line of unit length cannot be either finite or 
countable, and therefore it is concluded that there must be more than 
countable many points in this interval. 

 

The concept of the real line extends this property to real numbers: 

The real line: 

There is an order-preserving one-to-one mapping of the real numbers 
onto the points of a line. This mapping is a homeomorphism in the 
standard topologies of the real numbers and the line.  

This one-to-one mapping then implies that the real numbers must be 
more than countable too, and this gave support to Cantor’s theorem. 
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Section 3: Infinite Decimal Fractions 
 

3.1 Note about Notation 

From the way the phrases ‘infinite decimal fraction’ and ‘diagonal’ are 
used in the proof of Cantor’s theorem, follows that the following phrases 
refer to infinite strings of digits with different other symbols interspersed, 
and thus are assumed to be equivalent:  

 

• ‘Infinite decimal fraction’ 

• ‘Infinite (dimensional) vector of digits’ 

• ‘Infinite sequence of digits’ 

 

In the same context, an infinite matrix is considered to be an infinite list 
of infinite vectors. 

 

3.2 A synopsis of the logical history of infinite decimal fractions 

When the division algorithm is used to convert a rational number into 
decimal form, it is found that the resulting decimal fraction is either of 
finite length or becomes a repeating sequence of digits of which the 
length of the repeating string is less than or equal to the denominator of 
the fraction. Conversely, a decimal fraction of finite length or with a 
repeating sequence of digits can be transformed back into a proper 
fraction. 

Certain numbers, e.g. the function value √2, can be shown to be not 
rational by using the properties of the function. In a case like this the 
properties of the function and a tool like Taylor’s Theorem can be used 
to approximate the number to any desired accuracy by a decimal 
fraction. Because the given number is not rational, it cannot have the 
properties of the decimal representation of a rational number. Therefore 
this approximation cannot be either finite or have a repeating cycle of 
digits. Thus this approximation must be an infinite pseudo-random string 
of digits. 
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3.2.1 Notes 

• In the above cases the digits of the resulting infinite decimal 
fraction are generated one-by-one. Thus the infinite decimal 
fraction a = 0.a1a2a3a4…. is generated as the Cauchy sequence 
of numbers a = {0.a1 ; 0.a1a2 ; 0.a1a2a3 ; 0.a1a2a3a4 ; ….}. This 
Cauchy sequence is the form in which infinite decimal fractions 
are studied in Number Theory, and will be called the Cauchy 
form or Cauchy representation of the number. 

 

• In both these cases the word ‘infinite’ refers to calculations that 
are performed repeatedly, and hence it means ‘never ending’ 

 

3.2.2 The real line is introduced 

When a line and a suitable scale is chosen as axis, there exists a simple 
geometrical procedure that allows the construction of a line of length 
equal to any given rational number. This allows any rational number to 
be associated with a point of the line. Thus the terms of the Cauchy 
representation of a number maps onto an open set of points of the line. 
Because the numbers form a Cauchy sequence, these points form a 
Cauchy sequence in the Euclidean topology of the line. 

 

But according to the definition of a point the line is complete in the 
Euclidean topology, and therefore there exists a limit point for the 
Cauchy sequence of points. This validates the introduction of a new kind 
of number as a limit for the Cauchy sequence formed by the Cauchy 
representation of a number. This new number is called a real number. If 
these two limits are mapped onto each other, the real line is defined 
and there is a one-to-one order preserving homeomorphism of the real 
numbers onto the points of a line. 

 

Because a real number is the limit of an ever longer string of digits, it is 
called an infinite decimal fraction or a string of digits of infinite length. 
Note that in this scenario the term ‘infinite’ means ‘a number larger than 
any natural number’. This has to be so because, if the number denoting 
the length of the infinite string is not larger than any natural number, it 
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has to be a natural number itself and consequently the number then 
refers to a term of the Cauchy sequence and not to its limit.  

 

There exist many Cauchy sequences of points converging to any given 
point on the real line. For any given point on the real line these 
sequences form an equivalence class in the set of all Cauchy 
sequences of points. This equivalence class is uniquely associated with 
the given point. The real line then ensures that there is a unique 
equivalence class of Cauchy sequences of numbers that is associated 
with any real number. 

 

Therefore a real number has three avatars: (1) It is a point of a line, (2) it 
is an infinite sequence of digits (with ‘infinite’ meaning ‘larger than any 
natural number’) and (3) It is an equivalence class of Cauchy sequences 
of numbers. 

 

Remark 

Even though all the limits of these Cauchy sequences exist, they are not 
necessarily identified, as illustrated by Example A of section one.  

 

3.2.3 Conclusion 

For two real numbers to be equal, they must both be identified and 
all three of their corresponding avatars must be identical.  

 

Therefore, because an infinite decimal fraction is a single point on the 
real line, it is only identified if all its digits are known. 

 

3.2.4 Note  

A Cauchy sequence forms an open set on the real line; but a real 
number, being a single point, is a closed set. 
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3.3 The specification of numbers 

As pointed out above, numbers are shown to be irrational by default: the 
value of a function at a given argument is shown to be not rational by 
using the properties of the function – like for Ö2. A real number, specified 
in this way, will be called value specified. This is the number 
associated with the point on the real line onto which the argument of the 
function is mapped. Hence a real number specified in this way can also 
be said to be value identified because the point where it is located on 
the axis can be found by using the properties of the function. By 
implication both other avatars are then also value identified. 

 

In Cantor’s proof the constructed real number is described as an infinite 
decimal fraction by specifying the finite digits of its representation.  

 

With the above note on notation in mind, a real number as well as an 
infinite matrix that is specified by stating their components, will be called 
component specified. Thus the real number constructed in Cantor’s 
diagonal proof is an example of a component specified real number, as 
is the number constructed in Example A. 

 

According to this example, although the irrational number √2 is both 
value specified and value identified, √2* is component specified but is 
not component identified. Hence the equality/inequality of these two 
numbers cannot be decided. This example emphasises that two real 
numbers cannot be compared unless both are identified. 

 

Therefore the Cauchy form of a component-specified real number can 
be mapped onto an open set of points on the real line as a ‘never-
ending’ sequence of points for which it is known that a limit exists, but 
for which the limit cannot necessarily be identified. 

 

The same holds true for component specified infinite matrices. 
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Section 4: Component Specified Real Numbers 
 

4.1 Theorem 

The set of component specified infinite decimal fractions is countable 

 

Proof 

(Tis proof mimics the proof that the set of rational numbers is countable) 

Write the digits 4, 5, 6, 7, 8, 9, 0, 1, 2, 3 on 10 consecutive lines 

Repeat this group another 9 times so that 100 lines are filled with ten of 
these groups of ten digits. 

Add second digits to the lines: a 1 to the first group, and from 2 to 0 
respectively to every consecutive group. All 100 possible permutations 
of two digits are now listed, the top one being the first two digits of the 
decimal part of Ö2. 

Take this 100x2 array and repeat it 9 times so that 1000 lines now have 
two digits. Append the next digit of Ö2 to the first 100, and then proceed 
cyclically as above, adding the other nine digits to the next nine groups. 
All 1000 possible permutations of three digits are now listed, the first line 
being the first three digits of Ö2. 

Repeating this process, a component specified infinite two-dimensional 
array is constructed containing as rows all possible infinite permutations 
of the ten digits, the first row being the component specified fractional 
part of Ö2 i.e. the Cauchy form of Ö2. 

Thus an infinite list of all possible component-specified infinite decimal 
fractions between zero and one is constructed, and the theorem is 
proved.   

■ 
 
In the theory of numbers it is shown that any given Cauchy sequence 
can be converted to an equivalent infinite decimal fraction by using the 
definitions of equivalence and of Cauchy sequence. A number obtained 
in this way is a component specified real number. 
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Corollary 

The set of equivalence classes of Cauchy sequences is countable. 

 

Proof 

Every equivalence class of Cauchy sequences contains at least one 
component specified infinite decimal fraction, as is pointed out above.  

But transitivity of the equivalence relation prevents any two equivalence 
classes from sharing a component specified infinite decimal fraction. 
Thus there exists a one-to-many mapping of the set of equivalence 
classes into the set of component specified real numbers, and the latter 
is countable.        

■ 
 

Section 5: Infinite, Never-Ending and the Axiom Of Choice 
 

5.1 Introduction 

In the previous sections the attributes ‘infinite’ and ‘never ending’ were 
used in situations where the associated sets of points of the real line 
were respectively closed or open. 

This is because, in the cases where these sets were closed, the term 
‘infinite’ had properties of being a very large number – one that is ‘larger 
than any other number’. Two examples of such sets are relevant:  

First, consider the closed interval [0,1]. This interval is a continuum. If a 
single point, a, is removed from this interval, the continuum is destroyed 
and two half open intervals [0,a) and (a,1] are formed. This implies that 
the continuum can only exist if ‘all’ its points are present. 

Next, consider the irrational number a, and let a = {an} be its Cauchy 
form. The number ‘a’ maps onto a single point of the real line. This point 
is the limit of the points onto which {an} maps and, being a single point, 
is a closed set. If a is referred to as an infinite decimal fraction, then the 
word ‘infinite’ must refer to a ‘number larger that all natural numbers’ 
because any natural number of digits would refer to a term of the 
Cauchy representation and not the limit (as was pointed out before). 
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5.2 Existence and Identification 

The example of section 1 shows that component-specified real 
numbers, and thus also the number ‘b’ of the diagonal proof, can not 
necessarily be identified in practice – i.e. although any one of the finite 
digits can be identified, all of its digits cannot be found.  

When Zeno stated the paradox of Achilles and the tortoise, the response 
to the paradox was, in essence, that the real line is complete and that, 
although an infinite number of steps is required by Zeno’s argument, a 
limit exists and that limit fixes the point and time when Achilles would 
pass the tortoise.  

But Zeno was intent on creating a paradox and thus used the 
expression ‘Achilles can never pass the tortoise’. If he had instead said 
‘We can never know where Achilles would pass the tortoise’ the answer 
to his statement would have been much more difficult; because then he 
would have conceded the existence of the limit point, but now required 
its identification.  

 

In modern times it became part of Mathematics to assume that an 
infinite number of choices can in principle be made; this is known as the 
‘Axiom of Choice’. However, in the present situation, it is not clear 
whether application of the axiom of choice will result in ‘existence’ or in 
the more specific ‘identification’. 

  

Note that the diagonal proof becomes valid if, in the construction of the 
number b, the axiom of choice should lead to ‘identification’ of the 
number and not merely to its ‘existence’. This is because then ‘all’ digits 
of the number b would in principle be known a posteriori. All the digits of 
all the numbers in the list are assumed to be known a priori because of 
the logical structure of the argument. Because all digits of all numbers 
are known they can be compared and the number b would differ from all 
numbers in the list if it should differ from any given one at one digit. 
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5.2.1 The Siegfried Lemma 

A component-specified infinite decimal fraction is component-identified if 
and only if a component-specified two-dimensional array of digits is 
component-identified. 

Proof 

Consider the component-specified infinite decimal fraction 

0.a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16….. 

 

This component-specified decimal fraction can be split into infinitely 
many component-specified decimal fractions as follows: 

0.a1 a2 | a5 a6 | a11 a12 | a19 a20 |…… 

0.a3 a4 | a9 a10 |a17 a18 |…… 

0.a7 a8 | a15 a16…… 

0.a13 a14…….  

 

Thus an infinite vector of digits can be used to construct an infinite two-
dimensional array of digits (or a component-specified infinite matrix). 

Because an infinite decimal fraction, and hence an infinite vector, is 
formed by stringing together digits from the left, an infinite two 
dimensional array of digits is derived from the infinite vector by filling it 
from the top left corner in some zigzag way with digits from the fraction.  

Conversely, if any component-specified infinite matrix of digits is set up 
by filling it from its top left corner with digits according to some scheme, 
this two dimensional array can be transformed back into a single 
component-specified decimal fraction by stringing together the digits in a 
zigzag fashion.  

Hence component-specifying an infinite decimal fraction (infinite string of 
digits) and component-specifying an infinite matrix of digits are 
equivalent because one can be transformed into the other. Thus, if it is 
possible to component-identify one of them, it is possible to component-
identify the other.       

■ 
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5.2.2 Theorem 

It is not possible to component-identify an infinite decimal fraction. 

 

Proof 

 Assume that it is possible to component-identify an infinite decimal 
fraction. The lemma above then implies that the previously constructed 
list of all possible component-specified real numbers is a component-
identified array of digits. But if a matrix of digits is component-identified, 
then each of its rows is also component identified. Thus the matrix is a 
list of all possible component-identified real numbers, and hence these 
numbers are countable. 

But the assumption that it is possible to component-identify a real 
number validates Cantor’s diagonal proof. So that these numbers are 
then also more than countable by his proof. 

The contradiction proves the theorem.  

■ 

 
Thus it is shown that, in the case of component-specified real numbers, 
the axiom of choice leads only to the existence. Hence Cantor’s 
diagonal proof is invalid and therefore there can be no component-
identified irrational numbers.  

 

Therefore there are now two types of real numbers that should be 
distinguished; component specified real numbers (or equivalence 
classes of Cauchy sequences) which are countable, and value identified 
real numbers (or points on the real line) which are more than countable. 
Therefore a real number no longer has three avatars. 
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PART TWO: The Infinite Divisibility of Space 
or 

WHAT COMES FIRST: The Limit or the Sum? 
 

 

Section 1: The Division of Space 
 

Modern western civilisation is built on the philosophical foundations that 
were laid down in ancient Greece. The Greeks started what is now 
known as science – a deductive system of knowledge based on 
explicitly stated assumptions. 

They settled on an atomic theory of matter. This meant that when a 
piece of matter is halved repeatedly, a piece of matter that cannot be 
divided again will be reached after a finite number of steps. This was 
called an ‘atom’ and continuous matter was assumed to be compounded 
of these discrete indivisible pieces of matter. 

This is the explicit assumption that continuous matter is formed from 
discreet atoms, and is called the atomic theory.  

But the Greeks accepted that space is infinitely divisible. Thus repeated 
division of a piece of space would lead to a never ending sequence of 
ever smaller pieces of space. For this sequence of ever smaller pieces 
of space they defined a discrete limit, called a point. The explicit 
assumption that continuous space is compounded of discrete points is 
called here the Euclidean cosmology 

The ideas of the Euclidean cosmology was opposed by Parmenides of 
Elea and his eromenos Zeno. In their philosophy they concerned 
themselves with the concept of motion. Although they did not propose a 
cosmology of their own, their criticism of the Euclidean cosmology - and 
the resulting model of Mathematics - is today mostly known as Zeno’s 
paradoxes. Looking at these paradoxes, it is quite clear that they 
considered motion to be in essence continuous and thus incompatible 
with Euclidean cosmology which is in essence discrete. Some of these 
paradoxes will be referred to in the paragraphs to come. 
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Section 2: The Infinite Divisibility of Space. 
 

Strict rules apply today when limits and sums are to be interchanged in 
Mathematics. However, no such rules were followed when the infinite 
divisibility of space was considered at the time of laying down the 
foundations of Mathematics. 

 

2.1.1(a) When the limit precedes the sum. 

First the limit: 

The Euclidean cosmology starts with a nested sequence of intervals of 
which the lengths of the intervals converge to zero. The limit of these 
intervals is then defined to be an entity of no extent, called a point. 

Thus the length (or area or volume) of a point is zero. 

 

Followed by the sum: 

Next, the Euclidean cosmology states that a line of unit length is a string 
of points. This then requires that the length of the interval, which is non-
zero, must be the sum of the lengths of all the constituent points, all of 
which are zero. This requires the line to be formed from more than 
countable many points, as was discussed in the first part. 

 

The assumption that there are ‘more than countable’ many points is an 
ideological compromise that resolves the conflict that results when 
requiring that something which is continuous is to be formed by 
combining discrete entities - any discrete set can be counted one by 
one, but a continuum cannot be counted at all. 

 

2.1.1(b) When the sum precedes the limit. 

Two millennia later Leibnitz studied motion, volumes, areas and lengths. 
These are all continuous entities.  
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Looking at the area under the curve y=1: 

First the sum: 

Consider the unit interval on the X-axis and let d(a;b)=b-a denote the 
length of the interval (a;b). Assume that the unit interval has been 
repeatedly subdivided in such a way that at each new subdivision all 
previous intervals are subdivided into three equal intervals. After n such 
partitions there are 3n subintervals (parts), each of length 3-n and  

 

 

After n steps the middle of interval i of these subintervals is at the point 

 

 

Notice that once a point is in the middle of a subinterval, it will be in the 
middle of a subinterval for all subsequent partitions. 

 

Followed by the limit: 

According to the theory of the Riemann integral: 

 

 

Where Δxi =3-n for all i. The parts of these partitions are intervals of 
which the lengths converge to zero as n becomes larger and larger and 
therefore any set of intervals with the same midpoint is a nested set that 
satisfies the requirements set out above for the definition of a point. 
Hence, according to the Euclidean cosmology, each set of nested 
intervals becomes a point in the limit. But only points that are in the 
middle of a subinterval for some value of n can be a limit point (because 
these intervals reduce symmetrically relative to their midpoints with each 

÷
ø
ö

ç
è
æ +

=å
-

=
nn

i

iid
n

3
1;

3
1

13

0

13,..,1,0:
32
12

1 -=
×
-

=+
n

ni iix

ò å
-

=

D×
®D
¥®=×=

1

0

3

0

1

1
0

lim
11

n

i
i

i

x
xall

ndx



87 
 

subsequent partition). Thus only rational points that are for some n and 
some i of the form 

 

can qualify to be limit points. These points form a subset of the 
(countable) set of rational numbers. 

 

Thus, if the sum precedes the limit, only countable many points, being 
the limits of monotonically decreasing nested intervals, are required to 
form the unit interval. 

 

Remarks 

• For any valid set of partitions these points are dense in the unit 
interval. 

• In the Leibnitzean approach to the infinite divisibility of space, the 
need for the existence of more than countable many points 
disappears because only countable many points are needed to 
cover an interval. Thus, in the Leibnitzean approach, only 
countable many value specified real numbers need to exist in 
order to maintain the concept of the real line. Component 
specified real numbers and equivalence classes of Cauchy 
numbers have already been shown to be countable. Thus 
everything can become countable in a number system 
associated with the Leibnitz approach. 

 

 

2.1.2 Conclusion 

These two different ways in which the limits and the sums are 
considered when studying the infinite divisibility of space, leads to two 
completely different sets of assumptions about the nature of space and 
therefore of numbers. The first, the traditional one, will be called the 
Euclidean model of Mathematics which is based on discrete points, 
while the second will be called the Leibnitzean model of Mathematics 
which is based on continuous intervals. At this stage of the argument it 
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looks as if these two models have contradicting properties and as such 
are not reconcilable. 

 

Note that the order of the sums and the limits that occur here cannot be 
interchanged because the limit that occurs in the Euclidean model is 
zero. 

 

Section 3: Number Theory in the Leibnitzean Model 
 

The study of Calculus inevitably ends in the use of infinitesimals. The 
word ‘infinitesimal’ is pidgin Latin that loosely translates into ‘that little 
thing at infinity’. Thus it is a valid question to ask whether points, as 
described in the Leibnitz model for the infinite divisibility of space, are 
indeed the elusive ‘infinitesimals’; seeing that only countable many of 
them are required to form the unit interval. However, this is not so. In 
part four it will be shown that points, as defined in the Euclidean Model, 
can be re-introduced as utilitarian entities that are associated with 
infinitesimals. In what follows the word ‘point’ will mean ‘a place in 
space’ – like the endpoint of a line (or vector) or the intersection of two 
arcs. In the Leibnitzean model a point will simply be a convenient word 
to describe the focus of a set of nested intervals. 

 

In the Euclidean model the size of a point was defined as zero. In the 
Leibnitzean model the size of an infinitesimal (a spatial entity) will be 
defined as an infinitesimal number (a numerical entity). 

 

3.1.1 Cauchy Numbers 

Number theory is based on interpreting an infinite decimal fraction as a 
Cauchy sequence, for instance 

Ö2 = (1. ; 1.4 ; 1.41 ; 1.414 ; 1.4142 ; ……) 

In part one this representation of an infinite decimal fraction was called 
the Cauchy Form of the real number, and as such it is an element of 
some equivalence class of Cauchy sequences. 
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A Cauchy sequence that is associated with a positive infinite decimal 
fraction, like the one above, has non-decreasing components. To 
overcome this limitation the representation is generalised: 

 

Definition 

A Cauchy sequence of rational numbers is called a Cauchy number. 

 

In general a Cauchy number will be specified as 

a = (a1 ; a2 ; a3 ; ….) 

The rational numbers an forming a Cauchy number are called its 
components. 

 

The rules for the four basic operations on Cauchy numbers are those 
used for truncated decimal fractions: 

 

Addition:   a+b = {an} + {bn} = {an + bn} 

 

Subtraction:   a – b = {an} - {bn} = {an - bn} 

 

Multiplication:   axb = {an}x{bn} = {anxbn} 

 

Division:    provided none of the numbers 

{bn} is zero. 

 

Function values:  f(a) = {f(an)} 

A Cauchy number that is associated with a positive number can now 
have decreasing terms, e.g. 

2 - Ö2 = (1. ; 0.6 ; 0.59 ; 0.586 ….) 
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Thus a Cauchy number is but a different name for a Cauchy sequence 
of rational numbers as studied in number theory, but with an 
accompanying set of arithmetical operations defined. Thus all relevant 
results of Number Theory are Mutatis Mutandis applicable to Cauchy 
numbers. The principal results that are of interest here are the following: 

• There is an equivalence relation defined between Cauchy 
numbers that causes the Cauchy numbers to be separated into 
equivalence classes. These equivalence classes are the real 
numbers. 

• Each equivalence class contains at least one component 
described infinite decimal fraction, traditionally called the main 
value. 

• Any two Cauchy numbers in the same equivalence class differ by 
a Cauchy number equivalent to zero.   

• Zero is the Cauchy number (0 ; 0 ; 0 ; 0 …..). 

 

Remark 

It is necessary to extend the concept of Cauchy number further in order 
to make the Cauchy numbers closed under division by a Cauchy 
number that is equivalent to zero. This requires that the infinite Cauchy 
numbers be defined: 

 

Definition 

A sequence of numbers {an} such that for any given number M there 
exists a number N such that │an│≥ M for all n ≥ N is called an ‘infinite 
Cauchy number’. 

 

Equivalent infinite Cauchy numbers differ by a finite Cauchy number. 

 

  



91 
 

3.1.2 Infinitesimal Numbers 

Definition: 

The elements of the class of Cauchy numbers that are equivalent to 
zero are called the infinitesimal numbers.  

 Infinitesimal numbers will be indicated using Greek letters e.g. 

α = (α1 ; α2 ; α3 ; ….) 

Example: 

Once more using subtraction, it is possible to change an increasing 
sequence into a decreasing sequence, and thus the infinitesimal 
number:  

{ 0.1 ; 0.01 ; 0.001 ; 0.0001 ; ….}  

Is the Cauchy representation for  

1-0.999999…..  

Where the periods at the end indicate that the ‘9’ is a repeating digit. 

 

The motivation for this definition is the observation that the lengths of 
the intervals of the partition of the unit interval, studied in section 
2.1.1(b), form an infinitesimal number. But the reason becomes clearer 
when one notices that different infinitesimal numbers have different 
rates of convergence, even though they all converge to zero. This 
makes them suitable for the study of rates of change. 

 

3.1.2.1 L’Hospital: Classes of Cauchy Numbers 

All four arithmetical operations can be performed as long as the Cauchy 
numbers involved do not have more than a finite number of zero 
components – i.e. from some point on they do not contain any zeroes. 

 Three classes of Cauchy numbers have been defined: 

• The infinitesimal numbers. These are Cauchy numbers 
equivalent to zero, indicated as the class A. 
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• The infinite numbers. These are sequences of numbers of 
which the magnitude of the terms increases without limit, 
indicated as the class B. 

• The rated numbers. These are Cauchy numbers belonging to 
the other equivalence classes of Cauchy numbers, indicated as 
the class C. 

 

Any sequence of numbers that does not belong to any of these classes 
will be called a meandering sequence. 

 

The rule of L’Hospital indicates that when two Cauchy numbers are 
multiplied or divided the result can move from class to class. The 
transition most often used is when the quotient of two infinitesimal 
numbers becomes a rated number. This is traditionally referred to as 
differentiation. 

 

The nature of the class B of infinite numbers introduced here becomes 
clearer when one emulates the compactification of the complex plane as 
was done by Lars Ahlfors when he introduced his ‘point at infinity’. 
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The horizontal line in the figure is the real line and the circle is a unit 
circle centred at the origin. A line drawn from the topmost point P of the 
circle to any point A on the real line then maps that point onto a point S 
of the circle. The rightmost and leftmost points of the circle are the 
points +1 and -1 and they map onto themselves. The origin maps onto 
the lowermost point Q while the topmost point P corresponds to the 
‘point at infinity’. 

 

With a metric topology of ‘length of arc’ on the circle, the three classes of 
Cauchy numbers defined above correspond to classes of Cauchy 
sequences converging in this topology to points on this circle. 
Infinitesimals are Cauchy sequences that converge to Q, the image of 
zero. Rated Cauchy numbers are sequences that converge to all other 
points of the circle but the topmost, and infinite numbers correspond to 
Cauchy sequences converging to the topmost point P. In this sense the 
infinite numbers also form an equivalence class and this equivalence 
class will be called infinity26. This validates the term ‘Infinite Cauchy 
Numbers’, and allows ‘infinity’ to be considered as a real number. 

The consequence of all this is that ‘infinity’ acquires a fine-structure and 
thus need not be avoided anymore (apart from division by the Cauchy 
number zero).  For example, it will be shown later that the Dirac delta 
function (the derivative of the Heaviside function) is an ordinary 
piecewise function when using the Cauchy numbers and has an infinite 
number as value at the point of discontinuity. 

Thus each point on this circle corresponds to an equivalence class of 
Cauchy numbers and is called, as is traditional, a real number. Thus the 
real line has been compacted to a real continuum. 

 

3.1.3 Infinitesimals 

Definition 

A set of nested volumes, areas or lines of which the volumes, areas or 
lengths form infinitesimal numbers, is called an infinitesimal volume, -

 
26 ‘Infinity’ as a ‘number larger than all other numbers’ is not required in this model because the 
concept of limit is not essential. 
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area or –line provided that the focus of the set is a point. (If the context 
is clear, the traditional way is to just simply call it an infinitesimal.) 

 

The volumes, areas or lengths that form an infinitesimal are called its 
parts. An infinitesimal will be indicated using capital letters: 

E = (E1 ; E2 ; E3 ; ….). 

The partitions used in the example in section 2.1 consists of 
infinitesimals of which the lengths of the parts form the infinitesimal 
number  

{3-n; n= 0, 1, 2, 3…} from a value of n onwards. 

 

The most used infinitesimals are the differentials: 

 

3.1.4 Differentials 

Definition 

Let d = {δn} be an infinitesimal number, and let a be any point on the X-
axis. Let r be any number such that 0 ≤ r ≤ 1. Then a differential at the 
point a is the infinitesimal 

D(d,a) = {Dn} = (a-rd ; a+[1-r]d)  
= {(a - rδn ; a + [1-r]δn) ; n=1,2,3…} 

 

Thus a differential at the point a is an infinitesimal focused at a. 

 

It is called a left-differential when r=1 and a right-differential when r=0. 

 

Let y = g(x). Then the Cauchy number 

 

dy= g(a+[1-r]d) – g(a-rd))  
= {g(an + [1-r]δn) – g(an - rδn) ; n=1,2,3…} 
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can be formed. Traditionally the function g is called differentiable at a if 

dy is an infinitesimal number. The ratio   is called the derivative of g 

at the point a. 

 
For Cauchy numbers the derivative can exist even if is not an 
infinitesimal number.  

 
In general: 

 

 
Consider the Heaviside function  

 
H(a,x) = 0 if x< a and H(a,x) = 1 if x ≥ a 

 

And let dx be an infinitesimal number. Choose r = 0.5 Then 

 
dH(a,dx) = H(a+dx/2) – H(a-dx/2) = 1 

 

Dividing by the infinitesimal number dx: 

 
 

            

 

       = d(a) 
 

This is the Dirac-δ function of which the value at a is an infinite Cauchy 
number.  
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Section 4: Cascades of Differentials 
 

4.1 Cascades 

The sequence of partitions used in section 2.1 of this part has the 
following properties: 

• Each new partition of the interval (0;1) is a refinement of the 
preceding partition. 

• From one partition to the next there is a part of the new partition 
that has the same midpoint as the part of which it is a refinement. 

• The lengths of all the parts of a partition are the same.  

• The lengths of the parts from one partition to the next form an 
infinitesimal number  

 

d0 = {3-n ; n = 0; 1; 2; 3…}  

 

Therefore the interval (0;1) is the first part of the differential D(d0, ).  

The second part of D(d0, ) is the interval ( ; ). The intervals 

(0; ) and ( ;1) are the first parts of the differentials D(d1, ) 

and D(d1, ) where d1 = {3-n ; n = 1; 2 ;3…}. 

 

This pattern is repeated for every following partition, so that in the end a 
cascade of differentials is obtained. 

 

The properties of the partitions that are required to generate this 
cascade, are (1) that each new partition should be a refinement of the 
previous partition and (2) that the lengths of the parts of all the partitions 
should converge to zero. This is a restatement of the infinite divisibility of 
space from the Leibnitz perspective. 
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A pre-order can be defined on any cascade using the two properties 
stated above:  

Definition. 

If all parts of the differential D(dr,a) are subsets of a part of the 
differential D(ds,b) then D(ds,b) ≤ D(dr,a). 

 

This defines a pre-order on the cascade of differentials because it 
satisfies all the required properties of the ordering and has  

D(d0,c) ≤ D(dr,e) for all r ≥ 0  

which makes D(d0,c) the first element of the pre-order. 

 

4.1.1 Functions on the Cascade of Differentials. 

The first function of interest is the mapping D(ds,am)→am.  

 

Although the numbers am in the example are all rational numbers, it is 
easy to construct a cascade of differentials for which am is a component 
specified Cauchy number. The mapping only implies existence and not 
identification of the focus points of the differentials. However, this is 
good enough to validate the conclusion, made at the beginning of this 
part, namely that the lengths of a countable number of points, in the 
Euclidean sense, can add up to the length of the unit interval in the 
Leibnitzean model. 

 

The second function of interest is the mapping D(ds,am)→  

where F is a given function and  is the Cauchy number 

 

( )madx
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          = 

  

Where, in the case of the above example, δr = 3-r. 
 

Note that 
 

         =  

[A] 

 

The third function is 
 

4.1.2 Nets: The Fundamental Theorem of Calculus 

For the sake of simplicity and ease of notation, again consider the unit 
interval partitioned into 3n = k intervals, all of the same length δn = 3-n as 
in the example in section 2.1 of this part. Let F be a function defined on 
the unit interval.  

 

Then 

         F(1) – F(0) = F(3-n) – F(0) + F(2x3-n) – F(3-n) +  
         ….+ F(1) – F([3n – 1]x3-n)  
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The right hand side of [B] can be evaluated for each value of n, where n 
takes the values 0, 1 ,2, 3… Hence, if the right hand side of [B] is not a 
meandering sequence, it is a Cauchy number, and thus either belongs 
to an equivalence class of Cauchy sequences or is an infinite Cauchy 
number. 

 

As was pointed out previously, when the right hand side of [B] is a finite 
Cauchy number, it follows from the theory of numbers that it is 
equivalent to a component specified infinite decimal fraction, called a 
main value of the equivalence class, plus an infinitesimal number. 

 

If  then this main value is called the “integral of f over the 

interval (0;1)” and is written as . Thus 

F(1) – F(0) =  + α     [C] 

 

For any given function f this is a function from the cascade of directed 
differentials into the set of Cauchy numbers. 

 

Remarks 

1) In order for the right hand side of [C] to make sense, restrictions 
have to be placed on the properties of the function f that may 
appear in the integral. The fundamental restriction is mentioned 
above, namely that f should be such that the right hand side of 
[C] is not a meandering sequence. But interpretation of the 
integral as the area under the graph of the function f will require 
more drastic restrictions on the nature of f. Clearly, when f is the 
Dirac delta function, interpreting the integral as an area makes 
no sense. 
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2) There is nothing that prevents the right hand side of [C] to be an 
infinite Cauchy number. In that case α would be a finite Cauchy 
number. 

 

3) Each infinitesimal in the cascade is component specified and 
therefore also the cascade as a whole. The right hand side of [C] 
is thus component specified too and the equivalence class to 
which it belongs cannot be identified. Hence each component of 
the number α is at most an indication of the accuracy of the 
value of the integral at that value of n in the sum [B]. 

 

4) When F is a known function, the left hand side of [C] is value 
identified. This implies that the right hand side is also identified, 
i.e. the equivalence class of Cauchy sequences to which it 
belongs is fixed - even though it is component specified. In this 
case it is usual to assume that the integral, as the main value of 
that equivalence class, is also value identified. In this case α 
becomes the Cauchy number zero. Traditionally this is called 
‘taking the main value’ and corresponds to taking limits in the 
Euclidean model. 

 

5) The nets as well as the integral that was defined here, are 
functions on the directed cascade of differentials. Thus the 
cascade is the fundamental entity present, and it consists of a 
never ending selection of differentials which are themselves 
never ending sets of intervals.  

 

6) Like with fractals, there is no obvious definable limit for the 
cascade. As the number of refinements of the partition increases, 
it is only the scale that changes but the pattern in the cascade 
remains the same.  
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PART THREE: The Case for Parmenides 
 

In the Euclidean model of the universe, that which is continuous (space) 
is compounded of that which is discrete (points). Parmenides and Zeno 
were critical of the concepts of Euclidean cosmology and, as mentioned 
before, their criticism found its way into history mainly in the form of 
Zeno’s paradoxes. 

These paradoxes are all about the consequences of describing the 
motion of a body – or particle - in terms of its position at specific points 
of space at specific instants of time. 

Their concern about the cosmological implications of the Euclidean 
model is clearly stated by the paradox of the arrow. This paradox states 
that if at some instant of time every point (particle) of an arrow is at 
some point of space then the motion of the arrow is “frozen” and the 
arrow cannot move out of this position. This concern about describing 
the position of a moving particle has been echoed in the middle of the 
twentieth century by Heisenberg’s uncertainty principle which states that 
when the position of a particle is identified then nothing can be known 
about its speed and vice versa. 

Parmenides did not put forward a detailed alternative cosmological 
model of his own, but the aspects of his philosophy of interest here are 
(a) nothing can come into being that has not existed before and (b) one 
object cannot move relative to another because everything is one; 
therefore motion does not exist and what we see is an illusion. 

 

In the Euclidean model particles are defined as points. In the 
Leibnitzean model points are not spatial entities and hence a particle 
cannot be defined as a point but can only be defined as an infinitesimal 
with its focus at the position where the particle is perceived to be. This 
may be done as follows: 

Assume that the universe is finite and has a radius R. Then a particle 
can be defined as an infinitesimal which is a set of nested spheres with 

radii  (n=1, 2, 3, ….) and where the centre of each part of the 

infinitesimal has a suitable offset to focus the infinitesimal at the position 
of the particle. 

n
Rrn =
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This definition of a particle is completely in line with the requirements of 
the cosmology of Parmenides because: 

(a) Everything exists throughout the universe and hence never come 
into being where it has not existed before. 

 

(b) Everything is one because the infinitesimals of all particles share 
the whole universe as first part. Movement is an illusion because 
nothing moves – it is only the focus of the infinitesimal that shifts. 

 

Remarks 

1. In the Leibnitzean cosmology, space is modelled by infinitesimals 
which are component described. Although all infinitesimals are 
focussed at some place, the place where an infinitesimal is 
focused is in general not known. Therefore the description of 
space is fuzzy. Because of this, Heisenberg’s uncertainty 
principle is to be expected in the Leibnitzean cosmology. What is 
disconcerting is that the uncertainty principle prescribes a lower 
limit for this inaccuracy. One possible reason for this may be that 
a third cosmology, the Heisenberg cosmology, can be described 
where space, like energy, is quantised! 

 

2. Civilisation today is but the Greek civilisation two and a half 
millennia on. Therefore, except for parts of Calculus, even today 
the Euclidean cosmology underpins the whole of science. But 
some intractable problems of Physics are direct consequences of 
the fact that particles are considered to be points and therefore 
localised. Action at a distance and the particle/wave duality 
comes immediately to mind. In the Leibnitzean cosmology the 
nature of both these problems change and they all but disappear. 
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PART FOUR: Conclusion and Inclusion 
 

The results of part one shows that the Euclidean cosmology leads to 
inconsistencies in the accompanying number system. It was therefore 
abandoned in favor of the Leibnitzean cosmology which can 
accommodate a countable number system. 

This countable number system was formed by a re-interpretation of 
existing number theory which led to an extension of the real numbers to 
the Cauchy numbers, which in turn form three classes of numbers, 
namely the infinitesimal numbers, the rated numbers and the infinite 
numbers. An arithmetic for these numbers was defined according to the 
everyday use of truncated numbers. 

Some terms used in the Euclidean model had to be re-defined; the 
principal of which was that limits of numbers (infinite decimal fractions) 
were replaced by the concept of ‘main value’ and geometrical points lost 
their status of being spatial entities to become mere places. Many of the 
other terms remain valid, e.g. real numbers as equivalence classes of 
Cauchy numbers. 

Other results of the Euclidean model had to be abandoned completely. 
These were results that follow directly from the Euclidean cosmology; 
the principal of these would most probably be the concept of open and 
closed sets in geometrical space. But results for non-geometrical spaces 
like function spaces, which are in essence discrete, should not be 
affected. Thus results from the Euclidean model should remain valid - 
perhaps with some adaptations - in such spaces. 

The end result is that the Euclidean model, which is the smaller model of 
Mathematics, can easily - but with some alterations and omissions - 
become part of the Leibnitzean model which is the larger model. Thus 
the structure of Mathematics as a canonical model is not lost. 
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ADDENDUM 
 

Let  

b = 0,b1b2b3b4....   

be the number constructed in Cantor’s diagonal proof.  

 

There are infinitely many infinite decimal fractions in the list of which the 
first n digits are identical to b1b2b3b4....bn, the first n digits of b. Select 
any one of them as the infinite decimal fraction cn.  

The sequence {cn} is a Cauchy sequence which is equivalent to b, and 
therefore its limit is equal to the real number b because both belong to 
the same equivalence class of Cauchy sequences. 

Because of the real line, the assumption that all decimal fractions 
between zero and one (inclusive) belong to the list means that the list 
maps a priori onto the closed interval [0;1].  

But cn is in the list for all n and { cn } maps onto a Cauchy sequence in 
[0;1]. Thus its limit, the infinite decimal fraction b, belongs to the closure 
of the list which is [0;1]. Hence b belongs to the list. 

 

But Cantor’s proof shows that b does not belong to the list.  

 

Thus two independent contradictory results follow from the same 
assumptions of the theorem. This constitutes a proof by contradiction. 
But the logic of a proof by contradiction requires that there must be a 
single identifiable false assumption. 

 

Here there are at least two possible false assumptions: 

• That a list of all possible infinite decimal fractions between 0 and 
1 can be made. The current consensus is that this is the relevant 
false assumption. 
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• That it is possible to identify an infinite decimal fraction by 
choosing its finite digits according to some rule. Example A 
constructed in part one shows this is the relevant false 
assumption. 

 

The fact that more than one possible false assumption exist when the 
real line is taken into account destroys the logical structure of the proof 
and the diagonal argument is void. 
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i Three concepts are central to the study of sequences in metric spaces. 
We are here only concerned with sequences of rational numbers in the 
metric space formed by the difference topology – i.e. d(a,b) = |a – b|. 
 
The first is the concept of convergence. A convergent sequence is 
called a Cauchy sequence: 
 
Definition 1: A sequence {an} of rational numbers is called a Cauchy 
sequence if, for any given number ε, a natural number N can be found 
so that |an – am| < ε for all m,n > N. 
 
This defines convergence and is essentially a test whether a given 
sequence is convergent. This definition is valid irrespective of whether a 
limit exists or not. 
 
When limits for convergent sequences exist, a test for whether a given 
number is a limit for a sequence is given by: 
 
Definition 2: A given number l is called the limit of the converging 
sequence {an} of rational numbers If, for any given number ε, a natural 
number N can be found so that |an – l| < ε for all n > N. 
 
Although this is referred to as the definition of a limit, it is essentially a 
test whether a given number l is the limit of the sequence.  
 
In this document we are interested in Cauchy sequences with the same 
limit. Two such sequences are called: 
 
Definition 3: Two sequences {an} and {bm} are equivalent if, for any 
given number ε, a natural number N can be found so that |an – bm| < ε 
for all m,n > N. 
 
This is essentially a test whether two sequences have the same limit. 
 

 




