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Abstract

The brief article explores the Christoffel symbols starting from its transformation rules and by such an
exploration demonstrates the fact that only linear transformations are possible. It derives that
Christoffel symbols behave like rank three tensors[with one upper index and two lower ones] since the
term standing in the way of such behavior vanishes.
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Introduction

The transformation of the Christoffel symbol is considered first. From there we derive that
transformation are necessarily linear and that the Chrstoffel symbol should transform like rank three
tensors with one upper index.

Derivation
Transformation of the Christoffel Symbols!*!
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[In the last line n, pand q are dummy indices]

For j # k in (1)we have,
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[In the summation above a specific value of j could be k]

[ In the last j is a dummy index in the last line asidesn, pand q]
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Since the partial differential operator commutes we have,
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In equation (3) [F ik o Fmpq] is a point function while the quadruplet {—]} =123 4} is a
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equation (3) we infer that for j # k,
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From (1) and (4),we have,
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Though equation (5) has been derived assuming j # k at the outset it is valid for both j # kand j = k

as we shall soon see.
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From —— (afk) =0,-% s independent of x/7*.In view of that let us consider —— = f(x*) #
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constant and hence Py # 0.To analyze the situation we consider the coordinate curves of x* which
X

are parallel to each other.If the X/ curves are orthogonal to these curves then ¥*will not change along
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there] we replace the orthogonal system of the barred system by a non orthogonal one so that x*varies

= 0.Now with the same unbarred system[coordinate curves not changing
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equation (5) gets disrupted. Therefore % = constant,independent of ¥* asides being independent of

m
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Ziz = 0 that is (5) holds for i=j[asides for j # k]
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Solving equation(5)we understand
x™ = A%/ + Bx* + C(indpendent of x’and x*)

x™ = Ax! + Bx? + Cx3 + Dx* + K (6)
[A,Band Cin (6) are independent of space time coordinates]
Suppose we took

x™ = A(x%, %3, k)%t + Bx* + Cx® + Dx* + K

then equation (5) is not being satisfied
Again if we took

x™ = A(x*)x! + Bx* + Cx° + Dx* + K

equation (5) is not being satisfied for k=1,j=4

We do have a linear transformation given by (6). K becomes zero if one origin maps into the
other[homogeneous transformations].Therefore we have a linear homogeneous transformation given
by

x™ = Ax! + Bx? + Cx3 + Dx* (7)

for which the origins map into one another.Equation (5) holds irrespective of whether j and k are
unequal or not.. The space time transformations expressed through (7) should stay unchanged
irrespective of j # kor j =k .Because of equation (6) or (7) ,the linearity expressed by the, equation
(5) is valid for j = k asides for j # k. Considering (1) in the light of equation (5) irrespective of j = k or
j # k we conclude that the Christoffel symbols are tenors.
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Alternative Method

We recall (5) forj # i
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As we move along an arbitrary path passing through fixed point,say P, % = C[independent of tand

. ax™ .
hence independent of x,yz and t. The constant value of ﬁ is equal to that of at P

For every m and k
x™ = Cx* + D(x**)
x™ = Cx'+ Cx*+ Cx3 + Cx* + K (10)

Consequently due to the linearity expressed by equation (10) , equation (5) is valid for j=k asides for
j*k

Considering equation (5) in a general manner with (1) irrespective of j # kor j = k we obtain,
_ 0x™ 0JxP dx1
| - —

M oxn  9x) oxk
—, 0x°0x™ 9x° 0xP 0x1

. _ m —_
= Uk gxm azn ~ axm oz ozk ! pa =0

[Mmy,=0

o es 0x* 0xP 0x1 m
= e = gemazr okt va =0

. dx° 0xP ox?
= Uik = gam gzr azx ! pa = 0D
Thus forj # k,I'™,, & f”jktransforms as a rank three mixed tensor with one upper index.

Velocity Transformation
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Since the transformations are linear M* ,are constants

Four acceleration [rank one tensor] is given by
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The product of tensors being a tensor ['*g, T s tensor[rank one contravaiant tensor]
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tensor in curved space time.Incidentally 7.z s tensor in flat space time
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[For linear transformations M# , are constants]

Impact on the Riemann Tensor

The transformation of the Riemann tensor is considered in the light of equation (5)
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Thus the derivative of the Riemann tensor behaves like a tensor.
General Perspectives
In general,
AH = M# A%

Suppose we carry out a coordinate transformation ,say from Cartesian to spherical considering the fact
that tensor transformations may be achieved between arbitrary systems. The transformation elements
will not be constants contrary to what has been deduced.. A resolution to this contradiction would be to
consider A%and consequently A as null tensors
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We transform between spherical and Cartesian systems. The transformation elements will not be
constants. As before a resolution would be to consider the metric tensor as the null tensor. With that
the Riemann tensor becomes the null tensor.

One should take note of the fat that the transformation elements are independent of the metric.The
definition
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is independent of the metric coefficients: A*and A are the coordinate values and not he physical
values® of the tensor components. Elements of the transformation matrix between two coordinate
systems remain the same doesn’t matter which manifold we are considering. As for an example the
equations relating the Cartesian and the spherical systems are identical for the flat space time manifold
and Schwarzschild geometry[or for any other geometry for that matter]. The transformation elements re
space time dependent.

Conclusion

As claimed , considering the transformation of the Christoffel symbol we have derived that
transformation have to b necessarily linear and that the Christoffel symbol are indeed tensers the
relevant term preventing such a behavior reducing to zero.
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