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Abstract 

 
Object of this work is to find out the reason, why we get only nearly correct results with 
calculations of the QED values. The possibility to increase accuracy is analyzed in order to 
obtain more exact results. A special role in this connection plays the electron. 
 
The calculations are based on the model published in viXra:1310.0189. The idea stems from 
Cornelius LANCZOS, outlined at a lecture on the occasion of the Einstein-Symposium 1965 in 
Berlin. The model defines the expansion of the universe as a consequence of the existence of 
a metric wave field. That field also should be the reason for all relativistic effects, both SR 
and GR. In contrast to previous publications this work is an enhancement, no longer 
contained in viXra:1310.0189. 
 
In the context of this work the properties of the electron are analyzed with the result, that it’s 
well suited as a scale basis of the metric system. Furthermore some weak points of latter one 
have been found, being the reason for the imprecise results of the QED-calculations. The 
reason are fixed values used to the definition of base units, which in turn depend on other 
values as well as on time and on the reference frame. In the end a consistent system is 
presented, which yields exact QED-results and with which nearly all other natural „constants“ 
can be calculated by means of five fixed values only. The bottom line is the meaning of the 
PLANCK-units as glue to the reference frame. English version. German version available in 
viXra. 
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1. Preamble 
 

 
Object of this work is to find out the reason, why we get only nearly correct results with 

calculations of the QED values. The possibility to increase accuracy is analyzed in order to 
obtain more exact results. The calculations are based on the model published in 
viXra:1310.0189. The idea stems from Cornelius LANCZOS [2], outlined at a lecture on the 
occasion of the Einstein-Symposium 1965 in Berlin. The lecture is also prepended the work 
in [1]. The model defines the expansion of the universe as a consequence of the existence of a 
four-leg-field, being the reason for all relativistic effects, both SR and GR. Its temporal 
function is based on the hypergeometric function 0F1. The special properties of that field lead 
to an increase of the wavelength. The phase angle 2ω0t = Q0, being identical with the frame of 
reference, plays an important role in this connection. It has an effect on all scales inside the 
system with it. 

 
The phase rate of the propagation function is equal to the reciprocal of PLANCK’s smallest 
increment r0. Even the other PLANCK-units are the base of the model being functions of space, 
time, distance and speed. At intervals of r0 special vortices are collocated in the form of a 
cubic face-centred crystal lattice (fc). LANCZOS called them „MINKOWSKIan line elements, 
which are only approximately MINKOWSKIan“, here abbreviated as MLE. Thus it’s rather 
about a physical object and not about that, the MINKOWSKIan line element is actually defined. 
I nominated the whole wave field as metric wave field (metrics). 

 
I already set up a scheme in [1], with which most of the universal natural constants in the 

metric (SI)-system could be calculated, on the basis of only five fixedly defined values. But 
accuracy left a lot to be desired. As part of this work the properties of the electron are 
analyzed in detail with the result, that it’s well suited as a scale basis of the metric system. 
Furthermore some weak points of latter one have been found, getting in the way of a further 
improvement of measuring accuracy. It’s mostly about fixed values used to the definition of 
base units, which in turn depend on other values as well as on time and on the reference 
frame. Since these dependencies were unknown so far, the arbitrary lock-up of specific values 
leads to unreckoned deviations during the verification of  measurements of other labs, so far 
characterized as „inaccuracies of measurement“. Someone indeed supposed the deviations to 
be based on hitherto undiscovered particles or interactions. In the course of this work the SI-
system itself is worried out to be the real cause. It’s like a out-of-tune piano, I recognize the 
melody, but it sounds somehow crazy. In the end a consistent system is presented, which 
yields exact results and with which nearly all other natural „constants“ can be calculated by 
means of only five fixed values, the so called subspace values. 

 
One distinctive feature of the model is, that the so called subspace – the space, the metric 

wave field propagates in – among µ0 and ε0, disposes of a third property, the specific 
conductivity κ0 in the region of 1.37·10

93
 Sm

–1
. It also generates expansion. All four values 

and with it even c are „hard-wired“ and do not change at all. Whether and how it doesn’t lead 
to contradictions with the propagation of „normal“ EM-waves, is not subject of the work on 
hand. According to the model they propagate as overlaid interferences of the metric wave 
field. Even all living processes take place within the metric wave field and not within 
subspace. See [1] for more detailed information. 

 
In contrast to previous publications this work is an enhancement, no longer contained in 
viXra:1310.0189. 
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2. Fundamentals and hypotheses 
 
Before we get to the actual calculation, it’s necessary, to define certain base items of the 

model, mostly without derivation. Read more about this in [1]. The PLANCK-units, as well as 
the base items of the theoretical electro-technics play a very special role in this connection. 
For this reason, as usual there, I’m using the letter j instead of i or � as usual in mathematics. 
In the first sections still the values of the universal natural constants calculated in [1] table 10 
are used, based on the model evolved there using the CODATA2014-values. For the gravity 
constant G the BRUKER-value has been used. 

 

2.1. Definition of base items 
 

At first the base items of the theoretical electro-technics. They apply independently from 
the model (1). Beneath (2) the most important PLANCK-units are shown. The introduction of 
the specific conductivity of the vacuum turns out to be the missing link among each other and 
even to other values. 
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One single line-element can be specified by the model of a lossy oscillating circuit. One 

special property of that model only is, that the Q-factor of the circuit equals the phase angle 
2ω0t of the Bessel function. It applies Q0 = 2ω0t. The value ω0 corresponds to the PLANCK-
frequency in this connection. 
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The numeric value of Q0 according to table 1 is about 7.5419·1060 and depends on the real 
value of H0. Except for the quantities of subspace µ0, ε0, κ0 and c all other ones are functions 
of space, time and even of the velocity v with respect to the metric wave field. The reason is, 
that the spatiotemporal function of the metric wave field should emulate the relativistic 
effects. The GR-dependencies aren’t furthermore considered here.  
 
That makes the PLANCK units depend on the frame of reference, which is even defined by 
them. And all of them are bound by the phase angle Q0. But the variations mostly cancel each 
other creating the impression, that the values are constant. Reference-frame-dependent values 
are marked with a swung dash e.g. Q

~
0 being constants by character. Still important are the 

values with a phase angle Q1 = 1. They describe the conditions directly at the particle horizon. 
They are constants too, because they are defined only by quantities of subspace. Thus, they 
are mostly qualified for reference-frame-independent conversions of certain values, so-called 
couplings. One example is the conversion of the magnetic flux φ1 to the magnetic field 
strength H1 = φ1/(µ0r1

2
) as basis of a temporal function containing reference-frame-dependent 

elements (r0). r1 would be the so-called coupling-length then. Expression (8) shows the 
relations to the PLANCK-units and to the values of the universe as a whole. 

L0    = µ0 
r0 C0 = ε0 

r0 

R0R = 1/(κ0 
r0)  Series resistor 
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           (8) 
 

The action quantum ħ1 and ħ��1 is not a quantity of subspace, but the initial action, our universe 
„got“ in the early beginning. That value is the only one „set-screw“, with which „one“ could 
exert influence on the future appearance of the universe. All other values are „hard-wired“ 
with Q0 depending on space and time. There is no „fine-tuning“ either. With expression (2) 
right-hand and (8) it’s about an effective value, i.e. ħ, φ0 and q0 are temporal functions too. 
For section 3.3. still the definition of NEWTON‘s gravitational constant: 
 

3 3
2 2 0

0 0 0 0 1 0

rc 2c t R
G c c

H M m
= = = =

µ κ µ κℏ ℏ
 (695 [1]) 

2.2. Temporal function 
 
We get the exact temporal function for the magnetic flux φ0 by solving the differential 

equation (9). It is based on a lossy oscillating circuit with expansion, i.e. the single 
components R0, L0 and C0 are changing with increasing r0. Expression (9) mainly differs from 
a normal oscillating circuit without expansion, with harmonic solution by the factor before φ̇0, 
1 with expansion, ½ without. 

 
0

0 0 0

0

1
t 0

2

κ
ϕ + ϕ + ϕ =

ε
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In contrast to the expression without expansion there is no drop-down in the resonance 
frequency ω0 with (9), normally caused by the influence of the loss-resistance R0. But we 
obtain another as solution: 

0 0 1y a F (;1; Bx)= −    with   0
0 i

0

1
ˆa 2 B x t

2
/

κ
= ϕ = =

ε
  (10) 

According to [4] applies 
 

1
2b 1

0 1 b 1F (;b;x) (b)( jx) J ( j2x )−
−= Γ             Hypergeometric function 0F1    (11) 

 
Jn is the Bessel function of nth order, thus 

 
0

0 1 0F (;1; Bx) (1)( jBx) J ( 4Bx )− = Γ              (12) 
 

0 0y a J ( 4Bx)=                     (13) 
 

0
0 0 0

0

2 t
a J

 κ
ϕ =   ε 

   =   a0 J0 (Q0 )            (14) 

 
Since it’s about a differential equation of 2nd order and the grade of the Bessel function is 
integer, the general solution is:  

 

0 i 1 0 0 2 0 0
ˆ (c J (2 t) c Y (2 t))ϕ = ϕ ω + ω        (15) 

 
The factors c1 and c2 may be imaginary or complex even here. According to [5] it’s more 
favourable, if we consider both Hankel functions: 

3

0
0 0

c
G H

κ =
µ ℏ
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(1)
0 0 0H (x) J (x) Y (x)= +     and        (16) 

 
(2)
0 0 0H (x) J (x) Y (x)= −            (17) 

 
as linearly independent solutions composing the general solution 

 
(1) (2)

1 0 2 0y(x) c H (x) c H (x)= +         (18) 
 

with it. Then, the general solution (15) reads then: 
 

(1) (2 )
0 i 0 0 0 0ˆ (H (2 t) H (2 t))ϕ = ϕ ω + ω          (19) 

 
For our further examinations, we set c1 and c2 in (18) equal to 1 for the moment. Then we get 
as specific solution (20) and for approximation, envelope curve and effective value: 
 

(1)
0 i 0 0 i 0 0ˆ ˆJ (2 t) Re(H (2 t))ϕ = ϕ ω = ϕ ω        0

0 i 0

0

2 t
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π ϕ = ω − π ω  
    Approximation  (21) 

 

i
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2 t

ϕ
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π ω
         Envelope curve  (22) 

 
1
2 11

0 0 0 0 0

0

0 0  q qQ Q
2 t

− −ϕ
ϕ ϕ= ϕ =

ω
∼ ∼ ∼ℏ  Effective value  (23) 

 
The exact course of ϕ0 (20), as well as of the approximate function of the envelope curve (22) 
and of the effective value (23) is shown in figure 1. Also depicted are the original Bessel 
functions, which you can't see however, because they are completely covered by the 
approximation. 

 

 
Figure 1  
Course of magnetic flux as well as of approximation- 
and envelope-functions across a greater time period 
 

Thus, with greater arguments, no differences are statable, neither in the amplitude, nor in the 
phase. Most important for the quality of the approximation is the course in the striking 



7 
 
distance of t = 0. It is shown in figure 2 and it turns out to be very good until the particle 
horizon at Q0 = 1. All data so far are summarized. See [1] for details and the exact derivation. 
 

 
 

Figure 2  
Course of flux as well as of the approximate- 
and envelope-functions nearby the singularity 

 
 
 

2.3. Propagation function 
 
 
2.3.1. Exact solution 
 

For further contemplations we need the propagation function of the metric wave field in 
any case, as well as the values connected with it. You can read from section 3 on if you are 
already familiar with the model. 
 
 
2.3.1.1. Temporal function 

 
In contrast to MAXWELL, which used the first term of the harmonic solution (108 [1]) ejωt 

as ansatz, we now choose the first term of expression (19), obtained as an independent 
solution of the differential equation (9). It’s about the temporal function of the magnetic flux 
φ0 there, relating to one single MLE, from which the charge q0 can be derived. For the 
propagation function however we need the magnetic and electric field strength H and E. The 
relation: 

 

A

dAϕ = ∫B    with B = µ0 H            leads to  0
2

0 0

ˆ

r

ϕ
=

µ
H

          
 (24) 

 
Because of r0 indeed the right-hand expression depends on the frame of reference. Moreover 
we are rather looking for the starting value at T = 0. The temporal function is just known. 
Hence, we must carry out a reference-frame-independent coupling only. The coupling-length 
rk is not arbitrary in this case. Because the imaginary part of the Hankel function is coming 
from infinity, the starting value ϕ0 is defined at the point 2ω0t = Q0 =1. The coupling-length at 
this point is r1 as already predicted more above. This value is denominated as H1 resp. E1. 
With respect to the fact, that (23) is an effective value, we obtain the following relations: 

    



8 
 

01
2 2

0 1 0 0 0

q 1
2 2

r Z r

ϕ
= =

ε ε1E    0
2

0 0

2
r

ϕ
=

µ1H       (25) 

 
 E  =  E1 (2ω0t)   

 H  =  H1 (2ω0t)    (26) 
 

Here again, the real part of the vector corresponds to an orientation in y-, the imaginary one 
in z-direction, x is the propagation direction. As already stated, there is an analogy between 
the exponential function ej2ωt and the Hankel function. Both are transcendent complex 
functions and periodic respectively almost periodic. Of course, there is also a solution of the 
MAXWELL equations for (26). The detailed derivation can be read in [1] once again. Important 
is the complex wave propagation velocity c and the field wave impedance ZF: 
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One can see, the propagation velocity tends to zero for greater t. The same applies even to 

the field wave impedance. We have to do with a quasi-stationary wave field (standing wave), 
which fulfils the requirements, made on a metrics, very well. The propagation velocity is 
complex again. A split into real- and imaginary part proves to be quite difficult, but it’s 
mathematically possible. The solution for c reads:  

 

2 2
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2 c 1 1
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ρ 2ω t 1 θ 1 θ
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0 0 2 0 0 0 2 0
2 2
0 0 0 0

J (2 t) J (2 t) Y (2 t) Y (2 t)
A

J (2 t) Y (2 t)

ω ω + ω ω
=

ω + ω
     

2 2 2 24
0ρ 1 A B 2AB( ) ( )= − + +  

 

2 0 0 0 0 0 2 0

2 2

0 0 0 0

J (2 t) Y (2 t) J (2 t) Y (2 t)
B

J (2 t) Y (2 t)

ω ω − ω ω
=

ω + ω
  

 

2 2

2AB
θ  

1 A B
=
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An altogether quite complex expression turns out, that can still be simplified someway 
however (31). A starts at +∞ converging to –1. The course resembles the function 1/A2–1 
approximately, which cannot be used well as approximation however. B has a course like 
1/B2 and is converging to zero. The same is applied even to θ then. The bracketed expression 
converges to 1 with it. 1/ρ0 is the value-function converging to ½��. 
 

1
2

j (arctanθ π)
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2 c 1 1 2 c
c sin arctan θ jsin arctan θ e

ρ 2 t 2 2 ρ 2 t

− + = − + = ω ω 
    (31) 

 
Unfortunately (31) cannot be transformed into an expression similar to (179 [1]) with area-
functions, so that the ambiguity of the arctan-function leads to a partially wrong result. We 
should better calculate with the following substitution therefore: 
 

( )( )   
2 2arctan θ arg 1 A B j2AB= − + +                  

1 π
arg c arccot θ

2 4
= −   (32) 

 

H 0

(1)
H 0
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While the real part of c is defined as the velocity in propagation direction, the imaginary 
part can be interpreted as a velocity rectangular thereto. The appearance of an imaginary part 
in c means also that there is an attenuation anywhere (refer to figure 4). A numerical handling 
of (27) even can be processed with »Mathematica« resulting in the course figured in figure 3. 
Since the Hankel functions, with larger arguments, can be expressed well by other analytic 
functions, we will try to declare approximative solutions later. 
 

We have to do with a case of inversion here. This manifests by the fact that the 
propagation-velocity first ascends from zero to an amount of 0.851661c (at 0.748729 t1) and 
then descends again asymptotically to zero. 

 

          
Figure 3 
Propagation-velocity 
in dependence on time (logarithmic time-scale) 

 
With it, the world-radius (wave-front) of this model doesn't expand with c but with 0.851661c 
only, which figures no violation of the SRT anyway.  However, a contradiction arises to the 
usual definition R=cT, which has been solved (see section 3.4. or [7]). 
 
 
 
2.3.1.2. Propagation rate 
 

To specify the propagation-function we need both, the temporal function and the 
propagation rate γ = α+jβ. The normal form of the propagation function is given by: 
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Contrary to (33) the argument in the case with expansion is real. Strictly speaking, namely it's 
not the Hankel function but the modified Hankel function Z 0

(2) = I0(z) –j K0(z) being the 
equivalent of the exponential-function. It is valid for I0(z) = J0(jz) however only for pure 
imaginary arguments. With complex arguments, the real part cannot be drawn to a position 
ahead of the Hankel-function as usual with the exponential-function, since the power rules 
aren't applied to Hankel functions anyway. It's possible first with larger arguments z. In 
general the modified Hankel function isn't used however. Therefore, we use for the base the 
„ordinary“ Hankel function adapting the propagation-function accordingly. To avoid 
contradictions with the classic definition of propagation rate – real-part equals attenuation 
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rate, imaginary-part equals phase-rate – the propagation-function should read as follows then 
(analogously for H): 
 

E  =  E 
(1)
0 0

x
H 2 t

c

  
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This is not quite the classic expression for a propagation-function. Attention should be paid to 
the factor 2 which can be assigned both to the frequency, as well as the time-constant. With 
the definition of propagation rate γ = α+jβ it obviously belongs to the frequency since γ 
depends on phase velocity dx/dt, but not on the half of dx/(2dt). By equating both arguments 
of (34) one gets then: 
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From (31) the reciprocal of c can be determined very easily. Then we get for γ: 

 








 −
ρω

−= θarctan
2

1
sin jθarctan

2

1
 cos

c

t

c

1
 

00
        (36) 

 

γ  =   α+ jβ   =     – 2ω0 /c    =   






 −
ρω

θarctan
2

1
sin jθarctan

2

1
 cos

c

t2
 

0
2
0   (37) 

 

γ  =  






 −κρ θarctan
2

1
sin jθarctan

2

1
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Figure 4 

Phase-rate and attenuation rate 
in dependence on time (linear scale) 

 
With accurate contemplation one recognizes that α and β, evaluated by its action, are 

exchanged in fact (α = phase-rate, β = attenuation rate). This is caused thereby that a rotation 
of about 90° (j) occurs during propagation (figure 7). x turns into y and y into –x. The atten-
uation α, starting at the point of time t=0, starting off infinity, is decreasing exponentially. To 
the present point of time, one can say that there is basically no attenuation anyway. This 
doesn't apply however considering cosmologic time periods. 
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At the point of time 0.897 t1 (Q = 0.947), the function β has a zero-passage. This supplies 
the somewhat particular course in logarithmic presentation (figure 5). It's about a phase-jump 
of 180° in this case. From the point of time 100 t1 on we are able to declare, referring to 
figure 4, the following approximation: 
 

 
Figure 5 
Phase rate and attenuation rate 
in dependence on time (logarithmic) 

 

0
4

0 0
0

(1 j) Z
2 t

ε
γ ≈ + κ

κ
   0 0

0

Z
(1 j)

2 t

κ
γ ≈ +

ω
   (39) 

 
These relationships can be derived as well graphically from figure 4, as explicitly using (35) 
by application of (42). However, it's necessary to multiply (35) with j, in order to take 
account of the 90° turning (figure 7). Then, to the approximation γ = 2ω0/c is applied. Phase 
rate and attenuation rate are the same from 100 t1 on approximately. This is the behaviour of 
an ideal conductor.  
 
 
 
2.3.2. Asymptotic approximation 

 
In [6] an asymptotic formula for the Hankel function is declared. It reads: 

 

( ) ( )
  

π π
j z ν

(1) 12 4

ν

2
H z    e  1 z

πz

 − −  −   = + O   for 0 < z < ∞    (40) 

 
Put into (27), one sees that nearly all expressions can be reduced. The root-expression R 
converges to a value of: 
 

1/2 1/2 2 1/2 1/21 1 (t ) (t ) 2 (t ) 2 (t )− − − − − + − ≈ − 2 0 2 0R = O O O O    (41) 

 
The root-expression result just only depends on the remainder terms which is tending to zero 
as well. Therefore, this base is not suitable for our purposes. 
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For γ, we have already found an approximation, still remain c and ZF. In figure 3 we 
already depicted the course of c. To the graphic determination of an approximation however, 
we require the double logarithmic representation (figure 6). To be considered, is the fact that 
the imaginary part is actually negative. 

 

 
Figure 6 
Propagation-velocity 
in dependence on time (double logarithmic) 
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       (42) 

 

0
4

0

c c
2 t

ε
=

κ
   

0

c
c

2 t
=

ω

       (1.0916·10
–22

 ms
–1) (43) 

 

0
4

F 0

0

1 j
Z Z

2 t2

ε−
=

κ
   0

F

0

Z1 j
Z

2 t

−
=

ω

     (44) 

 
 
 
 
 
2.3.3. Expansion curve 

 
 
At the world-radius, the universe expands with the maximum velocity of  0.851661c, in the 

inside with a velocity decreasing more and more. Since the wave count in the interior of a 
sphere with defined radius r (c,t) is decreasing, the deficit is balanced by an increase of 
wavelength. Outside the wave count ascends continuously due to propagation. 

 
For greater t the expansion of the wave front proceeds nearly rectilinear with an angle of 

−45° proportionally t
3/4

. But the behaviour looks somewhat different near the singularity. In 
The track-course of a single sector of wave front near the singularity is shown in figure 7. We 
see a kind of parabola, with greater t a hyperbola. And there is a rotation in propagation 
direction about an angle of 90°.  

� �

2.5�
 �

5.�
 �

7.5�
 �

10.�
 �

12.5�
 �

15.�
 �

-�4.�
 �

-�3.�
 �

-�2.�
 �

-�1.�
 �

lg� �
2� �κ� �0� �t� �

ε� �
0� �

lg� �
c� �
c� �

Approximation  �   � �

─ � �Imaginary part �   � �

Real part  �   � �

 �
 �

 �
 �

 �
 �

0
4

0

c
Re(c) Im(c)

2 t2

ε
= − =

κ



13 
 

 
Figure 7 
Track-curve near the singularity 
in dependence on time 

 
 
 
 

2.3.4. Approximative solution 
 
Now we want to set-up an approximation for the propagation function. The normal form is 

E=Ê ejωt−γx
 with γ = α+jβ. But with the exact solution (39) there is a case on hand, with which 

α and β contain both damping- and phase-information and the wave function isn’t harmonic 
either. That way we aren’t able to form a reasonable propagation function at all.  

 
In the case t » t1 phase- and attenuation rate are of the same size. Thus, the model behaves 

similar to a metal. There α does not stand for a damping, but for a rotation, namely as long as, 
with vertical incidence, a value of π is reached so that the wave exits the metal in the opposite 
direction after a minimal intrusion. The depth of penetration depends on the material proper-
ties, the wave length and the angle of incidence. In case of this model the material properties 
aren‘t constant either, γ decreases with t and x. Hence it suffices to a rotation of  90° only and 
the wave remains in the medium (vacuum). In any case, there is a rotation too.  

 
To cope with it, we do a rotation of the coordinate system about π/4. That corresponds to a 
Multiplication with ���� and we get a purely imaginary solution. So becomes α=0 and γ=jβ and 
the exponentially related attenuation vanishes. Indeed, we still have to multiply the result 
with �� and to replace x by r. Despite α=0 the amplitudes of E and H are decreasing 
continuously. That’s caused by the Hankel function alone, resp. by the radical expression in 
(45). With it amplitude and phase are firmly interlinked (minimum phase system). Now the 
rotation angle in space is equal to θ+π/4. But a separation of phase- and damping-information 
isn‘t possible yet. But we can work with very high precision using the approximation 
equations in this case. To the general Hankel function H 0

(1)(ωt−βx) the following 
approximation applies (analogously for H): 
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(1)
j ( t x )

4
0

2ˆ ˆH ( t x) e
( t x)

π
ω − −β

= ω − β ≈
π ω − β

E E E      (45) 

 
Instead of γx only the product βx with the phase rate appears in the exponent, since the 
amplitude rate is already emulated by the radical expression. With t»0 the angle π/4 can be 
omitted. After rotation and transition x→r and ω→2ω0 turns out: 

 

0 0(1)
j (2 t 2 r )

1 4
0 0 0

0 0

2ˆ H (2 t 2 r) e
2 t 2 r

π
ω − − β

= ω − β ≈
ω − β

E
E E     (46)

 
 

E1 is the peak value of E with Q0=1. Indeed are both ω = 2ω0 and β = 2 β0 (with double 
frequency even the phase rate must be doubled) no constants at all. That means, they depend 
on t and r at the same time, limiting the manageability of the approximation very much. You 
can see that also with the phase velocity vph. It is defined in the following manner: 

 

     

 

   c2
tω2

c2

β

ω2
v

0

0
ph ===        for t»0   (47) 

 
Thus, the phase velocity is equal to the double absolute value of propagation velocity. That’s 
caused by the factor 2, since phasing with double frequency propagates with double velocity 
too. For interest, also the group velocity should be stated here: 

 

      c2
ωdβd

1
v

0

gr −==             for t»0   (48) 

 
Except for the algebraic sign both results are equal. That means, the propagation takes place 
free from any bias. Further to the approximation. With (22) in section 2.2. we had already 
found a very good approximation, almost exact, for the same temporal function. 

 
0 0 0 0j (2 t 2 x) j2( t r )

0 0 0 0

2 e eˆ 2
2 t 2 x 2 t 2 r

ω + β ω +β

≈ =
π ω + β ω + β

1E E E    with    0 0
0

0

Z

2 t

κ
β =

ω
   (49) 

 
Now, expression (49) enables to define an equivalent- α = α0 and, with it, even an equivalent-
 γ0 = α0 + j2β0, in order to get it up to the normal form for propagation functions.  
 

0 0j2 t r
2 e

ω − γ≈ 1E E          with  0 0 0 0
0 0

0 0

2 Z 2 Z1
ln 2 t r j

2r 2 t 2 t

 κ κ
γ = ω + +  ω ω 

      (50)

 
 
That’s already a big step forward. Unfortunately, both ω0 and γ0 depend on time. It’s not 

critical for 2ω0t, because it’s multiplied by t anyway. Else with γ0, it should depend on r only. 
To the substitution of t in (49ff) we firstly put (43) left-hand into t = r/|c|. The real propagation 
velocity becomes effective here and not vph or vgr. Then we rearrange after t. Putting into 
(49) right-hand we get: 

 

0
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2 tr
t
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=

ε
           

4
43 4 20

0 0 04
0

2 tr
t 2r

c

κ
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   (51)

 

12 12
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0Z
3
08
ε

3
0κ
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1

2r
⋅

µ 0ε 0κ

8 8
0 0
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Z
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1

2r r
β =

     

(52) 

 
With it, we obtain for γ0 and the product γ0r the following expressions: 

1
1 2

0 1

H
r

ϕ
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2 1

3 3
0 0 2

1 1

1 2r 2
ln 2 t j

2r r r r

    
γ = ω + +            

  for t»0    (53) 

 
2 2

3 3
0 0

1 1

1 2r 2r
r ln 2 t j

2 r r

    
γ = ω + +            

   for t»0    (54) 

 
Last but not least the time t can be completely eliminated. The value γ0 is proportional to  

r –1/3 and, even more important, the product γ0r is proportional to r2/3. Unfortunately, as 
already said, we can explicitly state γ0(r) by approximation only. With the exact function (38) 
a separation, especially from t is impossible. But generally speaking, an exact solution is not 
required at all, since the approximation yields very good results until a striking distance  
to the particle horizon at Q0=1, see figure 2. Therefore, we will not follow up that matter at 
this point. 

 
All hitherto stated approximations are based on the 4D-expansion-centre {r1,r1,r1,t1}. But it‘s 
more practicable to find a function, related to another centre. Most suitable seems to be the  
point, where we are, the „point being“. At first we substitute the time according to t→T

~+t. 
The swung dash stands for the initial value at the point t=0 (nowadays) describing an inertial 
system. Hence it’s about a constant. Because of T

~
 = t1Q

~
0

2 we are able to factor out Q
~

0. The 
direction of time doesn’t change. To the temporal part applies: 

 
1

2
0 0

t
2 t Q 1

T

 ω = + 
 

ɶ
ɶ

       
      (55) 

 
For the spatial part β0 we build up the inertial system once again using the substitution 

r1→R
~

 . Because of R~= r1Q
~

0
2, as well as r̃  Q

~
0 = −r, now we are measuring from the other end, we 

can write for 2β0:  
           Exactly → 

1 1

3 3
0 0 0 22 2

0 1 0

2 2
2 Q Q

rRrQ r Q
β = = −ɶ ɶ

ɶ ɶ ɶɶ ɶ
       

2 2
0 3 3

0 0 0

0

2r r 2r 1
2 r Q Q

R R Q

−
β = − = − −

ɶ
ɶ ɶ

ɶ ɶ ɶ
 (56) 

 
Actually I should have to write r̃  instead of r. But because it’s the argument of the function the 
tilde has been omitted. The right-hand expression considers the fact, that r0 as smallest 
increment never can be underrun. The value α0 is definitely determined by the envelope curve 
of the Hankel function, else it would be equal to zero. With it, we obtain for γ0 and the 
product γ0r:  

2 11

3 32
0 0 0 2

1 t 2r 2
ln Q 1 jQ

2r T R rR

      γ = + − +      
      

ɶ ɶ
ɶ ɶ ɶ

         (57) 

 
2 21

3 32
0 0 0

1 t 2r 2r
r ln Q 1 jQ

2 T R R

      γ = + − +      
      

ɶ ɶ
ɶ ɶ ɶ

     (58) 

 
With r0 we have already found one elementary length. But LANCZOS speaks about another 

one [2]. That’s the wave length of the metric wave field λ0=2π/β. The approximation of λ0 
must be divided by 2 once again, due to the double phase velocity. Hence λ0=2π/β0 applies. 
To the comparison the expression for r0 once again: 

 

0 0

0 0 0 0

2 1
cosec arctanθ(2 t)
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      (59) 
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0 0
0

0 0 0 0 0 0 0

2 t 2 t1 2t
r

Z Z

κ ω
= = =
κ ε κ κ µ

     

      (61) 

 
Though λ0 is smaller than r0 and not identical to HEISENBERG‘s elementary length with it. 

λ0 now is in the range of 10
–68

m. Thus, LANCZOS was wrong in that point. But it only has been 
a guess on his part. In fact, it’s about the wave length of the wave function forming the metric 
lattice itself. Expression (59) until (61) only represent the temporal functions. Then, the  
functions of time and space read as follows. 

 

0 0 0

0 0 0 0 0

2 1
cosec arctanθ(2 t r)

ρ (2 t r) Z 2

π
λ = ω − γ

ω − γ κ
       (62) 
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    (63) 
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T R Z

  ω − β   = = + − =     κ    
ɶ

ɶ ɶ
       (64) 

 
The wave length λ0 of the metrics is irrelevant for the further contemplations of this work, 
only β0 matters. The double-bracketed expression in (64) is called Navigational Gradient in 
future. It is the essential expression I was looking for. 
 
We only know the local age T, which results from the local HUBBLE-parameter (65). It quasi 
represents the temporal distance to the expansion centre. But we are able to determine the 
spatial distance to the world radius R. This forms a spatial singularity (event horizon) with it.  
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3

0
4

0 0 0

0 0

H c 1
Z

G r

ε
β = κ = =

κ ℏ
        (67) 

 
Thus we can get the value of β0=1/r0 even from (39), in that we replace the time by the 

HUBBLE-Parameter. For R turns out:  
 

R  =  −
c

H
  =   –1.35838·1026m   =   –1.35838·1010Ly   =   –4.40215 Gpc      (68) 

 
That’s about 13.5 billion light years (calculated with (890) [1] und CODATA 2018). The 
local age amounts only to the half, namely 6,75 billion years, the local world radius is equal 
to cT. Longer time-like vectors up to 2cT are possible because of the expansion and wave 
propagation of the metric wave field.  
 

3. Electron and metric system 
 

I want to excuse me once again for the iterations, but the previous sections are essential for 
the understanding of the following. The new CODATA2018-values are used from this point 
on. 
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3.1. Physical quantities of special importance 

 
Hence, we want to continue this work with the examination of physical constants, which 

have large influence on the structure of our world. Most important thereat are the 
dimensionless constants. One of these is SOMMERFELD's fine-structure-constant. 

 
 

3.1.1. The fine-structure-constant 
 
The fine-structure-constant α is a characteristic fundamental quantity of DIRAC's theory of 

the electron. It is a measure for the strength of electromagnetic interaction, i.e. for the coup-
ling of loaded subatomic particles with photons. According to [16] it is defined as follows: 

 
2

0

e 1 1
0.0917012 0.00729735

4 c 137.035999084 4
α = = = ⋅ =

πε πℏ
       (69) 

 
e is the electron charge in this case. The fine-structure-constant has been well proven with the 
description of the decomposition of the atom-spectra (Lamb-Shift) yet. Also, it is used to 
explain the dissent between spin and magnetic moment, as it appears with the electron. Now 
we want to see, whether there is hidden an additional, essential, more fundamental legality 
behind expression (69). 

 
It is obviously opportune to calculate on the interaction of electrons or protons with 

photons with the electron charge. In section 4.6.3. of [1] however we have noticed that there 
is another second charge, namely the charge of the ball-capacitor in the MLE q0, which is 
with 3.301378 e near that value (70). 

 

0
0

q
Z

=
ℏ

          (70)  

 
With a constant in general, it has no influence on the physical content, if we multiply it 

with another constant. Let’s try now, what happens, if we substitute the electron charge in 
(69) with q0: 

 
2
0

0

0 0 0

q 1

4 c 4 c Z 4
α = = =

πε πε π
ℏ
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2

2
0

1 e

4 q
α =

π
   (71) 

 
We have uncovered the nature of SOMMERFELD's fine-structure-constant with it. Following 
clear statement applies: 

 
 
I. The SOMMERFELD fine-structure-constant is the square ratio of electron  
 charge and charge of the Minkovskian line-element multiplied with a  
 geometrical factor. 
 

 
The geometrical factor corresponds to the full space-angle of 1sr and is equal to the factor 

applied on the calculation of the surface of a ball. This is not further remarkable, have we to 
do it here with the mutual interaction of two different solutions of the field-equations after all. 
The first one is the electron (ball), that second one the photon (wave/cube). 

 
Indeed, we have uncovered the nature of the fine-structure-constant with it, but it turns out 

a new question, that we have already asked in the course of this work: 
 

1. Why does the electron charge just amount to 0.302822 q0 ? 
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This is however not yet everything. From this question and the assumption, that PLANCK's 
quantity of action is not a constant, arise a row of more questions: 

 
2. Is the ratio constant between both? If yes, why?   
3. If no or don't know:   
 Is it a coincidence that the electron charge is close to q0 today of all days? 
4. According to which legality does the value of the fine-structure-constant change 

or does it remain constant? 
5. Which effects does it have on other areas of the physics (atomic-model)? 

 
As fundamental, question 3 crystallizes here, that we cannot answer with absolute certainty 
however. With great probability, we can say that there is no coincidence. That would mean 
however, that the electron charge is not constant. Before we’ll delve into it, we have to deal 
with a second dimensionless value. 

 
 

3.1.2. The correction factor δ 
 

This value occurred with the comparison of several solutions for the HUBBLE-parameter in 
[1] and I have already seen it in a publication. Unfortunately, I don’t remember, in what. Even 
the search in the internet run into void. Therefore, I cannot tell you the correct name of it. In 
any case it’s not identical with the quantum defect. But in succession, it plays an important 
role with the set-up of the Concerted System of Units. It is defined as follows: 
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m r

5101480256
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π
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ℏ
             with the approximation (73)  (72) 
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Furthermore, following important relation applies:            

 

3

p

em 1
4 6.84386 10

m 146
−αδ= π = ⋅ ≈              

p

em4
defm

π
δ = ⇐α   (74) 

 
To avoid a circular reference we make use of the right-hand expression (74) to the definition 
of δ. Obviously, with δ it’s about a correction factor which should compensate the 
eccentricity between proton and electron in the 1H-atom of BOHR‘s classic atom-model, since 
me is not small enough with respect to mp, it wobbles. Well, BOHR’s model is not correct in 
fact. Nevertheless, values thereof, such as re, do a good service with calculations even this 
very day. That also applies to δ, as we shall see later. Apparently, because of (74) it’s about a 
kind of complementary fine-structure-constant. As latest, more exact research [8] suggest, the 
ratio me/mp turns out to be constant. It varies by max. −5.0·10

−17
 a−1

, i.e. with an age of only 
1.4·1010a it’s quasi constant. I agree with this statement, because this model is based on this 
assumption. 

 
 

3.1.3. The electron charge 
 

3.1.3.1. Static contemplation 
 
Already DIRAC has formulated a hypothesis, as per which electron charge is a function of 

time, (DIRAC's hypothesis). In his model the gravitational »constant« is not a constant too. 
That means, one cannot exclude this possibility and it is worthwhile in any case, to engage 
further examinations at this point.    

p

em 1
const

m 1836
≈ =
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If we assume to be no coincidence, that the charge of electron is near q0, so it's also 
obvious, to say that a ratio exists between the two values, which acts according to a certain 
inherent law. 

 
The definition of q0 contains the PLANCK's quantity of action, which is of essential meaning 

nevertheless for the theory of the bosons (e.g. photons) as for fermions (e.g. electrons) –
combined with the wave-propagation-impedance Z0 of the vacuum. This suggests the 
conjecture that both charges are actually one and the same, at which point the electron charge, 
on the basis of particular conditions, only seems to be smaller. Therefore we want to examine, 
whether it is possible to calculate the electron charge from the charge q0 of the MINKOVSKIan 
line-element. Let's have a look at the model according to figure 8 for that purpose.  

 
We have yet noticed that the basic condition of the metrics is located near the expansion 

centre (0) at a Q-factor of Q = 1/2 (1). The expansion-graph in this area is sketched in figure 8. 
Furthermore, we have noticed that there must be something like a basic condition even for the 
fermionic matter, whereby we can observe both types of matter only red-shifted through the 
lens (�) of the metrics. It turns out the question: What's the Q-factor, the basic condition of 
the fermionic matter is located at? 

 
The most obvious assumption would be, that it is at the point Q = 1/2 too. Now, we have 

noticed that this point (1) forms the aperiodic borderline case, in which no periodic wave-
function can exist anyway. This however, is a necessary condition for the existence of e.g. the 
electron as matter-wave (DEBROGLIE). Matter-waves are moving, according to our definition, 
opposite to the propagation direction of the metrics, which has the consequence, that they 
don't move anyway. They persist quasi on the position forming standing waves. Furthermore 
arises, that these waves, in contrast to time-like vectors, cannot surmount the (3) point Q = 1, 
in which a phase-jump appears, since they are been reflected there. With it, a matter-wave 
would be „locked up“ between the points 1 and 3. 

 
Now, we further assume, that in reality, the electron also has the charge q0, of which we 

only can see the share e, since the electron is warped about an angle β into the phase space in 
reference to the observer, who is positioned far on the r-axis.  

 
Just like the universe the electron is a four-dimensional object. Because the charge q0 is 
evenly distributed over the surface, it is quite possible, that we may even be able to see only a 
part of the surface, and with it, only a part of charge, due to the curvature-ratio. The (shifted) 
r-axis is the asymptote of the track-curve of expansion (figure 25 [1]). It behaves like a 
parabola near the origin, farther, like a hyperbola (figure 7). We are primarily interested in the 
angle ε, which results from the argument of the integral of the complex propagation velocity c 
of the metrics (27). It applies: 
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−==ε ∫

T
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      (75) 

 
At this point the integral of c and not the value itself comes into effect, since not the velocity 
c of the electron but his location is of interest for the further calculations. With the help of 
(30) we are able to transform (75) in the following manner: 
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t 2 2 2 t
− +π ε = − + = ρ ω ω ρ ∫ ∫  (76) 

 
The integral with respect to time is not particularly well-suited however, since the frequency 
ω0 itself is a function of time. Therefore we substitute t by the phase-angle Q = 2ω0t obtaining 
for the angle ε and for the amount of the zero-vector rN: 
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with r1=1/(κ0Z0). Although, the left expression of (79) is not yet complete. It only describes 
the propagation of the wave. It still lacks the expansion-share Z of the constant wave count 
vector rK across the entire world-radius R, otherwise applies Z =  2mQ1/2 see (328 [1]). It has 
the characteristic of a zoom-factor and is to be placed before the integral, since it influences 
all elements dr simultaneously (see section 4.5.2. [1] or [7]). Altogether applies: 
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j (argθ )2
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r 3r Q e dQ

− +π=
ρ∫            (80) 

 
Now certainly an analytic solution of this integral can be found, if there is enough time. This 
however would go beyond the scope of this work. Therefore, we determine the integral with 
the help of the »Mathematica«-function NIntegrate numerically. With it however the function 
1/ρ0 makes particular difficulties, namely because of the many nulls of the Bessel function. In 
order to make possible an exact solution nevertheless, we substitute the expression 1/ρ0 by an 
interpolation-function with list (function Interpolate). Then, expression (78) Ep[Q] and (80) 
Rn[Q] can be calculated as follows (without r1): 
 

A=Function[(BesselJ[0,#]*BesselJ[2,#]+BesselY[0,#]*BesselY[2,#])/ 
(BesselJ[0,#]^2+BesselY[0,#]^2)]; 
B=Function[(BesselY[0,#]*BesselJ[2,#]-BesselJ[0,#]*BesselY[2,#])/ 
(BesselJ[0,#]^2+BesselY[0,#]^2)]; 
RhoQQ=Function[If[#<30,Sqrt[Sqrt[(1-A[#]^2+B[#]^2)^2+ 
(2*A[#]*B[#])^2]],2/Sqrt[#]]]; 
ArgThetaQ=Function[Arg[1-A[#]^2+B[#]^2+I*2*A[#]*B[#]]];    (81) 
rq={{0,0}}; 
For[x=-8; i=0, x<4, ++i, x+=.01; AppendTo[rq, {10^x, N[1/RhoQQ[10^x]]}]]; 
RhoQ1=Interpolation[rq]; 
RhoQQ1=Function[If[#<10^4,RhoQ1[#],.5*Sqrt[#]]]; 
Ep=Function[Arg[NIntegrate[RhoQQ1[x]*Exp[-I/2*(ArgThetaQ[x]+Pi)],{x,0,#}]]]; 
Rn=Function[Abs[3*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[-I/2*(ArgThetaQ[x]+Pi)],{x,0,#}]]]; 

 
The absolute error is smaller than 10–7. Then the electron charge is the rectangular mapping 
of the charge q0 upon the r-axis as presented in figure 8: 
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e
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4
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π
 (82) 

 
The exact calculation with the help of the function FindRoot using the CODATA2018-values 
for the basic condition of the electron turns out the value ε = −2.0485420678463937 resp. 
ε = −0.6520711924588928 π with Q = 0.6567290175491683. Because the observer, to the point 
of time T » t1, is located (approx.) directly on the r-axis, the electron charge calculates from 
the real charge of the electron q0 multiplied with the sine of the angle-difference between the 
phase-angle of the electron in base state and the phase-angle of the observer (–π/4) as 
e = 0.3028221208819746 q0). 
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Figure 8 
Ratio of electron charge and charge of the  
MLE in the phase space of the electron 
 
 

 
This is constant over a large area (sin γ  ≈  0.302822). With it, the electron charge traces the 
charge q0 of the MLE directly. Thereby, the very small variation of α by approximately 
−2.0·10

−17
 a−1

, stated in [8], is no contradiction. Only on extremely relativistic conditions, the 
ratio between q0 and e varies according to figure 11. 

 
With the fine-structure-constant itself it are just actually about two different „constants“ 

which only coincides to the present point of time. Firstly it's about the ratio of the observed to 
the actual electron charge, secondly about the angle of intersection between electron and 
photon. It can be interpreted even like that the charge of the electron itself is a wave-function 
and it's periodic. Because of the spin (rotation) the measured charge is a function of the angle 
of incidence α then (figure 8). 

 
On this occasion, the photon always incidents with the angle –3/4π This corresponds to the 

real-part, because only this is able to perform work during an interaction. During the 
calculation of action, we must multiply with the value sin γγ therefore. The same is applied 
also to the interaction with neutrinos (inverse b-decay ν‾ +p → n + e+

 ). Latter one also today yet 
figures one of the some many options to the proof of neutrinos. First of all, only the 
extremely small real-part (in this case),  becomes effective during the reaction of the proton 
with the antineutrino, which leads to the so small effective cross-section. Then, in the 
subsequent reaction of course the entire neutrino is absorbed, including the „blind energy“. 

 
On higher velocities (near c), near the particle-horizon or even in strong gravitational-fields 

thus the uniform „constant“ splits into two different variables. The weak interaction becomes 
strong quantitatively seen, since the neutrinos behave like photons then. At the same time 
there's going to be a symmetry-breaking. 
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However back to the electron: While the basic condition of the metrics is settled at Q = 1/2, 
we have found a value of Q = 0.656724 for the electron, but we expected a value of Q = 2/3. 
Using Q = 2/3, we obtain a value for e, which is about 2.54% beyond the really observed one. 
How this deviation can be interpreted? 

 
As is generally known, the fine-structure-constant is used in the interpretation of 

interaction-processes between electron and photon, at which point the observer usually is 
located far away on the constant wave count vector rK at a point Q»1. In a large distance, this 
coincides with the r-axis. Even the electron as a fermion only moves along the constant wave 
count vector. Since the Q-factor is identical to the phase-angle of the Hankel function, it is 
defined along rK, i.e. along the arc. The wave-function of the electron shows a certain 
curvature with it. The photon itself, the zero vector rN in contrast, is rectilinear i.e. not curved. 
Since it's about a photon, which is observed at a point with Q»1 the angle α is extremely 
close to π/2. 

 
The real interaction indeed takes place in the basic condition of the electron at Q = 2/3 i.e. 

the zero vector is being up scaled with all its angles to the phase space of the electron. The 
result of the interaction on the other hand is being observed downscaled at Q»1 then. And an 
adaptation occurs obligatorily during the real interaction (stretching) of the curvilinear wave-
function of the electron onto the non curvilinear zero vector. For this reason, it is of interest to 
determine the arc length of rK. Even if we weren't able to find any analytical solution for (80), 
we can say yet, that the determination of the arc length is not impossible. With the help of 
(76) we obtain: 
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This is however only the share of the wave-propagation in turn. Together with the expansion-
share, this is applied to the arc length too, we get: 
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∫ ∫ R(Q)       (85) 

 
Also for the expression (85) there is certainly an analytic solution, this is however still too 
complicated, so that we will determine this integral numerically too, at least for small values 
Q, because to large values, the approximation 2/ρ0 ≈ Q

1/2
 is applied and the integral turns 

analytically solvable with it: 
 

Q Q
1/2 1/2 1/2 2

K 1 1 1
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r r Q dQ r Q Q dQ r Q
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= ≈ =

ρ∫ ∫          Q»1    (86) 

 
This is a known relation, which we have derived with it. It is applied however only to values 
Q»1. For the numerical determination of the integral we apply usefully the following 
expression in »Mathematica«: 

 
Rk=Function[If[#<10^4,3*Sqrt[#]*NIntegrate[RhoQQ1[x],{x,0,#}],#^2]];  (87) 

 
Now, we are particularly interested in the ratio between rK and rN. The course is presented in 
figure 9 with and without expansion-share. Namely, the expansion-share cancels out in this 
case. To the calculation we use the function rs. For a faster calculation we generate the 
interpolation function RS[Q] (see annex). 
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Figure 9 
Ratio between the length of the constant wave-count vector 
rK and the length of the zero vector rN as a function of Q0 

 
And it shows following at this point: If we assume the basic condition (rN) of the electron to 
be at Q0=0.6567290, so the associated constant wave count vector rK is exactly about 
1.0151827890 longer. If we however multiply the phase-angle Q0 = 2ω0t = 0.6567290 with the 
latter one, a value of 0.666699995 turns out. Except for a deviation of only 4,99935·10–5 it 
equals 2/3. The reason could be the computational error during the numerical integration. 
Having duplicated the precision of the calculation however, we got exactly the same result up 
to the last position. It could even be about a systematic error then or about others, not 
considered influences during the determination of electron charge in the experiment or about 
a misinterpretation. Also possible is, that the value in fact is not exactly at 2/3 but at 
0.6567290. 
 

 
 

Figure 10 
Ratio of electron charge and charge of the MLE  
in the phase space of the electron (larger scale) 
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In figure 10 the exact relations are presented in a larger scale once again. One recognizes the 
two basic conditions of the electron e (blue) and e´ (red), at which point more final should be 
equal to the stretched constant wave count vector of e. This is not the case by the way, since 
the angle ε and with it also β varies negligibly with the stretching. We determine the lengths 
of rK as well as rN for the three values to: 
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It shows, there is no match in length. Even if we deduct the expansion-factor from the result 
we always get a deviating result (the best fit would be at a phase-angle of 0.660147). That 
means, the basic condition e is only nearby Q = 2/3 i.e. with 0.656729017. That doesn‘t 
conflict with other findings of [1] and plays a subordinated role with it. The exact 2/3 was just 
a guess of mine anyway. The only thing, that matters, is the angle ε = −2.0485420678463937. 
Now, we already want to calculate the corresponding charges: 
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I would denominate condition e′ as excited state of the electron. With it, we have proven, that 
it is possible, to find a relation between the charge e of the electron and the PLANCK-charge 
q0. Maybe, these two charge-bearing particles are actually identical, on the one hand as free 
particle (electron), on the other hand bound in the metrics…? 
 
 
 
 

 
3.2.2.2. Dynamic contemplation 

 
 
We have determined yet that the electron charge is (could be) equal to the rectangular 

mapping of the charge q0 of the MLE onto the metrics-axis of r. What happens now, if the 
observer moves with a certain velocity or is located in an area of strong curvature or quite 
simply, what's the spatial and temporal dependence of the electron charge? 

 
If the observer is moving with a relative-velocity different from zero in reference to the 
coordinate-origin, he is, in terms of physics, moving backwards on the expansion-graph in the 
direction to the zero point. The same is applied in the proximity of a strong gravitational-field 
or that of the particle-horizon. The temporal dependence is inverse. In the natural time-
direction, he moves away from the zero of the expansion-graph. All that depends on the value 
Q
~
 (frame of reference), on time, distance, speed and/or the gravity potential. In order to 

determine the dependence, let’s have a look at the model according to figure 8. At first, we 
will determine the dependence with respect to the phase-angle Q. 
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If the observer is located far away on the r-axis, so the phase-angle ε–β of the metrics, that’s 
the vector from origin to the observer staying on the expansion-graph, amounts to (approx.)  
–π/4 (r-axis). The r-axis forms the asymptote of the expansion-graph. If we now approach the 
origin, the value of the angle becomes greater (the r-axis turns to the left). Now, the charge 
arises to e′= q0 sin γ′ (not identical to e′ and γ′ of figure 10). On this occasion the right angle 
(α) survives, because with the turnover also the propagation direction of the photons changes. 
Then, under application of (85) and (86) in the triangle e′rT′q0, we obtain the following 
relations: 
 

arg c dt
2 2

π π  γ = π− − β = − −ε+ ∫       (93) 
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RnB = Function[ 

  Arg[3*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[-I/2*(ArgThetaQ[x] + Pi)], {x, 0, #}]]]; (95) 
Plot[{Sin[(Pi/2 - RnB[10^t7] + ϵ}, {t7, -8, 8}] 

 
For a faster calculation I defined the interpolation function RNBP[Q], for sin γ the function 
QQ[Q] (see annex). The course of the corresponding function in dependence on Q is shown in 
figure 11. We see clearly, that the ratio electron charge and PLANCK charge is nearly constant 
over a wide reach. With the fine-structure-constant it’s really about a genuine constant, at 
least for the these days technically accessible range. But, approaching the origin, e.g. with 
very fast speed near c, the ratio changes. The maximum is at Q = 0.656795 behind the particle 
horizon.  

 

                
Figure 11 
Ratio of electron charge and of the PLANCK charge 
as function of the phase angle Q according to (94) 

 
 

Btw., figure 118 in [1] shows the temporal dependence and not that on Q. In the 
approximation | c | ~ Q0

–1/2
 ~ t–1/4 applies. With it, we determined the dependence e′(Q). But we 

are rather looking for the function e′(v). Most simply it would be, if we could determine Q(v). 
In section 6.1.2.1. of [1] we already found with (597 [1]) the expression Q = c2/v2. But we 
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cannot use it here, because it only applies to a non-accelerated frame of reference. The item v 
is the speed | c | with respect to the r1-lattice of subspace in this connection. If we accelerate, 
our frame of reference gets lost and we get a new one, in which most of the base values, even 
v, have taken on another value. Indeed, expression (597 [1]) applies-on, however with another 
value of v. Thus, we cannot simply add the speed after acceleration to the value | c |, at least 
not linearly, but geometrically. Therefore, we have to find another, better expression here. 
 
We are moving on the constant wave count vector rK. If we look at expression r = ∫ c  dt more 
exactly, so c depends on the time dt. Thus, we have to replace dQ with dt at first. Based on 
(86) without expansion applies: 
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Reference point is the expansion centre {r1,r1,r1,t1} in this connection. Now let’s substitute dQ 
by dt with the ansatz: 
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Plugged into the integral we obtain then: 
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We can’t do much with that either, as we’ve only proven, that the world radius R/2 = ct is, 
without consideration of expansion, proportional Q3/2 resp. t3/4 in the approximation.  
 
If speed comes into play, we always have to do with more than one reference system and with 
measurements of physical quantities we have to perform a LORENTZ-transformation. We have 
stated in [1], that wave-lengths are stretched according to λ ~ Q

3/2
. The same applies to the size 

of material bodies, whereas the PLANCK-length r0 is ~ Q only. Otherwise no redshift would be 
detectable. With the LORENTZ-transformation the wave-length λ depends on the inverse 
LORENTZ-factor β = γ

−1
 = (1−v

2
/c

2
)

1/2
, it applies λ = β λ . However, this must not be confused 

with the formula for the relativistic DOPPLER-shift. With it, we are able to formulate expres-
sions for the dependence Q=ƒ(v): 
 

312

3
2

v v Q
Q Q 1 1

c c Q

   
= − = −   

  
ɶ

ɶ
   (101) 

 
 Q3/2

 ~ t3/4
 ~ β−1

 ~ ( z +1)      Q ~ t
1/2

 ~ β
−2/3

~ ( z +1)
2/3

  (102) 
 
Q
~
 is the value in the observer’s frame of reference. In order to ensure an exact calculation  

even for velocities extremely close to c, it’s a good idea, to increase working precision. In 
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Mathematica/Alpha it happens with the help of the function SetPrecision with an allocation to 
an auxiliary variable inside the definition of the function: 
 
Qv = Function[a4712 = SetPrecision[#2, 309]; #1*(1 - a4712^2)^(1/3)]; (*Q(v/c, all Q~)*); 

Qv0 = Function[a4713 = SetPrecision[#, 309]; Q0*(1 - a4713^2)^(1/3)]; (*Q(v/c, Q0)*); 

vQ = Function[a4714 = SetPrecision[(#2/#1)^3, 309];     (103) 
    Sqrt[SetPrecision[1 - a4714, 309]]]; (*v/c(Q, all Q~)*); 

vQ0 = Function[a4715 = SetPrecision[(#/Q0)^3, 309];  

    Sqrt[SetPrecision[1 - a4715, 309]]]; (*v/c(Q, Q0)*); 

 

With it, it’s possible, to specify the ratio e/q0 as a function of velocity v exactly. Unfor-
tunately, the graphic resulting from, is underwhelming, unless we work with the logarithm of 
the difference (1−v

2
/c

2
). But the function α at first. Because of (94) and (101), both are no 

constants in fact, but reference-system-dependent.  
 

 
Figure 12 
SOMMERFELD‘s fine-structure-constant  
α as a function of the phase angle Q 

 
In this context I have to disappoint the astronomers. The fine-structure-constant varies with 
time and distance indeed, but the change of α comes into effect only from approx. 10−90

 m off 
the particle horizon (world radius) on. The same applies even to the course as a function of 
time t after BB, depicted by means of the function δ. So you have to find another explanation 
for the quasar-problem, unless, these are located outside our universe. Possibly it’s about the 
effigies of our neighbour-universes? But then they should be arranged in the form of a crystal 
lattice. Take a look and see, if there is also a quasar in the opposite direction. But now enough 
of speculation. 
 

Further to the correction factor δ. Because of (74) the function has a shape like α−1
 (right-

hand ordinate). For δ the left ordinate applies. The t- and the Q-axis apply to both at once. 
The t-values arise from (96). Somebody will have doubts at this point, if we really can 
reckon-back so far in time. It has to be said, that with Q nearly all other natural constants vary 
too. Shortly after BB photons behave like neutrinos and vice versa. However, the course less 
than Q = ½ in figure 11-13 is probably theoretical, since the base state of the photon is at ½, 
that of the electron at approx. ⅔. Besides from that, the metric wave field is not completely 
established until Q = ½. It’s even about a model. 
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Figure 13 
Correction factor δ and reciprocal of the fine-structure- 
constant α as a function of time after BB and of the phase angle Q 

 
Even if the ratio e/q0 is quasi constant everywhere, it nonetheless depends on time, speed, 

distance and the gravitational potential i.e. the frame of reference Q0. The same applies to 
PLANCK‘s quantity of action ħ. Because of (23) applies: 
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Thus, in the predominant part of the universe, spatial and temporal, α and δ are constant. 

Nevertheless, the previous contemplation is important for the determination of the base state 
of the electron mass with Q = 1. 
 
 
3.1.4. The electron mass 

 
This section is a supplement of [1], not included therein. I was motivated to publish by [9], 

which deals with previously unsolved problems of physics, astronomy and cosmology. I 
would like to thank the author Alexander Unzicker once again for the many valuable 
suggestions. 

 
 

 
3.1.4.1. Static contemplation 

 
Having stated, that I hadn’t considered the electron mass me in my work before, I searched 

for a relation, with which it can be calculated from the PLANCK-mass m0 resp. vice versa. In 
contrast to the charge, which resides on the surface, with the electron mass even the inner, 
invisible part comes into effect. Therefore, a behaviour like in the previous section is not to 
be expected. By trying, with the values from [1] and a phase angle Q0 = 7.95178·1060, based 
on expression (890 [1]) Q0 = ����(re /r0)

3,�I found the following expression: 
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 (105) 
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Interestingly enough, this value is near to the real one amounting to 9.10939·10
−31

 kg. Thus, 
it seems to be possible, to calculate me. In [1] I already set-up a program, with which most of 
the universal natural constants could be calculated from 10 fixed values. The electron mass 
was one of the input parameters. The value Q0 has been determined using (890 [1]). This way, 
it was possible to calculate the specific conductivity of the vacuum κ0, so that the values can 
be determined top down too. But it was impossible, to calculate all values and there was 
always a residual error. In actual fact, there are even only four values, which can be fixedly 
defined.  These are the three invariants of subspace c, µ0, κ0, and k, as well as the ones, 
depending on them ε0 and Z0, furthermore the value ħ1, the initial action of the universe 
shortly after BB (Q = 1). The reason is, that these as the only ones, really do not change at all. 
Neither, they do not depend on any system of reference. 

 
Except for the meter and the second, which are exemplarily defined, CODATA unfortunately 
took a different part with the other values, in that they fixedly defined particular values 
arbitrarily, e.g. ħ, latter one to the recent definition of the kilogram. The whole issue is quite 
problematic, especially since ħ depends on the frame of reference. Now I tried to optimize the 
lot, in order to improve accuracy. Extremely important is, that the kilogram won’t be 
modified at all. Otherwise millions and millions of scales would have to be recalibrated. Also 
I act on the assumption, that the CODATA-values are pretty accurate.  
 
Indeed, these have been determined by a kind of iterative process. Lab A determines the 
value a with a certain accuracy. Another lab validates a with another accuracy. Based on a lab 
B determines value b even with another accuracy. Based on a and b lab C determines…etc. 
This way we approach the real values more and more. The more exactly we measure, the 
more deviations carry weight, being based on the arbitrary predefinition of e.g. ħ and on the 
fact, that the lab, value a should be validated by, is in the middle of nowhere, e.g. at a point, 
the apparent gravity has a different value. The earth is not a ball anyway, but a geoid. So it 
becomes important more and more, to find a method, with which these deviations can be 
calculated out. 
 

But further with the electron mass. Just like (890 [1]) expression (105) offers an oppor-
tunity, to determine the value Q0. We need it to calculate-up to the initial values, mainly for 
κ0. It applies: 
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600
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e

? m1
Q 8.20969·10

12 m

 
= = 

π 
     (106) 

 
The value differs from the one determined in [1] and depends from m0 and me. The further 

way leads over the combination of the charge- and mass-path on the initial level, thus 
e→q0→q1→ħ1ω1 = M2c

2
←M1c

2
←m0c

2
←mec

2
. Thereafter, we are able to determine κ0 and G. 

An important side condition is (74). The whole issue is similar to Sudoku. If the numbers 
finally add up without deviation, the whole construct can be considered as correct, if not, then 
not. 
 
With (106) the calculation only adds up using the approximation ⅔�� of (73) for δ, then even 
exactly. But then α, δ, ħ, G and other values don’t fit reality anymore, so that we have to 
discard this variant unfortunately. Thus, we must find an more exact expression for (105). If 
possible, only integer fractions, the value π and at most �� should occur therein. After a long 
trial, days later, I actually succeeded, to find such a relation : 
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0−− − −= δ = ⋅⋅
π

+∆       (107) 

 
For δ we take the current value, for m0 expression (105). The standard-MachinePrecision is at 
approx. 10

−16
. The deviation is a measure for the detuning of the SI-system as a whole, 

especially caused by the imprecision of G2018, specified with ± 2.2·10
−5

. This way, accuracy 
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can still be improved significantly. Expression (107) exact obviously. That also applies to all 
other expressions, if we replace 12π

2
 by 9π

2 �� δ in them. Now we can determine Q0 and m0 
even exactly with it. It applies: 
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     (108) 

 
2 1/3

0 0
8

e 176434097482m 39 2 72. 10 kgm Q −⋅= π δ =     (109) 
 
Obviously, Q0 (108) has another value, as determined in [1]. That will be surveyed later on. 
For m0 the following relations to other mass quantities turn out: 
 

2 1
H 0 0 0M H c m Q−= =ℏ      HUBBLE-mass   (110) 

 
2 1/3 2

0 0 0 H 0em 9 2 m Q c M Q= π δ = ω =ℏ   PLANCK-mass   (111) 
 

2 4/3
1 0 0 0 0 0eM 9 2 m Q m Q= π δ = µ κ =ℏ   MACH-masse    (112) 

 
2 7/3 2

2 0 0 0 1 0 0eM 9 2 m Q m Q= π δ = µ κ =ℏ   Initial-mass universe   (113) 
 
 

 
 
Figure 14 
Course of the reference-frame-dependent masses 
mx with respect to the phase angle Q, large scale 

 
The course of (110) until (113) for greater values of Q0 is shown in figure 14. We can see, all 
masses except for the electron mass intersect in the point Q = 1. M1, the MACH-mass, is the 
counter-mass, postulated by MACH, which shall be the reason for the inertial mass of all 
bodies. According to [1] it’s the sum of the masses of the gravitational field (⅔) and of the 
EM-field (⅓) of the universe, which are mostly concentrated at the particle horizon. It’s the 
red-shifted remnant of the initial mass M2. 
 
Figure 15 shows the course near Q = 1. Even the exact course of the electron mass me 
according to (107) in comparison with m′e (105) is depicted there. 
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Figure15 
Course of the reference-frame-dependent masses 
mx with respect to the phase angle Q, small scale 

 
As we can see, shortly after BB, the so-called HUBBLE-mass MH, a measure for the rest-mass 
of the photon, is yet greater than the rest-mass of the electron and not to be neglected. Now-
adays the value amounts to 2,6094858·10−69

kg only. The model makes it possible, to simulate 
the conditions shortly after BB with simple means.  
 
With the CODATA-value of ħ we are able to determine κ0 and ħ1 even now: 
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   (114) 

 

1 0
2679562579656548.Q s064 J1⋅= =ℏ ℏ    (115) 

 
Now we can apply these values as initial values (subspace parameters). Then we turn around 
the calculation direction to top-down. The definition of κ0 as fixed value also has the 
advantage, that we don’t have to measure it by no means. Due to its extreme size it’s also 
unlikely, that we will be able to carry out such a measurement in the near future. The 
definition of ħ1 as fixed value is definitely better, than that of ħ and even correct. Because of 
the definition of the Kelvin we also take in addition the BOLTZMANN-constant k as a statistic 
value and the fixed genuine constants are complete. All other stuff is to be calculated. From 
now on, instead of Q0 we’ll use me to the identification of the particular frame of reference, 
because it can be measured (magic value). With it, our concerted metric system is ready, and 
it adds-up, exactly! To the calculation of Q0 from me we still rearrange (108) in the following 
manner: 
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        (116) 

 
In order to transform measured values being subject to the LORENTZ-transformation, we only 
have to multiply the input parameter with the factor (Q/Q

~
 )±3/2

, depending on, whether the 
LORENTZ-factor γ or γ

−1
 finds use. Furthermore it must be pointed out, that not only ħ, but 

also me varies over the years. With ħ the variation is at approx. −1.4036·10
−10

 a−1
, with me  at 
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−2.1054·10

−10
 a−1

, if only because of the growth of age. That should be taken into account by 
the SI-panel with the definition of the kg, ħ1 in contrast is invariable. A definition by means 
of me also would be possible and even recommendable. But the extremely small value is very 
difficult to scale-up.  
 

 
3.1.4.2. Dynamic contemplation 

 
After the determination of the static, i.e. time-dependent value of the electron mass, we 

want to deal with the electron in motion. Because of its smallness it can be accelerated by 
fields or by collisions with other particles only. Latter one we don’t want to contemplate here. 
Since the electron disposes of the charge e, we conveniently use the electromagnetic field for 
the acceleration. The whole issue takes place in the vacuum. 

 
 
 

3.1.4.2.1. Basics 
 
Although it’s about school content of curriculum, I want to go into detail with the basics of 

acceleration of the electron in the electromagnetic field once again, gathered from [10]. The 
electrons are released by a heating element at the cathode (0V). By impression of the voltage 
+Ub at the anode, acceleration takes place. If the anode has a hole, the electrons move-on 
even behind it with the speed achieved by acceleration. The speed depends on the applied 
voltage. Nonrelativistically applies: ½ mev

2
 = Ub e. The ray can be focussed by electric or 

magnetic fields. 
 

With accelerating voltages >2.7kV indeed, the velocity v of the electrons must be treated 
relativistic, v gains a value >0.1c then. The kinetic energy [ J ]  = [V·As] divided by the electron 
charge e = 1.602176634·10−19

As the value in eV turns out. The values apply in the observer’s 
frame of reference, we cannot „fly with“.  
 
 
The kinetic energy Wkin of an electron  
equals its total energy Wre         (117)  
less the rest energy W0 
 
The kinetic energy according to the 
energy-conservation-rule equals the per-       (118) 
formed acceleration-work of the E-field 
 
The relativistic mass mrel and the rest mass  
me are linked by the Lorentz factor γ  
 
 
Plugging in of the relativistic mass  
Into the energy equation 
 
 
Out-factoring and division by mec

2 yields  
 
  

After rearrangement we obtain for vrel [Ub]   
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VrelU=Function[ScientificForm[SetPrecision[Sqrt[1- 

SetPrecision[1/(1+# qe/me/c^2)^2,180]],180],180]];     (123) 
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In (123) and the subsequent functions the precision is set like that, we can calculate even 
velocities with e.g. 0,999999'180. For the difference 1− vrel [Ub] the function DVrelU (124) can 
be used. 
 

DVrelU=Function[ScientificForm[SetPrecision[1-(Sqrt[1- 

SetPrecision[1/(1+# qe/me/c^2)^2,180]]),180],10]];      (124) 
 
With the help of (121) we can calculate the phase angle Qrel[Ub], once relative to Q

~ 
0, the other 

time absolutely (italic). Please don’t change the fraction 1/(…)2/3 into (…)−2/3
, otherwise you 

will get an error message Division by zero! with particular values. 
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        (125) 

 
QrelU=Function[SetPrecision[SetPrecision[1/(1+# qe/me/c^2)^(2/3),180],16]]; 

QQrelU=Function[Q0*(QrelU[#])];        (126) 
 
Also important is the inverse function of (123) UeV, calculating the necessary acceleration-
voltage for a particular (v/c). It also yields the kinetic energy in [eV] at the same time. 
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        (127) 

 
UeV=Function[a4711=SetPrecision[#,1000]; (me c^2(1/Sqrt[1-a4711^2]-1))/qe];  (128) 

 
 

 
3.1.4.2.2. Energetic contemplation 
 

Shortly after the start of operation of the Large Hadron Collider (LHC) at CERN could be 
read in the press, that it „simulated the BB“ [9]. Thus, we want to verify at this point, if it is  
possible at all. The prior condition would be, to reach the nonlinear range at a phase angle of 
Q0<103.  That would be in the temporal close-up range of the phase jump near Q0 = 1 approx. 
10−90

s after BB (figure 13).  
 

Just let’s try, to accelerate an electron onto such a velocity. What energy we would need for 
it? To the calculation we use the functions vQ0 (103) and UeV (128). It’s a good idea, to 
suppress the intermediate result of vQ0, otherwise you will get a multiline output with 173 
nines after the decimal point in the form of 9.99…9913822·10−1

. So we enter the following: 
UeV[vQ0[10^3]] obtaining a value of 3.8923·1092eV. But the LHC has approx. 13TeV only, 
that‘s 1.3·1013eV. Even if the LHC works with protons, energy is energy, thus we are orders 
of magnitude below that. 
 

 
V
a
l
u
e
 

Name 

 

mx = Wx e/c2  

[kg] 

Wx = mxc
2/e 

[eV] 

Q0 

[1] 

M2  Initial-mass univ 1.514002834704·10114 1.23085·1097  1.00000·100 

BL  Linearity border 6.938648236086·1056 3.89230·1092  1.00000·103 

M1  Mach-mass 1.815248576128·1053 1.01828·1089  2.44470·105 

U1  Mach-voltage 1.550667802897·1052 8.69861·1087  1.26039·106 

m0  Planck-mass 2.176434097482·10−8 1.22089·1028  1.00543·1046 

U0  Planck-voltage 1.859208884401·10−9 1.04294·1027  5.18360·1046 

me  Electron-mass 9.109383701528·10−31 5.10998·105  5.25417·1060 

MH  Hubble-mass 2.609485798792·10−69 1.4638·10−33  8.34047·1060 ← Q0 

 Table 1 
Energy and masses in the Universe 
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The interesting question is, whether it is even possible, to reach such a high speed, especially 
for the financiers. For this purpose, I compiled the masses and their energy mxc

2
/e in eV in 

comparison with the corresponding phase angle Q0, determined in (110) until (113) in table 1. 
As we can see, the necessary 3.8923·10

92
eV is above the MACH-mass. So there is no longer 

enough energy in the universe, in order to accelerate one single electron into the nonlinear 
range Q0<10

3
.  

 
As already specified, M1 equals the sum of the gravitational and of the electromagnetic field 
of the universe. As stated in [1] the density is at ����G11(R/2)��=�1.94676·10

−29
 kg·dm

−3
. But how 

about the masses, galaxies, stars, planets, dust etc.? So the mass-density is about two orders 
of magnitude below at 1.845·10

–31
 kg·dm

–3
. That’s much less. Furthermore, the required 

acceleration-voltage is greater than U0 (PLANCK) and U1 (MACH). According to [11] these are 
defined in the following manner: 
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   (129) 

 
Because of the existence of m0, M1 and M2 there are also three different values for the gra-
vitational constant: 
 

 
2 2 2 2 3

0 0 1 1 1 0 2 1 2 0G c r m G c r M GQ G c r M GQ− −

= = = = =  (130) 

 
U2 and G2 are legacy values at this point, impossible nowadays. Thus, more than U1 won’t 
work. Presuming U1 as the highest possible voltage, if technically feasible at all, with the 
maximum available energy M1c

2
, almost 12 electrons can be accelerated to a top speed below 

the linearity border. Maybe it even suffices for one proton. So much for „simulating BB“. 
 
In figure 16-18 the theoretical courses of the phase angle Q0, of the electron charge e and of 

α as a function of the kinetic energy as well as of the acceleration-voltage are shown once 
again. Additionally, the energetic boundaries from table 1 are marked. As we can see, we 
can’t even get close to the BB. 

 
 

 
 
Figure 16 
Phase angle Q0 as a function 
of the energy of the electron 



35 
 

 
 
Figure 17 
Ratio of the electron- to the PLANCK-charge  
as a function of the energy of the electron 
 

 
 
Figure 18 
Correction factor α as a function 
of the energy of the electron 
 

 
Finally, on the subject of particle accelerator. I had promised, to address this point again 

with respect to the additional share of the mass- and charge-increase. The question is, do the 
additional shares cancel each other even in a particle accelerator? Just let’s recall the various 
dependencies: 

 
5 5

2 2 2
0 0mc Q Q
− −

ω∼ ℏ ∼        (131) 
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3 2 1 1

2 2 2 2
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− − − −

ω = ϕ → ϕ∼ ℏ ∼ ∼ ∼   (132) 
 

For the technically accessible domain suffice the approximation formulae. It is currently 
generally assumed, that both, the electron charge and PLANCKs quantity of action are genuine 
constants. The same applies even to the magnetic induction B = dϕ/dA, with which the 
electron is kept on track in the accelerator.  

 
Here we have to do with two types of forces. On the one hand, the electron is subject to the 
centrifugal force FZ = mev/r, on the other hand it generates a LORENTZ-force FL = e (v×B ). 
Both are directed against each other. It applies v ⊥ r, thus FL = e vΒ. With it, we obtain the 
classical expression for the cyclotron (B = const) and even for the synchrotron (B ≠ const): 

 

e(m v)
r v

eB

β
= β

ɶ
∼        with  1 2

2
v
c

    1−β = γ = −    (133) 

 
Now, according to this model as well me, e as the induction B are subject to an additional 
redshift. Shouldn’t this be found out somehow in accelerator-experiments? Altogether applies 
to the electron mass me ~ Q0

–5/2
 ~ β5/3, to the electron charge e ~ Q0

–1/2
 ~ β1/3. If we assume, that 

the track-radius r and with it, also the elements of area dA of the magnetic field B are not 
subject to a length contraction for the observer, applies to the induction B ~ ϕ ~ Q0

–1/2
 ~ β1/3. 

Thus, plugged into (133) we just obtain  
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            (134) 

 
The same result as with the classical model, where we assumed e and B to be constant. Thus, 
the additional mass-increase really cancels out. 
 
 
 
 
3.1.4.2.3. Perspective 

 
Before we engage in further characteristics of the electron, I want to answer the following 

question: Since it already needs an extreme amount of energy in order to accelerate one single 
electron to a speed within spitting distance to c, is it even possible, to get a macroscopic body 
up to a similar speed? It’s basically a question of whether we’ll ever be able to travel to other 
stars with a space-craft. 

 
The answer is „Yes“. In addition to the acceleration of a particle/body in a field, the so-

called external acceleration there is namely a second kind of acceleration, the internal or self-
acceleration. That is, if the body disposes of its own drive. Then very different relations 
apply. 

 
In principle, a body with the rest mass m0 contains exactly as much energy (m0c

2), in order to 
completely accelerate it to light speed. Let’s take a space-craft with photon-drive as an 
example. The energy shall be generated by matter-antimatter-annihilation and propulsion 
(mirror) shall work with 100% efficiency. Since it’s about a rocket, in principle the 
ZIOLKOWSKI-equation applies. But there is a difference because of the constancy of light 
speed, so that we can work with the same ansatz indeed, but finally a different relation turns 
out. According to [12]  the ZIOLKOWSKI-equation for v0 = 0 reads as follows: 
 

0

g
bt

v v ln 1
m

 
= − − 

 
  

0 L T

g

g

v c b m

F v b P c m m m

= =

= ⋅ = = +

ɺSpecific momentum drive Fuel consumption

Thrust Rest mass

 (135) 



37 
 
mL is the empty weight, mT tank filling. As we can see, F only depends on the power P, 
unlike as with a normal rocket. Thus, (135) doesn’t apply. Therefore, we start with the ansatz 
in [12] . I cite:  
 
»We split the whole continuously proceeding acceleration process into such small steps, so 
that step by step, a particular value of the current speed of rocket can be assigned to v and 
also its mass to the value m. In the current barycentric system of the rocket the mass Δm is 
thrusted out with the speed vg, it has the momentum vg Δm therefore. Because of the conserv-
ation of momentum  the rocket gets a repulsion momentum of the same size m Δv, increasing 
speed in the opposite direction about Δv. After the following limiting process up to even 
more, even smaller steps it no longer plays a role, that we should schedule m − Δm instead of 
the mass m to be correct. Hereby, the changings Δm and Δv become the differentials d m as 
well as d v. Thus, it yields (using the minus sign because v grows while m drops)«. 
 

g 2
0

P c
v dm m dv dm dt dv dmmc

= − = = −    (136) 

 

dv c= −
2

0

P
m c 0

1
dt v Pdt

m c
= − ∫    (137) 

 
The whole issue is simply considered, without sophistries like acceleration, distance, travel 
duration, payload, relativistic effects etc. If you are interested, please read [13]. Only the 
conclusion from (137) is of interest. In principle it’s possible, to achieve light speed with a 
space-craft. You just have to „burn“ the complete ship, cargo, the passengers, the crew, the 
drive and all the rest for that purpose. Then you really move with c, but only in the form of  a 
light ray. You can also push the self-destruction-button instead. A reasonable navigation is 
possible. As a problem remains the fuel. Antimatter with a negative mass would be very 
advantageous in this connection. 

 
 

3.1.5. The classical electron radius 
 
Meanwhile we know, that it doesn’t actually exist, since the electron is described by a 

wave function. But the electron disposes of particle-properties too. Furthermore, the value 
still occurs in particular expressions, amongst others in δ, which are still useful nowadays. 
Moreover, we defined the line element (MLE) as a ball capacitor, moving in its own magnetic 
field. Also we had assigned a radius r0 /(4π) to this, which shows similarities with the practice 
for the definition of the classical electron radius. 

 
In doing so, it was assumed, that even the electron resembles a ball capacitor with a 

specific capacity depending on the electron-radius. Because the charge was known, only one 
particular radius comes into consideration, with which energy, charge and capacity fit each 
other. It is defined as follows: 
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          (138) 

 
Since it’s about a length, the relations to the PLANCK-units, mainly to r0, are really important. 
Now, we have already used this value in (890 [1]) to the determination of Q0, but we got a 
different result. Aside from that,  the value determined with (116) seems to be more exact, as 
a comparison with the CMBR-temperature, measured by the COBE-satellite, suggests. See 
section 3.2. for more details. Thus, it’s appropriate, to impose expression (890 [1]) with a 
correction factor ζ, in order to obtain the result of (116). If there is already a curvature with 
the surface-calculation, we can assume, that even the radius is bent. Maybe, we even obtain 
the desired relation re/r0 then. Equating (116) with (890 [1]) with a subsequent substitution by 
(138), with the help of (82) and (104) we obtain: 
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The ratio mp/me is known to be constant. If the curvature were based on the same curve as in 
figure 10, ζ would match the value Q0 = 0.748612 ≈ ¾. Now we can also specify the relations 
to the other PLANCK-lengths: 
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re is greater than r0. The result is exact. Now, even the right-hand expression of (139) yields 
the correct value. Still remain (931 [1]) and (932 [1]). Since latter expression contains a typo, 
I want to present both, inclusive ζ correctly once again: 
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The value h has been substituted by ħ. Btw. Even the CODATA-documents contain a typo 
with the definition of re, copied-on from one edition to the next. So it doesn’t read re = α

2a0, 
but re = α a0 correctly. Now let’s have a look, if and which reference-frame-dependent 
variations cancel each other. At first the classical expression. I used the relativistic stretch 
factor β for the mass: 
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With it, the classical electron radius according to the classical understanding (interesting 
pairing) follows the relativistic length-contraction, which is not a contradiction. Now we 
apply the real values for mass and charge of the electron obtaining the expression for the 
„modern” classical electron radius: 
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The additional mass- and charge-increase cancel each other even here. Also according to a 
„modern“ view the radius is subject to the single relativistic length-contraction.  
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With it, there is an essential difference to the capacitor of the MLE, whose radius is 
proportional Q0 only.  
 

The fact, that most of the changes cancel each other, suggests the physical laws to be the 
same in all reference-frames. But that’s only partially correct. Just the references to the 
subspace-values are changing. Fortunately, these of all are the ones, which finally cancel out. 
Only the LORENTZ-share remains. That means, we have to do it with a limited relativity 
principle. The version advocated by EINSTEIN applies: 
 

„Die Gesetze, nach denen sich die Zustände der physikalischen Systeme ändern, sind 
unabhängig davon, auf welches von zwei relativ zueinander in gleichförmiger 
Translationsbewegung befindlichen Koordinatensystemen diese Zustandsänderungen 
bezogen werden.“[14] 

 
The subspace itself is known, not to be a reference-frame. There is no preferred frame of 
reference. No problem, the SRT would correctly do the job even then. But there is something 
like a superordinate system for the cosmos as a whole. Besides it’s not certain, that our value 
Q0 represents the maximum. Possibly there are even others with a higher Q0.  
 
The question, „Where is the maximum?“, is hard to be answered, maybe in that we calculate 
out the relative speed with respect to the microwave background. According to [15] the value 
amounts to 368±2 km/s. With the help of (101) it should be possible to calculate Qmax. We 
rearrange: 
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As we can see, the difference is not that big. The deviation amounts to +5.02·10−7

. That 
makes a difference in the age of +14310 years only. 
 

 
 

3.1.6. BOHR‘s hydrogen-radius 
 
Once again a length, which really doesn’t exist, which may serve as a rule, if the propor-

tions inside the atom change or not. According to [16] it is defined as follows: 
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Δ indicates the deviation to the measuring value and is tightly above the measuring inac-
curacy. With the help of (82), (107) and (111) we acquire the relations to the PLANCK-
lengths: 
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As well α (proton), as even δ (electron) are applied in this connection. It should also be noted, 
that me behaves differently shortly after BB, and that according to (107). But according to 
previous understanding, hydrogen atoms do not exist at all at this time. Since even the angle γ 
is involved, it however could not be true. Now let’s see again, if and which reference-frame-
dependent changes cancel out: 
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BOHR‘s hydrogen-radius is also subject to the single relativistic length-contraction, i.e. the 
atomic scales are observed shortened by β–1, just like a macroscopic body. But what about the 
additional shares? 
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The additional shares cancel each other even here. That means, as well the dimensions of 
particles, as even the „track-radii”, i.e. the dimensions of orbitals, are subject to the single 
relativistic length-contraction only. Otherwise the atoms would have been different chemical 
properties at an early point of time of the evolution of the universe. 
 
 
 
 
3.1.7. The COMPTON-wave-length of the electron/proton/neutron... 

 
The COMPTON-wavelength is a characteristic size for a particle with mass. It specifies the 

increase of wavelength of a photon rectangularly scattered on it [17]. As a representative we 
only consider the electron and the so-called reduced COMPTON-wavelength ŻC (ħ). According 
to [17] is ŻC = ŻC,e defined as follows: 
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By application of (107) and (111) we acquire the relation to the PLANCK-lengths again: 
 

2 1/3 2 4/3
C 0 0 1 09 2 r Q 9 2 r Q= π δ = π δŻ        (155) 

 
Altogether quite simple expressions, reflecting the „mechanism“ behind in principle. Also 
they are related to the invariables of subspace and with it, even better than the relations, in 
which other natural “constants“ are related to each other, without knowing, if and how they 
are changing. But to the determination, how the additional relativistic shares cancel out, we 
make use of (154): 
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The shares cancel each other even here. But the exact expression should read different in fact, 
since it’s about a (space-like) wave-function. This is considered by (155). 
 
 
 
3.1.8. The RYDBERG-constant 

 
The RYDBERG-constant �∞ natural constant named after Johannes RYDBERG. It occurs in 

the RYDBERG-formula, an approximation to the calculation of atomic spectra. Its value is the 
ionisation energy of the hydrogen atom, expressed as wave-count neglecting relativistic 
effects and the co-movement of the nucleus, thus with infinite nuclear mass, that’s why the 
index ∞ (citation [18]). Under application of the reduced value ŻC (ħ) = ŻC,e = ŻC and of ħ 
instead of h, determined in the previous section, we have to rewrite the definition in [18] in 
the following manner:   
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Shown is the measuring value at this point. The first expression is best suited, to establish the 
references to the PLANCK-units with the help of (155):  
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Obviously, the RYDBERG-constant is no constant at all. Since it’s about the natural constant 
most exactly measured of all, it’s also best suited to determine the detuning of the SI-system. 
The deviation of (159) to the measured value (158) namely amounts to 7.44431·10−10

. That’s 
much more than the measuring inaccuracy in the size of 1.9·10−12

. The calculated value 
amounts to 1.097373157632939·107m−1

. 
 

This example shows, that the SI-system in its present configuration is reaching its limits. A 
further increase of exactness is impossible without considering the reference frame and the 
relations of the natural constants among themselves. This way, even the outliers can be 
identified much better. Using the value me/mp = 5.44617021487(33)·10−4

 specified in 
CODATA2018 instead of the genuine quotient and re-determining Q0, κ0 and ħ1 thereafter, the 
accuracy decreases by up to 3 orders of magnitude. That’s also a weak point. The ratio me/mp 
is something like a second magic value or an important side-condition. Since it’s considered 
to be constant, one could theoretically define it as a fixed value. But I think, that‘s not a good 
idea. With a reconfiguration even R∞ instead of me would be suitable as a magic value.  
 
Often used is also the RYDBERG-frequency ��=���∞�=�3.2898419603�1015

�Hz. To the compa-
rison with ω0 and ω1 we still calculate the related angular frequency ωR = 2π c�∞ with the 
amount 2.0670686668�1016s−1

. It applies: 
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By character, the HUBBLE-parameter H0 is an angular frequency too, see also section 3.3.2.3. 
Because of the definition in (158) it’s easy to verify the behaviour of the reference-frame-
dependent sizes. As well classically, as even recently, everything cancels out again: 
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3.1.9. BOHR‘s magneton/nuclear magneton 

 
According to [20] in quantum mechanical view the track angular momentum L� of a charged 

point particle with the mass m and the charge q generates the magnetic moment (165) 
 

µ = µ
L
�

�

ℏ
      (165)    

q
2m

µ = ℏ      (166) 

 
Then, expression (166) is the magneton µ of the particle. BOHR‘s magneton µB is the 
magnetic dipole moment of the electron, the nuclear magneton µN the magnetic dipole 
moment of the proton. Both only differ in the mass (me resp. mp) in the denominator. We 
only regard the electron at this point. According to [20] µB is defined as follows: 
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It should be noted, that the magnetic moment L�  of the electron is always directed opposite to 
its track angular momentum due to the negative charge, hence the negative sign [20]. Now 
let’s look for the relations to the PLANCK-units. With the help of (107) and of (21[1]) 
m0 = µ0q0

2
 r0 we substitute e and me by q0 and m0. We get: 
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Here, the deviation of the measured to the calculated value is twice as big, as the given 
measuring accuracy. Obviously, inaccuracies of other measurands have been passed through 
here. Also it’s strange, that all values specified in this section are having the same inaccuracy 
of ±3·10

−10
. The expressions relating the PLANCK-units all are rechecked and yield the same 

result as the original definition, in that case (167). Latter one a deviation to the measuring 
value same as (168) turns out. There, probably something else is jinxed. 
 

A comparison with other PLANCK-units of the same kind is impossible in this case. Still, 
the behaviour of the reference-frame-dependent values remains. Starting with (167) according 
to the classical view, applies: 
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Inserting the additional shares we obtain: 
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In this case we get a different result. But since the magnetic moment always appears in 
connection with a charge or a magnetic flux, which both are proportional β–1/3, there is a 
cancellation of the additional shares too. All in all we can say, the spatial share of total 
redshift does not take any effect to the physical laws at the observer, neither qualitative nor 
quantitative. It only has a cosmologic meaning and plays an important role with the creation 
of a gravitational theory. 
 
With it, we analyzed most of the values associated with the electron. Of course, there is a lot 
of further possible candidates. I want to leave them over for the reader. I pointed the way to 
add new values. Doing so always must be substituted in such a manner, that the relation 
depend on Q0 and/or invariants only. As next I want to have a look at some other values, 
which surprisingly also can be calculated with the concerted system. 
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3.2. The CMBR-temperature 

 
Some readers will probably be surprised, to find this value of all at this point. Now, I’d 

succeeded in [1], to calculate parameters like H0 and even the (CMBR-)temperature of the 
Cosmologic Microwave Background Radiation. It could be engrossed in [19] even more. 
Indeed, it is hard to believe, that we can actually calculate back until a point of time before 
the phase jump at Q = 1. But the previous contemplations turned out, that both, photons – 
these behaved like neutrinos in the beginning – and electrons and protons, had had different 
properties shortly after BB, banish the usual notions of this period to the realm of 
imagination.  

 
Albeit with a different value for H0 (71.9845 km s–1Mpc–1), I succeeded in [1], to calculate a 

CMBR-temperature of 2.79146K with the model. This was close to the 2.72548K, deter-
mined with the COBE-satellite. What works in one direction, naturally also works in the other 
direction. So the 2.72548K of COBE using the values from [1] match an H0 in the amount of 
68.6072 km s–1Mpc–1. Indeed, that’s less than I calculated. Now, based on the electron, I 
determined, a new H0 with an amount of  68.6241km s–1Mpc–1 in this work. And I was not a 
little surprised, that it was extremely close to the COBE-value. So I assume, that the new 
value must be more accurate, than the one calculated in [1]. Thus, it’s a matter of verification. 

 
Before starting the calculation of the CMBR-temperature related on the new H0, I would like 
to review the basics first. 
 
 
 
3.2.1. Basics 
 

The model is based on the fact, that electromagnetic waves don’t propagate independently, 
but as interferences (overlaid) of the metric wave field. The wave length of the metric wave 
field is equal to the PLANCK-length and proportional Q. In return, the wave length of overlaid 
waves is proportional Q3/2. To the frequencies ω0~Q

−1
 and ω~Q

−3/2
applies. That means, both 

functions intersect somewhere in the past, both frequencies must have had the same value. 
The intersection point is at Q = ½, as we can see well at the lower frequent branch of 
PLANCK’s radiation function. It namely is identical to the frequency response of an oscillating 
circuit with a Q-factor of Q = ½. In the model Q is not only identical to the phase angle 2ω0t, 
but it also equals the Q-factor of the models oscillating circuit. Also see [19] for details. 

 
We just determined the frequency ω0 extremely accurate. Thus, we also know ω0.5 very 

precise and reversely, we are able to calculate the frequency of the peak value of CMBR and 
with it, its temperature. Even the bandwidth of the LAPLACE-transform of the first maximum 
suggests a Q-factor of 0.5. This would correspond to the conditions at the point of time t1/4 
with Q0.5 = ½, ωU = ω0.5 as well as r1/2, just our coupling-length. The frequency to this point of 
time amounts to (new value):  
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That doesn't correspond to the value, which results from the impulse-length of the first 
maximum, but it is in the magnitude order. Now the conditions at this time are shaped by a 
very large uncertainty and a part of the emitted frequencies are, because of the large 
bandwidth, anyway above, others below (171), so that it is well possible that the in-coupling 
of the cosmologic background-radiation takes place right at this point of time with exactly 
this centre frequency.  

 
The following contemplations for the in-coupling especially apply to the CMBR. Maybe it 

seems to be a little bit complicated, but it’s just a model, which should reflect reality as well 
as possible, not the other way around. Now — up to the moment t1/4 of input coupling, the 
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already emitted energy exists as a free wave. The conditions at this point of time are  
analyzed in detail in section 4.6.5.2. [1] »The aperiodic borderline case«. Now there's going 
to be the construction of the metric lattice and the signal is coupled in. With the input 
coupling, a compression of the wavelength occurs i.e. an increase in frequency about the 
factor �� due to a rotation of the coordinate system about 45°, which we have done in section 
4.3.4.3.3. [1] (the metric wave moves in r-direction, the overlaid signals in x-direction).  

 
Furthermore, the metric wave, as well as the energy to be coupled in, exist side by side up 

to the moment t1/4, both with ω0~ωU~t−1/2
~Q0

−1. But with the in coupling ωU�ωs the temporal 
dependence changes into ωs~t−3/4

~Q0
−3/2. This results in a transformation corresponding to a 

multiplication by a factor ⅔, comparable with the transition from one medium to another with 
different refraction indices.  

 
But there is yet another, additional effect: In section 4.6.1. [1] we found, that a cube with 

the  edge length r0 contains four MLE´s altogether. Hence, the energy must be divided among 
these four MLE´s. With it, the in-coupling frequency decreases additionally with the effect, 
that ωs is smaller than ω1/2 now. The first two effects are depicted in figure 20. The split we 
have to take into account elsewhere. 

 
Altogether, to the frequency at the moment of in-coupling the following factor is applied 

ωs = �⅔�� ωU� � ���⅔�� ω1 = �����ω1 ��0.4714 ω1 =  6.59542·10103s–1. With respect to the 
energy ℏUωU = 4 ℏ1ω1 only a share of 94.28% incorporated, since ℏ is neither rotated, divided, 
nor transformed, it is a property of the metric wave field itself. The split has no effect onto the 
energy balance. The 94.28% relate to a coefficient of absorption of εν = 0.9428 � ⅔��. 
Therefore we are dealing with a gray body [47]. The black body is only a model, which 
doesn’t exist in nature. The reflected share yields a further decrease of ωs and with it even of 
ωk. So we also have to multiply with εν. Interestingly enough the value εν = 0.9428 � ⅔�� is 
close to δ = 0.93786. That should be checked alternatively. 

 
Now to the transfer itself. According to (278 [1]) is the frequency of time-like vectors 

proportional to ω ~ t−3/4. That equals ω ~ Q−3/2� for the Q-factor. We do the following ansatz: 
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The factor 2�� has nearly the same size as the factor 2.8214 from WIEN‘s displacement law. 
We can see, that it’s better to relate to ω1 or ωU. The components z1b are describing the 
frequency related, the z2b however the energy related redshift. For ωk we obtain a value of 
1.07044467·1012s–1 (new). Curve 1 in figure 19 corresponds to the signal ωs redshifted by 
(2Q0)3/2 with the frequency response of a 1st order filter with in-coupling. Except for the 
decline in the upper-frequent range it is identical with ωk. Curve 6 shows the course of a 
thermal emitter with the temperature of 2.86632K. That’s exactly the temperature of a gray 
emitter with the frequency ωk. 
 
Now we want to assume that the decrease with higher frequencies is actually caused by the 
existence of a cut-off frequency. Then the intensity of the cosmologic background-radiation 
should trace exactly the PLANCK's radiation-rule. The exact presentation can be found in [19].   
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Figure 19   Figure 20 
PLANCK's radiation equation and approximation         In-coupling process 
 

It should be noted here, that what applies to time-like vectors being emitted directly after BB, 
must apply to time-like vectors being emitted later too (e.g. today). With time-like vectors it’s 
just impossible to detect, when and where they had been emitted at all, they are timeless. 
Since no vector is distinguished over the other, then each thermal emission must proceed 
according to the same principles (PLANCK’s radiation rule).  
 
 

3.2.2. Calculation 
 

While the temperature of the metric wave field is equal to zero, it’s not the case with the 
CMBR. Since it’s about almost black radiation (εν = 0.9428 � ⅔��), we are able to calculate 
the black temperature indeed, but we want to work-on with the grey temperature. By 
transposing the WIEN displacement rule with the energetic redshift z22 = 12 εν Q0

5/2 of (174) we 
obtain for ωU = 2ω1: 
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That’s the temperature of the cosmologic background radiation in consideration of the 
frequency response (see figure 21). I already offered expression (176) as an approximation in 
[1], since the value �� = 3 + lx (−3e

−3
) is only 0.25% below ���. The item lx (xex) = x 

corresponds to the function ProductLog[]. You‘ll find the complete calculation in [19]. With 
it, we get an extremely simple expression, which corresponds to a value εν = ��/3. That would 
be 4� the 3 in one expression and the subspace slightly greyer, as thought. Since we want to 
know exactly, we will verify even this approach.  
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The last, constructed case exactly brings us to the 2.72548K ±0.00057K (±2.09137·10

−4
). 

Table 2 shows all possible solutions once again. 
 

 
Figure 21 
Temporal dependence of the radiation-  
temperature of the CMBR (linearly) 
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(890) [1] 7.9518·1060 2.3328·10–18 71.9843 2.791460 +0.06598 +2.42086 

(177) 8.3405·1060 2.2239·10–18 68.6241 2.732186 +0.00671 +0.24605 

(COBE)+ 8.3397·1060 2.2243·10–18 68.6365 2.726050 +0.00057 +0.02091 

(COBE)0 8.3404·1060 2.2239·10–18 68.6250 2.725480 ±0.00000 ±0.00000 

(179) 8.3405·1060 2.2239·10–18 68.6241 2.725480 ±0.00000 ±0.00000 

(176) 8.3405·1060 2.2239·10–18 68.6241 2.725436 −4.4×10�� −0.00161 

(COBE)− 8.3411·1060 2.2236·10–18 68.6135 2.724910 −0.00057 −0.02091 

(178) 8.3405·1060 2.2239·10–18 68.6241 2.717830 -0.00765 -0.28069 

 
Table 2 

Calculated and measured CMBR-temperature in 
comparison with the values of the HUBBLE-parameter 

 
The Q0- and H0-values for the COBE-satellite have been determined with the help of (176). 
The upper and the lower limits of the COBE-values are yellow highlighted. As we can see, 
the approximation (176) is very good. The value from [1] is much too high and (177) is 
outside the measuring precision of COBE. Expression (178) is out of question, since its value 
is below the measured one. Moreover it’s not related to the model. That also applies to (179). 
The approximation (176) in contrast, seems to hit the nail on the had. Whether that’s true, 
further, more precise measurements will prove. Thus, we define: 
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The calculated value is within the accuracy limits of the value 2.72548K ±0.00057K mea-
sured by the COBE-satellite. The verification can be considered as a success. For the choose 
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of the correct relation to the calculation of TK I leave the reader room for his own inter-
pretations. In addition, we want to calculate the corresponding frequencies for the techni-
cians too. With the help of WIEN’s displacement rule and (180) we get the following 
relations: 
 

– –

max 1 0 max 1 0
12 1

3 3
2 21.0067316 10 s

1 1
 Q  Q 160.2263GHz
18 36

−ω = ω = ν = ω =
π

⋅x xɶ ɶ       (181) 

 
The factor σ of the STEFAN-BOLTZMANN radiation rule S̄k = σT 

4
 es is also a function of Q0. It is 

defined as follows: 
 

2 4 4
3
02 3

1

k
Q

60c

π
σ =

T

ℏ
           (182) 

 
I have to make one more comment at this point. In the context of the publications about the 

PLANCK-units always is noted a so-called PLANCK-temperature T0. It’s defined in the 
following manner: 

 

0 32
2

1.416784487 1
m

K
k

0
c

⋅= =0T        (183) 

 
According to this model it should actually equal the temperature of the metric wave field, to 
be correct even divided by 8π. But that’s not the case. According to [21] this results from the 
GIBBS fundamental equation to:  
 

T0 dS0 =  d(mc2) − ωdL         (184)  

 

T0 dS0 =  d(m0 c
2
) – ħω0 dL  =   0 T0  ≡ 0K          (185)  

 
because of ω0 ≠ const. That well fits the observations. Thus, the famous expression mc2

 = ħω is 
nothing other than a special case of the GIBBS fundamental equation for T0 = 0 at the level of 
the metric wave field. It thermally speaking, does not appear – otherwise we would have been 
vaporised long ago. For the case L= 0 namely, the temperature would equal expression (183) 
divided by 8π. The correct PLANCK-temperature T0 is equal to zero with it. But it’s possible to 
specify a CMBR-temperature for Q0 = 1. It amounts to TK1 = TK Q0

5/2
 = 5.47536·10152K. 

 
 
 

3.3. The gravitational constant 
 

3.3.1. Close range 
 
After setting-up the Concerted System of Units maybe one or the other noticed, that we 

forgot one fundamental „constant“, namely NEWTON‘s gravitational constant G. That’s 
because one can do very well even without it. But since it’s used very often, we will deal with 
it more detailed in the next section.  

 
We have seen, that PLANCK's quantity of action is not a constant but a function of space 

and time. From the definition of κ0 (114) arises, that this must be applied even to NEWTON's 
gravitational constant. We get after rearrangement: 

 
3 3

2 2 0

0 0 0 0 1 0

rc 2c t R
G c c

H M m
= = = =

µ κ µ κℏ ℏ
         (186) 

 
The gravitational constant is obviously a function of the local conditions. By insertion of (23) 
we finally get: 
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2

0

0 0 1

c
G Q R=

µ κ ℏ
         (187) 

 
At this point, the product Q0R appears for the first time, which leads, because of the 
logarithmic periodicity of the universe, to the interesting question, what is there anyway in 
the distance Q0R? Possibly there is a superordinated universe of which our own only forms a 
microscopic part (r0)? The cosmologic background-radiation, be continued accordingly, 
would form the metric radiation-field of that superordinated universe then. On the other hand 
there is the mass M1 in the denominator of (186) and the mass M2 (fixed value) in (187). The 
term R = 2cT indicates G acting along the constant wave count vector. In section 3.1.4.1. in 
figure 14 we can see, that M1 depends on time and distance, m0 has the value M1 at intervals 
of R, whereas with M2 it’s about a historic value, only possible, if we go back in time. Thus, 
we can assign R to time, Q0 however to space-time. 
 
 

 
 

3.3.1.1. Temporal dependence 

 
We replace Q0 and R with the corresponding temporal functions, then we transform it onto 

our local coordinates or vice-versa: 
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c t
G RQ GQ

M t

 
= = 

 
ɶ ɶɶ     (189) 

 
The term before the bracket equals the local G~  (frame of reference) of the gravitational 
constant G. The right-hand expressions apply to t, reckoned from BB on.  
 

 
 
Figure 22 
Temporal course of the gravitational 
constant at the point r=0 (linear scale) 
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The temporal course at the point r = 0 is shown in figure 22 and 23. In the early beginning of 
expansion the value of the gravitational constant was equal to zero, as we can see in figure 22 
very well. The calculation turns out the same result. The (new) value of the gravitational 
constant 1s after BB is recorded in figure 23. For the value G2 at point of time t1 applies: 
 

3
21 3 193 3 1 22

0
2

2
1

1

r t
c 1 GQ 1.15036 10 m kg s

M t
G − − − 

⋅ ⋅ = = ⋅ 
 

=     (190) 

 
Therefrom results, that gravity could not have played an essential role to a point of time 

t < 7.7 ns (quantum-universe). Therefore gravity and quantum-effects are excluding each other. 
But this exclusion is not absolute. Rather there is a transition-zone, in which as well gravity 
as quantum-effects in the scale of the entire universe have been existed. To the point of time 
t = 0 and, qualitatively seen, shortly thereafter there was no gravity anyway. 

 
The expansion of the universe, increases also the distance of two masses, which are 

coupled by gravitational forces. That increase is compensated by the increase of the value of 
the gravitational constant. Whether this compensation is complete, we will examine more 
exactly at the end of this section. 

 

Figure 23 
Temporal course of the gravitational constant  

with respect to the local age (logarithmic scale) 

 
 
 

3.3.1.2. Spatial dependence 
 
If a temporal dependence exists, so there is also a spatial dependence. We directly get the 

relation by expansion of (187) with the navigational gradient (64), the world radius depends 
on time only. 
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The course for t = 0 is shown in figure 24. It shows an interesting phenomenon. The value 
of the gravitational constant decreases down to zero when approaching the local world-radius 
R/2. Beyond this point however, it becomes negative, the attraction turns into a repulsion.  

 
That‘s due to the fact, that gravity acts along the constant wave count vector with the 
maximum length 2cT and it doesn’t leave the universe, far from it, it reapproaches the 
observer with distances > cT. Now the attractive force is opposite to the moving direction, 
leading to the negative sign of G. Both, the observer and even the starting point of the 
constant wave count vector are located at the event horizon, that is to say. It’s an effect of the 
4D-topology. The course behind the second event horizon is increasing, because it‘s situated 
in the future. 
 

 
Figure 24 
Spatial dependence of the gravitational 
constant to the point of time T (linear scale) 
 

 
The calculation of G1 at intervals of r = R/2 for t = 0 is somewhat more complicated. With 
r = R/2 namely, it is equal to zero. The value, we are actually looking for is a few steps from 
there at intervals of r = R/2 − r 1 and (192) is not suited for such a small distance to the edge. 
We need to embed the exact expression (56): 
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       (193) 

 
The value G1 occurs with Q0 = 1. It applies: 
 

2 2
2/3 2 133 3 1 21 1

01
1 1

1/1 9.594550966819G
r c r c

(1 (1 ) ) GQ 1 m s
M M

0 kg− − − −⋅− −= = = =  (194) 

 
Thus, G decreases towards the edge R/2 − r 1 to the value G1. There is no frame of reference 

possible behind, G2 is not reached. Since the attractive force FG decreases geometrically with 
r2 and G with r2/3, it adds up to FG ~ r−8/3

. In addition, there is the ever increasing delay. That 
means, that the gravitational constant no longer plays a role with greater distance. A greater 
distance means distances of r > 0.01R. From this point on, other effects come into play.  

 
Because of the definition (186) G is a local parameter in fact. If we calculate the value in a 
certain distance, it doesn’t mean, that G has the same size everywhere on the way there. The 
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 *) arcoth for | r′ | >  a 
    (behind the particle horizon) 

attractive force FG between two bodies, moved with the metrics, is defined alongside a 
constant wave count vector. For a correct equation of motion we have to build the integral 
across the whole reach with dr = r0. 

 
Since r0 is not evanescent (infinite structure), but has a particular minimum size (finite 
structure), the rules of infinitesimal calculus are actually applicable only then and only 
approximately, if r0 is small with respect to the world radius R. That’s the case for the 
predominant part of the universe. More on this in the next section. 
 
 
3.3.2. Far range 

 
In section 2.3.4. we found with (64) an expression for the temporal and spatial dependence 

of PLANCK's elementary-length r0, figuring at least locally a scale for the proportions 
(distance). On this occasion I refer once again to the fact that this is also applied to the size of 
material bodies, which is changing in the same measure as r0. Otherwise we could not 
observe any expansion either. 
 

Just particularly it is a matter of the mutual distances of material bodies. These follow a 
function, which differ with the considered distance, since quantity and expansion-velocity of 
the PLANCK elementary-length is changing with ascending distance to the coordinate-origin. 
But only distances with the starting-point in the origin should be considered here. Of 
considerable importance for deeper contemplations is even the number of line elements 
(MLEs) along an imagined line with the length r (wave count vector Λ). We distinguish two 
cases in this connection: Wave count vector with constant r and r with constant wave count 
vector. Latter one fits the existing circumstances to the best, since we can assume that no 
point is distinguished to other points in the cosmos. The average relative velocity against the 
metrics at the coordinate-origin is equal to zero at free fall. This should be so everywhere 
then. With it, the expansion of the universe can be traced back to the expansion of the metrics 
alone. This corresponds to the case of a constant wave count vector. 
 
 
 
3.3.2.1. Constant distance 

 
Because of the real lattice constant r0 the wave count vector Λ for smaller distances r is 

defined in the following manner: 
 

0

r

r
= rΛ e              (195) 

 
er is the unit-vector. In the following, we consider only the figure Λ however. For larger 
distances, we have to replace Λ by dΛ and r by dr using the corresponding expression (64) for 
r0: 
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To the solution we replace as follows (it applies �� ���� � ���): 
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The wave count Λ follows the blue function depicted in figure 25. Approaching to half the 

world radius (R/2), it seems to be, that Λ strives towards infinity. If we want to define a finite 
wave count Λ0, we take only a certain part of the world radius to calculate the wave count for 
it. Because of R/(2r0) =��0/2 we opt for that value. 

 
 

   
Figure 25 
Wave count vector as function 
of distance r and t 
 
 
The value amounts to 0.273965 R, that is 54.79% of the distance to the particle horizon (cT). 
In total however an infinite value will not be reached, since r0 becomes smaller and smaller 
going to r1. Out there, at Q=1 is the back of beyond, we reached the particle horizon.  At first 
I guessed the value to be Λ1=Q0

2
, since even R=r1Q0

2
 applies. But that’s not the case. The 

little more ambitious calculation for r =  R/2−r1 → 1−10
−120

 under application of the power 
series for (1−x)

⅓, multiple substitutions up to the transformation of the function artanh �  

arsinh � ln, turns out Λ1 = �⁄� �� ���� � ������  = 1.58461·��63 using the values from table 1. 
For Λ1 applies t' ≡ t ≡ 0 i.e. a constant wave count vector. But by expansion and wave 
propagation „outwards“ the phase angle 2ω�T = �0 ∼ t½ increases continuously. And because 
of (4) Λ1(T) = �⁄� ��� �� ��� applies with b = 2κ0/ε0. 
 

The temporal dependence for several initial distances r is shown in figure 26. The larger the 
considered length, the later on the point of time, the wave count vector is defined from. 
That’s easy to understand, we can regard a length as existent only then, when the world-
radius is larger or equal to. If the world-radius is smaller, so such a length doesn't exist. 
Therefore, lengths larger than 0.5R aren't defined at present and function (199) does not have 
a real solution before a value of e.g. t = 0.75T is reached (t = 0 is the present point of time). 
Altogether, the wave count decreases. That results from the fact that we are considering a 
constant length with expanding r0. So it happens, that MLEs are permanently „scrolled out“ at 
the „tail“ leading to a degradation of the wave count vector at the same time. 
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Figure 26 
Temporal dependence of the wave count vector 
for several distances r 
 

 
 
 
 
 

3.3.2.2. Constant wave count vector 
 
3.3.2.2.1.  Solution 

 
At first we start with the left expression of (199) for t = 0 (a = 1). It specifies the quantity of 

the wave count vector at the present point and at each point of time, if we want to assume it 
as constant. We just look for the function F(a, ) being nothing other as the temporal 
dependence on a given length . See (196) for a(t). 
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3 3 r F
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 

ɶ
ɶ ɶɶ ɶ ɶ     (200) 

 
An explicit reduction by differentiating and zero-setting (the left expression turns to zero 

on this occasion) leads to the trivial solution F = 0. Otherwise, only an implicit solution can be 
found as solution of the equation: 

 

a  artanh  

′ ˜ r F

a
− artanh  ′ ˜ r − ′ ˜ r (F −1) =   0     r (t) =  ˜ r F3 (t)   (201) 

 
or in »Mathematica«-notation F1[t,r]: 

 
Fa1=Function[a=FindRoot[#1*ArcTanh[#2/#1*x]-ArcTanh[#2]- 

#2*(x-1)==0,{x,1}, MaxIterations->30]; (Round[(x/.a)*10^7]/10^7)^3];      (202) 
F1=Function[Fa1[(1+#1)^.25,(2*#2)^(1/3)]]; 

 
In this connection we have to be particular about the method (tangent-method) and the initial 
value. There was a problem using secant method. The temporal course is shown in figure 27. 
There is only a limited definition-range for the solution. It is temporally bounded below by 
the spatial singularity, the considered length is greater than the world-radius and doesn’t exist 
yet. The greater the considered length, the smaller the definition range. With world-radius the 
space-like vector R/2 = cT is meant. 

′ ˜ r 
′ ˜ r 
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Figure 27           
Temporal dependence  
of a given distance r 

 
 
3.3.2.2.2.  Approximative solutions 

 
A simple solution for small r explicitly arises from (201) under application of the two first 

terms of the TAYLOR series for the function artanh: 
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    for   r ̃≤ 0,01 R̃      (203) 

 
This exactly corresponds to the behaviour of PLANCK's elementary-length (MLE) and is valid 
until 0.01R approximately. For larger distances, the ascend is larger. First we examine the 
course in the proximity of t = 0 as well as the ascend ∆r/∆t with ∆t = 2·10–3. With root-
functions the ascend (dr/dt) is equal to the exponent m in this point: 

 
mt t

r r 1 r 1 m
T T

   = + ≈ +   
   
ɶ ɶ

ɶ ɶ
          (204) 

  
This is shown in figure 28. It is in the range of 1/2…3/4. Using the function Fit[] with the 
help of (79) approximations of different precision for the exponent m can be found: 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 28 
Ascend of several 
given distances in 

the proximity of t=0 
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mmm = {{0, .5}};  
For[x = 0; i = 0, x < .499, (++i), x += 0.01;  
AppendTo[mmm, {x, N[F1[0.0001, x] - F1[0, x]]/0.0001}]]    (205) 
Fit[mmm, {1, m, m^2, m^3, …}, m] 

        

m ≈ 0,513536 + 0,17937r + 0,490927r
2      with  r = r/ R

~ 
 
m ≈ 0,500(822) + 0,50052r  − 1,13082r

2
 + 2,16233r

3
         (206) 

 
m ≈ 0,500(843) + 0,598206r − 3,45991r

2
 + 18,3227r

3
 − 42,6995r

4
 + 38,0733r

5
 

 
The third equation of (206) is very exact and suitable even for calculations with more extreme 
demands. Indeed, there is a need to consider the restricted definition-range, which is not 
being co emulated automatically by the approximative solution. It is pointed out here once 
again that the distances and velocities, regarded in this section, are a matter of space-like 
vectors having nothing to do with the time-like vectors considered in section 4.3.4.4.6. of [1]  
Cosmologic red-shift.  
 
 
 
 
3.3.2.3. The HUBBLE-parameter 

 
Having defined the HUBBLE-parameter only for small lengths and PLANCK's elementary-

length (r0) so far, following the relationships for a radiation-cosmos (m = 1/2), we have now to 
correct our statements for larger distances. With m = m(r) the HUBBLE-parameter H = ṙ�r 
becomes a function of distance too: 

 

             (207) 

 
The course is shown in figure 29. The metrics examined by this model is a non-linear metrics. 
With it, the question has become unnecessary, whether our universe is a radiation- or dust-
cosmos. The answer is – as well, as. It's a question of the dimensions of the considered area. 
For small lengths, the distance behaves like a radiation-cosmos, in the range between zero 
and 0.5R like a dust-cosmos, with 0.5R like photons overlaid the metrics. 
 

 
Figure 29 
HUBBLE-parameter as a function of the 
distance for t=0, the values r>0.5R are extrapolated 
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We get the expansion velocity v by the differentiation of equation (204) with respect to the 
time t. In the close range m = ½ applies, leading to the well-known expression H0=1/(2T). The 
approximation applies to t�T. That’s actually always the fact, because we do not grow so old 
anyway. 
 

m m 1 m 1d t r t t
v r 1 m 1 Hr 1 Hr

dt T T T T

− −
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ɶ
ɶ ɶɶ ɶ ɶ

ɶ ɶ ɶ ɶ
      (208) 

 
The expansion-velocity H0r as a function of the distance is shown in figure 30. The speed of 
light is reached in an essentially minor distance as with the standard-models, but only on 
paper. While the size of r0 at 0.5 R = cT tends to r1, the expansion speed along the time-like 
world line at this point is not infinite, rather it’s smaller than c (0.75c). 
 

Figure 30            
Expansion-velocity as a function of the 
distance for t=0, the values r>0.5R are extrapolated 
 
 

Otherwise we found out, that the maximum propagation speed ǀcmaxǀ of the metric wave field 
only amounts to 0.85166135 c. But furthermore the world-radius should be cT, whereas time-
like vectors with up to 2cT should be possible. So we have to do with four different distances 
resp. velocities, which all don’t seem to fit together. But using this model it’s possible to 
solve this conflict. Let‘s have a look on figure 31, which except for rK, is a true-to-scale 
representation. 
 
We assume the front of the metric wave field to propagate with the maximum velocity 
c max = 0.85166135 c (Propagation share). The share rM of the world radius, caused by it, would 
be 0.85166135cT then. However, there are different values stated in the figure, why, we will 
see later. As noticed furthermore, the constant wave count vector rK up to the vicinity of R/2 
is running on the same track as the incoming time-like vector rT with 0.75 c (arc length 
0.75 cT). But it’s tilted about the angle α1, so that we have to sum geometrically. In addition 
the partial vector 4 is curved. But the object we are looking for is the space-like vector rR 
(expansion share 2). As next we flatten the partial vector 4 by bending it up to 5. Then we 
project it onto rR, it applies rR = −rK cosφ with the angle φ = arg c = α − π/2 = 48.6231° of the 
metric wave function. With a phase angle of � = 0.8652911138 we obtain with the angle 
α = 2.419430697 ��138.6231678° the following solution: 
 

2 2 2 2 2 2 2 2
M R M Kc c c c c cos c 0.85166 0.75 cos 2.41943= + = + α = +   (209) 

 
2 2 2c c 0.85166 0.562784 1.02081c = 2.08 10−= + = ∆ + ⋅  (210) 
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Figure 31   
Expansion velocity and world radius version 6 
 

 
This result isn’t notably exact and even worse than that in [7], which is barely correct btw. 
since there values for β, φ and cM have been used, misfitting Q = 1 (case 13). We will see, if 
we are able to get a more exact result. If we get granular on figure 31, we see, that rK is 
curved and, even in this state, protrudes significantly beyond rR. Thus, if we want to get a 
correct relation, we have to impose it with a correction factor.  
 
On the one hand, there is the relation RS = rK ⁄ rN, we can calculate. On the other hand, with 
the classic electron radius in section 3.1.5., there was a similar case with which we had 
defined the correction factor ζ = 1.01619033 eq. (141). What works in the microscopic scale, 
may even work in a macroscopic scale. Let’s try to plug ζ into (209). But if we want to obtain 
a correct result, we have to correct Q and the associated angles as well as the vectors rM and 
rR too. That means, the particle horizon does not move with c max, but a little bit slower. The 
maximum is situated behind the particle horizon anyway. 
 
That would be the third case, in which an object is not at the optimal, that means at the 
„location“ we calculated, but slightly above or below. One possible reason could be, that 
infinitesimal calculus, as already suggested, reaches its limits in this point. Because dr = r1 is 
no longer small with respect to r0. So certain states could be excluded, the values „latch“. For 
the case, that ζ is the significant correction factor, the following parameters come into play: 
Q = 0.93281140128, α = 2.3666789294 ��135.600714°, φ = 45.600714°, β = 31.82728°, 
cM = 0.8496416 and cR= 0.527361 (values from figure 31). Q is quite central between Qmax 
and Q = 1 in this case. 
 

2 2 2 2 2 2 2
M Kc c c cos c 0.849642 0.535861− −= + ζ α = + ζ 161.00c 2.22 10−= ∆= + ⋅  (211) 

 
That equals MachinePrecision. It’s no wonder, however, as we determined the associated 
values especially for that purpose, namely in the following way: 
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Q = SetPrecision[q /. FindRoot[Sqrt[(RhoQ[q])^2 + 
             (0.75/zeta*Cos[AlphaQ[q]])^2] −1 ==  0, {q, .9, 1}], 20] 

alpha = AlphaQ[Q]  

phi = alpha −π/2          
beta= ArcTan[Sqrt[1−cM^2]/cM] 

cM = RhoQ[Q] 

cR = −0.75/zeta*Cos[alpha] 

RS = RS[Q] 
 
You will find the not yet defined functions in the annex. Now we come to the ratio 
RS = rK ⁄ rN. Of course, it may be used as correction factor too. Indeed, we can make use of the 
following relation: 
 

RS2 ≈ ζ
3
     resp.  

3
5

2/

4.71403
RS

10−−
⋅

ζ
= −

ζ
        (213) 

 
values according to (211). Applying RS2/3 instead of ζ in (211), we get a residual error of 
1.311·10−5

. Nevertheless it’s not about the same value. If we try to equate both sides of (213), 
we are unable to define an exact solution. Then, the best result has a residual error of 
−6,344·10

−4
 for both values. We can also generate an exact solution using RS.  

 
Since I wonder about it exactly, I calculated a great many of alternatives having entered the 

values in table 3. The conclusion is, the universe expands somewhere on the level between 
Qmax and Q = 1. It is reminiscent of a surfer, who does not run on the crest of waves, but 
always a little off. 
 

Nr Name Q cM /c − ¾ cosα F cR /c α° β° φ° c ∆ 

1 Maxζ 0.8652911 0.851661 0.562784 ζ 0.553856 138.623 31.607 48.623 1.015920 +1.5915·10−2 

2 MaxR 0.8652911 0.851661 0.562784 R 0.554615 138.623 31.607 48.623 1.016330 +1.6329·10−2 

3 Max1 0.8652911 0.851661 0.562784 1 0.562784 138.623 31.607 48.623 1.020809 +2.0809·10−2 

4 0Rζ 0.9242251 0.850105 0.535861 ζ 0.526448 135.970 31.777 44.030 0.999913 −8.6977·10−5 

5 0RR 0.9242251 0.850105 0.535861 R 0.526613 135.970 31.777 44.030 1.000000 −1.1102·10−16 

6 0ζζ 0.9328114 0.849642 0.535861 ζ 0.535861 135.601 31.827 45.601 1.000000 +2.2204·10−16 

7 0ζR 0.9328114 0.849642 0.535861 R 0.527361 135.601 31.827 45.601 1.000013 +1.3111·10−5 

8 R~ζ 0.9353288 0.849495 0.534878 ≡ 0.526393 135.493 31.843 45.493 0.999365 −6.3441·10−4 

9 Qre1 0.9470231 0.848757 0.530330 1 0.530330 135.000 31.923 45.000 1.000818 +8.1870·10−4 

10 QReζ 0.9470231 0.848757 0.530330 ζ 0.521917 135.000 31.923 45.000 0.996386 −3.6137·10−3 

11 QReR 0.9470231 0.848757 0.530330 R 0.521804 135.000 31.923 45.000 0.996327 −3.6729·10−3 

12 000 0.9501382 0.848544 0.529125 1 0.529125 134.869 31.946 44.870 1.000000 ± 0.0000000 

13 [ 7 ] 1.0000000 0.851661 0.520409 1 0.524093 132.864 31.607 42.465 0.992791 −7.2090·10−3 

14 Q1R 1.0000000 0.844304 0.510203 R 0.519025 132.864 32.402 42.864 0.910785 −8.9214·10−3 

15 Q1ζ 1.0000000 0.844304 0.510203 ζ 0.518427 132.864 32.402 42.864 0.990765 −9.2344·10−3 

 
Table 3 
Various possibilities of speed 
addition at the particle horizon 

 
With that I believed I had proven, that the correction factor ζ can be applied successfully 
both, in the microscopic, and even in the macroscopic scale. But we are also able to generate 
an exact solution variant using RS = rK ⁄ rN. It’s a shame about variant 8. If correct, we would 
be able to calculate or even define the ratio me/mp with the help of (141). Thus, it only 
suffices to a precision of −2,74·10

−4
, way too bad. 

 
However, I was surprised, that version 9, that‘s the case, with which the real part of the wave 
function cM (27) has a zero-crossing (phase-jump), delivers an acceptable result even without 
a correction factor. That suggests that there is also a correct solution without correction 
factor. I found it with version 12. Since it’s the simplest variant, it’s probably the right one 
and I will prioritize it. The version depicted in [7], here 13, is quite near to variant 12 indeed. 

(212) 
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The representation is not that wrong there. Because table data is cropped, here the precise 
parameters for the prioritized variant 12: 
 

Q = 0.95013820167858442645 cM = 0.8485439825230016 c cR = 0.529124852680352 c cK  = 0.75 c 
α  = 134.86993657768931460° β   = 31.94634370109298° φ  = 44.8699365776893146° RS = 1.02469672804290424 

 
2 2 2 2 2

M Kc c c cos c 0.848544 0.529125= + α = + 1.0000000c 0.000000= ∆= ±  (214) 

 
RS applied to (213) turns out a deviation of +2.74·10−4

. That’s more than in case 6 indeed. In 
figure 32 the case 12 with expression (214) is shown once again. We have clarified the 
contradictions between the various world radii and expansion velocities with it. With the help 
of the Concerted International System of Units, we were able to calculate a multitude  of 
natural constants and variables. We will define it in detail in the next section. 
 
 

Figure 32        
Expansion velocity and world radius  
version 12 without correction factor 
 
 
 
 
 

4. The Concerted International System of Units 
 
 
With the help of the model in [1] we succeeded in the calculation of a whole slew of natural 

constants  connected with the electron, proton and the 1H-atom, by way of their relation to the 
frame of reference Q0 and that perfectly exact. Actually most of them aren’t genuine 
constants at all. The value of H0 could be specified more exactly at the same time, as well as 
that of κ0, the specific conductivity of the vacuum, the model in [1] is based on. 
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Thus, still remains to incorporate the results and relations into the program, already published 
in [1] and to compare the data calculated with it, with the CODATA2018-values. The whole 
issue is presented in table 4. Please find the actualized program in the annex.  
 

All is based on the base items of subspace, which are fixed values, independent on any 
frame of reference. With it, it suffices, to define five genuine constants (µ0, c, κ0, ℏ1 and k) 
only as base quantities, plus one so-called Magic Value, here me, to the identification of the 
frame of reference Q0. 

 
The comparison with the CODATA2018-values turns out to be more complicated, since not 

all values of the model appear in the corresponding documents. On the other hand, there are 
values stated, which, in comparison with other values, can be calculated with the help of 
former ones, lead to a deviant result. The PLANCK-units turned out to be the worst. The given 
values differ by up to 6.5·10–8 from the calculated ones. For this reason, I used at all PLANCK-
units the corresponding root expressions with the CODATA2018-values for c, ε0, G and ħ, 
instead of the specified numerical values to the comparison. 
 

With the PLANCK-temperature there is a further difference. Even if we can calculate such a 
value, the actual value is 0K, since thermal energy is completely eliminated by the angular 
momentum (see section 3.2.2.). The CMBR-temperature is considered instead. This depends 
on Q0 too. If we rearrange (180) after Q0, the frame of reference also depends on its 
temperature. With smaller Q0, e.g. in the vicinity of the SCHWARZSCHILD-radius of a BH, the 
CMBR-temperature increases extremely.  
 
There is also no addition of various effects, such as temperature plus gravity in comparison to 
another frame of reference with the velocity v. All values are linked with Q0, if one value 
changes, all other change too. If one effect supervenes, it is already a new frame of reference. 
With it all values, except for the fixed ones, form a so-called Canonical Ensemble. 

 
During set-up of the table I incorporated yet some other values, simply dependent on the  
already defined ones, into the system, as there are σe, ae, ge, γe, µe, µN, Φ0, G0, KJ and RK. 
Except for re, whose definition was wrong (eternal typo), I used the expressions and symbols 
stated in the CODATA2018-document [22] for the other values. The quantities alpha (α) and 
delta (δ) are marked as fixed values, since they are typically invariable. But there are also the 
functions alphaF[Q] and deltaF[Q]. 
 
 
 
 

Symbol Variable Calculated (CA) 

S
ou

rc
e 

 

CODATA2018 (CD) 

© COBE Data       
± Accuracy ∆y (CA/CD–1) Unit 

c c 2.99792458              ·108 S 2.99792458              ·108 defined defined m s–1 

ε0 ep0 8.854187817620390·10–12 S 8.854187817620390·10–12 defined defined As V–1m–1 

κ0 ka0 1.369777663190222·1093 S n.a. n.a. defined A V–1m–1 

µ0 my0 1.256637061435917·10–6 S 1.256637061435917·10–6 exactly exactly Vs A–1m–1 

k k 1.3806485279          ·10–23 S 1.380649                  ·10–23 statistic +3.41941·10–7   J K–1 

ħ1 hb1 8.795625796565460·1026 S n.a. n.a. defined J s 

ħ hb0 1.054571817000010·10–34 C 1.054571817·10–34 defined +8.88178·10–15 J s 

Q0 Q0 8.340471132242850·1060 C 8.3415·1060                    © 3.3742·10–2 –1.23343·10–4   1 

Z0 Z0  376.7303134617700 F 376.73031366857 1.5·10–10 –5.48932·10–10 Ω 

G G0  6.674301499999827·10–11 C 6.674301499999999·10–11 2.2·10–5   –5.48932·10–10 m3kg–1s–2 

G1 G1  9.594550966819210·10–133 C n.a. n.a. unusual m3kg–1s–2 

G2 G2  1.150360790738584·10–193 F n.a. n.a. unusual m3kg–1s–2 

M2 M2 1.514002834704114·10114 F n.a. n.a. unusual kg 

M1 M1 1.815248576128075·1053 C n.a. n.a. unusual kg 

mp mp 1.6726219236951    ·10–27 C 1.6726219236951    ·10–27 1.1·10–5   –2.22045·10–16 kg 
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Symbol Variable Calculated (CA) 

S
ou

rc
e 

 

CODATA2018 (CD) 

© COBE Data       
± Accuracy ∆y (CA/CD–1) Unit 

me me 9.109383701528      ·10–31 M 9.109383701528      ·10–31 3.0·10–10 magic ±0 kg 

m0 m0 2.176434097482374·10–8 C 2.176434097482336·10–8 calculated +1.70974·10–14 kg 

MH MH 2.609485798792167·10–69 C n.a. n.a. unusual kg 

me/mp mep 5.446170214846793·10–4 F 5.4461702148733     ·10–4 6.0·10–11 –4.867·10–12 1 

Tp Tp 0.000000000000000 C 1.416784486973588 ·1032 calculated MOOP K 

Tk1 Tk1 5.475357175411492·10152 C n.a. n.a. unusual K 

Tk Tk0 2.725436049425770 C 2.72548                          © 2.0914·10−4   –1.61258·10–5   K 

r1 r1 1.937846411698606·10–96 F n.a. n.a. unusual m 

r0 r0 1.616255205549261·10–35 C 1.616255205549274·10–35 calculated –8.21565·10–15 m 

re re 2.817940324662071·10–15 C 2.817940326213      ·10–15 4.5·10–10 –5.50377·10–10 m 

ŻC ΛbarC 3.861592677230890·10–13 C 3.861592679612      ·10–13 3.0·10–10 –6.16614·10–10 m 

λC ΛC 2.426310237188940·10–12 C 2.4263102386773    ·10–12 3.0·10–10 –6.13425·10–10 m 

a0 a0 5.291772105440689·10–11 C 5.291772109038      ·10–11 1.5·10–10 –6.79793·10–10 M 

R R 1.348032988422084·1026 C n.a. at issue at issue M 

R RR 4.368617335409830 C n.a. at issue at issue Gpc 

t1 2 t1 6.463959849512312·10–105 F n.a. n.a. unusual s 

t0 2 t0 5.391247052483426·10–44 C 5.391247052483470·10–44 calculated –8.43769·10–15 s 

T 2 T 4.496554040802734·1017 C 4.497663485280829·1017 1.1385·10–3   –2.46671·10–4   s 

T 2 T 1.424902426903056·1010 C 1.425253996152531·1010 1.1385·10–3   –2.46671·10–4   a 

R∞ R∞  1.097373157632934·107 C 1.097373156816021·107 1.9·10–12 +7.44426·10–10 m–1 

ω1 Om1 1.547039312249824·10104 F n.a. n.a. unusual s–1 

ω0 Om0 1.854858421929227·1043 C 1.854858421929212·1043 calculated +8.65974·10–15 s–1 

ωR∞ OmR∞  2.067068668297942·1016 C 2.067068666759112·1016 1.9·10–12 +7.44451·10–10 s–1 

cR∞ cR∞  3.289841962699988·1015 C 3.289841960250864·1015 1.9·10–12 +7.44450·10–10 Hz 

H0 H0 2.223925234581364·10–18 C 2.223376656062923·10–18 1.1385·10–3   +2.46732·10–4   s–1 

H0 HPC[Q0] 68.62410574852400 C 68.60717815146482←↑© 1.1385·10–3   +2.46732·10–4   km s–1Mpc–1 

q1 q1 1.527981474087040·1012 F n.a. n.a. unusual As 

q0 q0 5.290817689717126·10–19 C 5.2908176897171    ·10–19 calculated +4.44089·10–15 As 

e qe 1.602176634000007·10–19 C 1.602176634            ·10–19 exactly +4.44089·10–15 As 

U1 U1 8.698608435529670·1087 F n.a. n.a. unusual V 

U0 U0 1.042939697003725·1027 C 1.042939697286845·1027 calculated –2.71463·10–10 V 

W1 W1 1.360717888312544·10131 F n.a. n.a. unusual W 

W0 W0 1.956081416291675·109 C 1.956081416291641·109 calculated +1.73195·10–14 W 

S1 S1 5.605711433987692·10426 F n.a. n.a. unusual W m–2 

S0 S0 1.388921881877266·10122 C n.a. n.a. unusual W m–2 

σe σe 6.652458724888907·10–29 C 6.6524587321600    ·10–29 9.1·10–10 –1.09299·10–9   m2 

ae ae 1.159652181281556·10–3 C 1.1596521812818    ·10–3 1.5·10–10 –2.10054·10–13 1 

ge ge –2.00231930436256 C –2.00231930436256 1.7·10–13 –2.22045·10–16 1 

γe γe 1.760859630228709·1011 C 1.7608596302353    ·1011 3.0·10–10 –3.74278·10–12 s–1T–1 

µe µe –9.28476469866128·10–24 C –9.284764704328    ·10–24 3.0·10–10 –6.10325·10–10 J T–1 

µB µB –9.27401007265130·10–24 C –9.274010078328    ·10–24 3.0·10–10 –6.12109·10–10 J T–1 

µN µN 5.050783742986264·10–27 C 5.0507837461150    ·10–27 3.1·10–10 –6.19456·10–10 J T–1 

Φ0 Φ0 2.067833847194937·10–15 C 2.067833848 ……..  ·10–15 exactly –3.89327·10–10 Wb 

G0 GQ0 7.748091734611053·10–5 C 7.748091729000002·10–5 exactly +7.24185·10–10 S 

KJ KJ 4.835978487132911·1014 C 4.835978484 ……..  ·1014 exactly +6.47834·10–10 Hz V–1 

RK RK 2.581280744348851·104 C 2.581280745 ……..  ·104 exactly –2.52258·10–10 Ω  

α  alpha 7.297352569776440·10–3 F 7.297352569311      ·10–3 1.5·10–10 +6.37821·10–11 1 

δ  delta 9.378551014802563·10–1 F 9.378551009654370·10–1 1.5·10–10 +5.48932·10–10 1 

x~ xtilde 2.821439372122070` F 2.821439372 ……..  exactly exactly 1 

σ  σ  5.670366673885495·10–8 C 5.670366673885496·10–8 exactly exactly W m–2
 K –4 

 
S   Subspace value (const)     M   Magic value                      MachinePrecision  →  ±2.22045·10–16 
F   Fixed value (invariable)     C   Calculated (calculated)               MOOP  Matter of Opinion 
 
Table 4: 
Concerted International  
System of Units 
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Unfortunately not all values could be calculated, e.g. the values of other elementary particles 
and the ones of heavier nuclei. A lot of questions remain open. Also the values aren’t 
concerted to 100%, i.e. even my system is yet a little bit out of tune. But there is the option to 
improve it. 
 
 

5. Explanatory notes to the annex 
 
 
The expressions and definitions used in this work are described in the annex, except for the 

graphics taken from earlier publications. It’s about the source code for Mathematica/Alpha. 
The data can be transferred using copy&paste via the clipboard. You can also save it into a 
text file (UTF8), which can be opened and evaluated directly. 

 
Advantageously, you should not copy the whole source code into one single cell. That applies 
especially to the section "Helpful Interpolations". There are, once-only, calculated four 
interpolation functions to a faster representation. Calculation time takes about one hour. The 
four dumped lists must be copied and assigned to the corresponding variables in that you 
paste them between the equal sign and the semicolon. Most suitably, it happens inside an 
extra cell, which can be closed thereafter. For the block, stated below, evaluation must be 
deactivated then. You can use (*…*) for it. Don’t forget to save. It will go very quickly on 
the next run. 
 
Who don’t want to recalculate table 4 and/or the graphics, may delete the lines below the 
point "End of Metric System Definition". The values stated in the column "Variable" are 
available for your own calculations then.  
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"The Concerted Metric System"
"Declarations"

Off[General::Spell]
Off[InterpolatingFunction::dmval]
Off[FindRoot::nlnum]

"Units"

km=1000;
Mpc=3.08572*10^19 km;
minute=60;
hour=60 minute;
day=24*hour;
year=365.24219879*day;

"Basic Values"

c=2.99792458*10^8;                                                   (*Speed of light*);
my0=4 Pi 10^-7;                                              (*Permeability of vacuum*);
ka0=1.3697776631902217*10^93;                                (*Conductivity of vacuum*);
hb1=8.795625796565464*10^26;                           (*Planck constant slashed init*);
k=1.3806485279*10^-23;                                           (*Boltzmann constant*);
me=9.109383701528*10^-31;                  (*Electron rest mass with Q0 Magic value 1*);
mp=1.6726219236951*10^-27;                           (*Proton rest mass Magic value 2*);

"Auxilliary Values"

mep=SetPrecision[me/mp,20];                                          (*Mass ratio e/p*);
ε=ArcSin[0.3028221208819742993334500624769134447]-3Pi/4;            (*RnB angle ε  (fix)*);
γ=Pi/4-ε;                                                    (*RnB angle γ nullvector*);
ζ=1/(36Pi^3)(3Sqrt[2])^(-1/3)/mep;                             (*re-correction factor*);
xtilde=xtilde=3+N[ProductLog[-3E^-3]];           (*Wien displacement law constant (ν)*);
alpha=Sin[Pi/4-ε ]^2/(4Pi);                              (*Correction factor QED α(Q0)*);
delta=4Pi/alpha*mep;                                    (*Correction factor QED δ(Q0)*);
(*Q0=(9Pi^2 Sqrt[2]delta me/my0/ka0/hb0SI)^(-3/4)(*Phase Q0=2ω0t during calibration*)*)
Q0=(9Pi^2 Sqrt[2]delta me/my0/ka0/hb1)^(-3/7);      (*Phase Q0=2ω0t after calibration*);

"Composed Expressions"

Z0=my0 c;                                            (*Field wave impedance of vacuum*);
ep0=1/(my0 c^2)                                             (* Permittivity of vacuum*);
R∞=1/(72 Pi^3)/r1 Sqrt[2] alpha^2 /delta Q0^(-4/3);                (*Rydberg constant*);
Om1=ka0/ep0;                                           (*Cutoff frequency of subspace*);
Om0=Om1/Q0;                                                      (*Planck's frequency*);
OmR∞=2 Pi c R∞;                                           (*Rydberg angular frequency*);
cR∞=c R∞;                                                         (*Rydberg frequency*);
H0=Om1/Q0^2;                                                 (*Hubble parameter local*);
H1=3/2*H0;                                          (*Hubble parameter whole universe*);
r1=1/(ka0 Z0);                                             (*Planck's length subspace*);
a0=9Pi^2 r1 Sqrt[2] delta/alpha Q0^(4/3);                               (*Bohr radius*);
ΛbarC=a0 alpha;                                          (*Reduced Compton wavelength*);
ΛC=2 Pi ΛbarC;                                          (*Compton wavelength electron*);
re= r1 (2/3)^(1/3)/ζ Q0^(4/3);                              (*Classic electron radius*);
r0= r1 Q0;                                                      (*Planck's length vac*);
R= r1 Q0^2;                                                            (*World radius*);
RR=R/Mpc/1000;                                                     (*World radius Gpc*);
t1=1/(2 Om1);                                                  (*Planck time subspace*);
t0=1/(2 Om0);                                                    (*Planck time vacuum*);
T=1/(2 H0);                                                     (*World time constant*);
TT=2T/year;                                                                 (*The Age*);
hb0=hb1/Q0;                                                 (*Planck constant slashed*);



h0=2Pi*hb0;                                               (*Planck constant unslashed*);
q1=Sqrt[hb1/Z0];                                                    (*Universe charge*);
q0=Sqrt[hb1/Q0/Z0];                                  (*or qe/Sin[π/4-ε] Planck charge*);
qe=q0 Sin[Pi/4-ε];                                              (*Elementary charge e*);
M2=my0 ka0 hb1;                                                 (*Total mass with Q=1*);
M1=M2/Q0;                                                                 (*Mach mass*);
m0=M2/Q0^2;                                                  (*Planck mass downwardly*);
(*m0=(9Pi^2Sqrt[2]*delta*me)^.75*(my0*ka0*hb0SI)^.25;       (*Planck mass upwardly*);*)
mp=4Pi me/alpha/delta;                                     (*Proton rest mass with Q0*);
(*me=Sqrt[hb1/Q0/Z0]*Sin[Pi/4-ε];                     (*if using Q0 as Magic value*);*)
MH=M2/Q0^3;                                                             (*Hubble mass*);
G0 =c^2*r0/m0;             (*hb0*c/m0^2*)                    (*Gravity constant local*);
G1=G0/Q0^2;                                                   (*Gravity constant Mach*);
G2=G0/Q0^3;                                                   (*Gravity constant Init*);
U0=Sqrt[c^4/4/Pi/ep0/G0];                                    (*Planck voltage generic*);
U1=U0*Q0;                                                       (*Planck voltage Mach*);
W1=Sqrt[hb1 c^5/G2];                                                (*Energy with Q=1*);
W0=W1/Q0^2;                                                           (*Planck energy*);
S1=hb1 Om1^2/r1^2;                                  (*Poynting vector metric with Q=1*);
S0=S1/Q0^5;                                           (*Poynting vector metric actual*);
µB=-9/2Pi^2 Sqrt[2 hb1/Z0]delta Sin[γ]/my0/ka0 Q0^(5/6);              (*Bohr magneton*);
µN=-µB*mep;                                                        (*Nuclear magneton*);
µe=1.0011596521812818 µB                                   (*Electron magnetic moment*);
Tk1=hb1 Om1/18/k;                                              (*CMBR-temperature Q=1*);
Tk0=Tk1/Q0^(5/2);                                                  (*CMBR-temperature*);
Tp0=0.; Tp1=0.;                                                  (*Planck-temperature*);
Φ0=Pi Sqrt[hb1 Z0/Q0 ]/Sin[Pi/4-ε];                   (*Magnetic flux quantum Pi ħ/e)*);
GQ0=1/Pi/Z0*Sin[Pi/4-ε]^2;                             (*Conductance quantum e^2/Pi ħ*);
KJ=2q0 Sin[Pi/4-ε]/h0;                                      (*Josephson constant 2e/h*);
RK=.5 my0 c/alpha;                                     (*von Klitzing constant µ0c/2α*);
σe=8Pi/3 re^2;                                    (*Thomson cross section (8Pi/3)re^2*);
ae=SetPrecision[µe/µB,20]-1;                       (*Electron magnetic moment anomaly*);
ge=-2(1+ae);                                                      (*electron g-factor*);
γe=2 Q0 Abs[µe]/hb1;                                    (*electron gyromagnetic ratio*);
σ=Pi^2/60k^4/c^2/hb1^3*Q0^3;                              (*Stefan-Boltzmann constant*);

"Functions Needed"

A=Function[(BesselJ[0,#]*BesselJ[2,#]+BesselY[0,#]*BesselY[2,#])/
(BesselJ[0,#]^2+BesselY[0,#]^2)];

B=Function[(BesselY[0,#]*BesselJ[2,#]-BesselJ[0,#]*BesselY[2,#])/
(BesselJ[0,#]^2+BesselY[0,#]^2)];

ThetaQ=Function[2*A[#]*B[#]/(1-A[#]^2+B[#]^2)];                          (*Angle ϑ(Q)*);
ArgThetaQ=Function[Arg[1-A[#]^2+B[#]^2+I*2*A[#]*B[#]]];         (*Angle of c arg ϑ(Q)*);
PhiQ=Function[If[#>10^4,-Pi/4-3/4/#,
Arg[-2*I/#/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]]];        (*Angle of c arg ϑ(Q)*);

RhoQ=Function[If[#<10^4,N[Abs[-2*I/#/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]],1/
Sqrt[#]]]; (*ρ0 value of c(Q) 206*)
RhoQQ=Function[If[#<10^4,Sqrt[Sqrt[(1-A[#]^2+B[#]^2)^2+(2*A[#]*B[#])^2]],2/Sqrt[#]]]; 
                                         (* 2ρ0 value of c 209, arc length ≠ RhoQ !!!*)

rq={{0,0}};
For[x=-8;i=0,x<4,++i,x+=.01;AppendTo[rq,{10^x,N[1/RhoQQ[10^x]]}]];
RhoQ1=Interpolation[rq];
RhoQQ1=Function[If[#<10^4,RhoQ1[#],1/2Sqrt[#]]];                (*Interpolation RhoQQ*)

Rk=Function[If[#<10^4,3*Sqrt[#]*NIntegrate[RhoQQ1[x],{x,0,#}],#^2]];
Rn=Function[Abs[3*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[-I/2*(ArgThetaQ[x]+Pi)],{x,0,#}]]];
RnB=Function[Arg[3*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[-I/2*(ArgThetaQ[x]+Pi)],{x,0,#}]]];
                                                  (*Rn length, RnB angle ε nullvector*)

"Helpful Interpolations"

"Evaluate only once the lines below the highlited lines, then store data in e.g. rs={data} and close the cells. Evaluation can take a while. 
Don' t delete but always evaluate them. Disable evaluation for the lines below the highlited lines before Interpolation then. Save notebook."



_______________________________________________________________________________________

rs={"Insert output from below"};
rs={};
For[x=(-3); i=0,x<3,(++i),x+=.025; 
AppendTo[rs,{10^x,NIntegrate[RhoQQ1[z],{z,0,10^x}]/Abs[NIntegrate[RhoQQ1[z]*Exp[I/
2*ArgThetaQ[z]],{z,0,10^x}]]}]]
rs 

RS=Interpolation[rs];                                                                     
(*Relation rk/rn*);
RS1=Function[1/RS[#]];
_______________________________________________________________________________________

rnb={"Insert output from below"};
rnb={};
For[d=-6.01; i=0,d<6.01,(++i),d+=.05; AppendTo[rnb,{d,RnB[10^d]/Pi}]]
rnb

RNB1=Interpolation[rnb];                                                                  
(*RnB angle ε nullvector from Q*);
RNB=Function[If[#<10^-8,Null,If[#<10^6,RNB1[Log10[#]],-.25]]];
RNBP=Function[If[#<10^-8,Null,If[#<10^6,Pi RNB1[Log10[#]],-Pi/4]]];
_______________________________________________________________________________________

qq1={"Insert output from below"};
qq1={};
For[xy=(-17); i=0,xy<5,(++i),xy+=.05; AppendTo[qq1,{10^xy,N[Sin[(Pi/2-RnB[10^xy]+ε)]]}]]
qq1

QQ0=Interpolation[qq1];                                                                   
(*Relation qe/q0*);
QQ=Function[If[#<10^5,QQ0[#],0.3028223504900885]];
QQ1=Function[If[#<10^5,1/QQ0[#],3.3022661582990733]];
_______________________________________________________________________________________

inb={"Insert output from below"};
inb={};
For[d=-6.01; i=0,d<6.01,(++i),d+=.05; AppendTo[inb,{RnB[10^d]/Pi,d}]]
inb

INB1=Interpolation[inb];                                                                  
(*InvRnB Q from angle ε nullvector*);
INB=Function[Which[-1<#<0,INB1[#],#==0,3/2Pi Q0^.25,#>0,Null]];
INBP=Function[Which[-Pi<#<0,INB1[#/Pi],#==0,3/2 Q0^.25,#>0,Null]];

"End of Metric System Definition"
_______________________________________________________________________________________

"Reference Values CODATA2018 to the Comparison only"

hb0SI=1.054571817*10^-34;                                   (*Planck constant slashed*);
h0SI=6.62607015*10^-34;                                   (*Planck constant unslashed*);
ep0SI=8.854187812813*10^-12;                                 (*Permittivity of vacuum*);
kSI=1.380649*10^-23;                                             (*Boltzmann-constant*);
G0SI=6.6743015*10^-11;                                            (*Gravity constant *);
ka0SI=1.30605*10^93;                                  (*1.3057 Conductivity of vacuum*);
qeSI=1.602176634*10^-19;                                        (*Elementary charge e*);
q0SI=Sqrt[hb0SI/Z0];                                                  (*Planck-charge*);
meSI=9.109383701528*10^-31;                              (*Electron rest mass with Q0*);
mpSI=1.6726219236951*10^-27;                                       (*Proton rest mass*);
alphaSI=7.297352569311*10^-3;                               (*Fine structure constant*);
deltaSI=(4Pi)^2 hb0SI/Z0SI/qeSI^2 *meSI/mpSI;                            (*Factor QED*);
mnSI=1.6749274980495*10^-27;                                      (*Neutron rest mass*);
maSI=1.6605390666050*10^-27;                                       (*Atomic mass unit*);
mepSI=5.4461702148733*10^-4;                                         (*Mass ratio e/p*);



m0SI=Sqrt[hb0SI c/G0SI](*2.17643424*10^-8 garbage*);                    (*Planck-mass*);
r0SI=hb0SI/m0SI/c(*1.61625518*10^-35 garbage*);                       (*Planck-length*);
t0SI=.5Sqrt[hb0SI G0SI/c^5](*5.39124760*10^-44 garbage*);               (*Planck-time*);
Φ0SI=2.067833848*10^-15;                            (*Magnetic flux quantum 2Piħ/(2e)*);
GQ0SI=7.748091729*10^-5;                              (*Conductance quantum 2e^2/2Piħ*);
U0SI= Sqrt[c^4/(4 Pi ep0SI G0SI)](*1.04295*10^27 garbage*);          (*Planck-voltage*);
U1SI=U0SI Q0;                                               (*Planck-voltage universe*);
W0SI=Sqrt[hb0SI c^5/G0SI];                                            (*Planck-energy*);
TpSI=SetPrecision[Sqrt[hb0SI c^5/G0SI]/k,16]    (*1.41678416*10^32 Planck-temperature*);
TCOBE=2.72548;                                      (*±0.00057K CMBR-temperature/COBE*);
Z0SI=376.73031366857;                                (*Field wave impedance of vacuum*);
KJSI=483597.8484*10^9;                                      (*Josephson constant 2e/h*);
RKSI=25812.80745;                                      (*von Klitzing constant µ0c/2α*);
µBSI=-9.274010078328*10^-24;                                          (*Bohr Magneton*);
µNSI=5.050783746115*10^-27;                                        (*Nuclear magneton*);
R∞SI=1.097373156816021*10^7;                                       (*Rydberg constant*);
cR∞SI=3.289841960250864*10^15;                                    (*Rydberg frequency*);
OmR∞SI=2Pi*cR∞SI;                                         (*Rydberg angular frequency*);
a0SI=5.2917721090380*10^-11;                                            (*Bohr radius*);
reSI=2.817940326213*10^-15;                               (*Classical electron radius*);
ΛCSI=2.4263102386773*10^-12;                            (*Compton wavelength electron*);
ΛbarCSI=3.861592679612*10^-13;                           (*Reduced Compton wavelength*);
σeSI=6.652458732160*10^-29;                       (*Thomson cross section (8Pi/3)re^2*);
µeSI=-9.284764704328*10^-24;                               (*electron magnetic moment*);
aeSI=1.1596521812818*10^-3;                        (*Electron magnetic moment anomaly*);
geSI=-2.0023193043625635;                                         (*electron g-factor*);
eSI=1.7608596302353*10^11;                             (*electron gyromagnetic ratio*);γ

σSI=5.670366673885496*10^-8;                              (*Stefan-Boltzmann constant*);
QCB=8.3415*10^60;                                                  (*Phase angle COBE*);

"Functions Used for Calculations in Article"

GV=Function[Graphics[Line[{{#1,#2},{#1,#3}}]]];              (*Graphics help function*);
GH=Function[Graphics[Line[{{#2,#1},{#3,#1}}]]];              (*Graphics help function*);
HPC=Function[Om1/#^2/km*Mpc];                                (*H0=ƒ(Q0)[km*s-1*Mpc-1]*); 
AlphaQ=Function[Pi/4-PhiQ[#]];                                              (*Angle α*);
alphaF=Function[Sin[Pi/2+ε-RNBP[#]]^2 /(4Pi)];           (*Correction factor QED α(Q)*);
deltaF=Function[4Pi/alphaF[#]*mep];                      (*Correction factor QED δ(Q)*);
Qv=Function[a4712=SetPrecision[#2,309];#1*(1-a4712^2)^(1/3)];        (*Q(v/c) generic*);
Qv0=Function[a4713=SetPrecision[#,309];Q0*(1-a4713^2)^(1/3)];            (*Q(v/c, Q0)*);
vQ=Function[a4714=SetPrecision[(#2/#1)^3,309];
Sqrt[SetPrecision[1-a4714,309]]];                                    (*v/c(Q) generic*);
vQ0=Function[a4715=SetPrecision[(#/Q0)^3,309];
Sqrt[SetPrecision[1-a4715,309]]];                                      (*v/c(Q0), Q0)*);
Q890=3/2*(re/r0)^3 ;                                          (*Phase angle/(890 [1])*);
VrelU=Function[ScientificForm[SetPrecision[Sqrt[1-SetPrecision[1/
(1+# qe/me/c^2)^2,180]],180]180]];                                        (*vrel(U)/c*);
DVrelU=Function[ScientificForm[SetPrecision[1-(Sqrt[1-SetPrecision[1/
(1+# qe/me/c^2)^2,180]]),180],10]];                                     (*1-vrel(U)/c*);
QrelU=Function[SetPrecision[SetPrecision[1/
(1+# qe/me/c^2)^(2/3),180],16]];                                         (*Qrel(U)/Q0*);
QQrelU=Function[Q0*(QrelU[#])];                                             (*Qrel(U)*);
UeV=Function[a4711=SetPrecision[#,1000];(me c^2(1/Sqrt[1-a4711^2]-1))/qe];  (*U(v)309*);

"Calculating Table 4"

data={
{"c",ScientificForm[c,16],ScientificForm[c,16], "defined"},
{"ep0",ScientificForm[N[ep0],16],ScientificForm[N[ep0],16], "defined"},
{"ka0",ScientificForm[N[ka0],16],"n.a.", "defined"},
{"my0",ScientificForm[N[my0],16],ScientificForm[N[my0],16], "exactly"},
{"k",ScientificForm[N[k],16],ScientificForm[kSI,16],
 ScientificForm[kSI/k-1,NumberSigns->{"-","+"}]},
{"hb1",ScientificForm[hb1,16],"n.a.", "defined"},
{"hb0",ScientificForm[hb0,16],ScientificForm[hb0SI,16],
 ScientificForm[hb0/hb0SI-1,NumberSigns->{"-","+"}]},



{"Q0",ScientificForm[Q0,16],ScientificForm[QCB,16],
 ScientificForm[Q0/QCB-1,NumberSigns->{"-","+"}]},
{"Z0 ",NumberForm[Z0,16],NumberForm[Z0SI,16],
 ScientificForm[Z0/Z0SI-1,NumberSigns->{"-","+"}]},
{"G0 ",ScientificForm[G0,16],ScientificForm[G0SI,16],
 ScientificForm[Z0/Z0SI-1,NumberSigns->{"-","+"}]},
{"G1 ",ScientificForm[G1,16],"n.a.","unusual"},
{"G2 ",ScientificForm[G2,16],"n.a.","unusual"},
{"M2",ScientificForm[M2,16],"n.a.","unusual"},
{"M1",ScientificForm[M1,16],"n.a.","unusual"},
{"mp",ScientificForm[mp,16],ScientificForm[mpSI,16],
 ScientificForm[mp/mpSI-1,NumberSigns->{"-","+"}]},
{"me",ScientificForm[me,16],ScientificForm[meSI,16], "magic±0"},
{"m0",ScientificForm[m0,16],ScientificForm[m0SI,16],
 ScientificForm[m0/m0SI-1,NumberSigns->{"-","+"}]},
{"MH",ScientificForm[MH,16],"n.a.","unusual"},
{"mep",ScientificForm[mep,16],ScientificForm[mepSI,16],
 ScientificForm[mep/mepSI-1,NumberSigns->{"-","+"}]},
{"Tp",NumberForm[Tp0,16],ScientificForm[TpSI,16], "MOOP"},
{"Tk1",ScientificForm[Tk1,16],"n.a.","unusual"},
{"Tk0",NumberForm[Tk0,16],ToString[NumberForm[TCOBE,16]]<>" ©",
 ScientificForm[Tk0/TCOBE-1,NumberSigns->{"-","+"}]},
{"r1",ScientificForm[r1,16],"n.a.","unusual"},
{"r0",ScientificForm[r0,16],ScientificForm[r0SI,16],
 ScientificForm[r0/r0SI-1,NumberSigns->{"-","+"}]},
{"re",ScientificForm[re,16],ScientificForm[reSI,16],
 ScientificForm[re/reSI-1,NumberSigns->{"-","+"}]},
{"ΛbarC",ScientificForm[ΛbarC,16],ScientificForm[ΛbarCSI,16],
 ScientificForm[ΛbarC/ΛbarCSI-1,NumberSigns->{"-","+"}]},
{"ΛC",ScientificForm[ΛC,16],ScientificForm[ΛCSI,16],
 ScientificForm[ΛC/ΛCSI-1,NumberSigns->{"-","+"}]},
{"a0",ScientificForm[a0,16],ScientificForm[a0SI,16],
 ScientificForm[a0/a0SI-1,NumberSigns->{"-","+"}]},
{"R     [m]",ScientificForm[R,16],"n.a.","at issue"},
{"R   [Gpc]",ScientificForm[RR,16],"n.a.","at issue"},
{"2t1",ScientificForm[2t1,16],"n.a.","unusual"},
{"2t0",NumberForm[2t0,16],NumberForm[2t0SI,16],
 ScientificForm[t0/t0SI-1,NumberSigns->{"-","+"}]},
{"2T    [s]",ScientificForm[1/H0,16],ScientificForm[Mpc/HPC[QCB]/km,16],
 ScientificForm[HPC[QCB]/Mpc*km/H0-1,NumberSigns->{"-","+"}]},
{"2T    [a]",ScientificForm[1/H0/year,16],ScientificForm[Mpc/HPC[QCB]/km/year,16],
 ScientificForm[HPC[QCB]/Mpc*km/H0-1,NumberSigns->{"-","+"}]},
{"R∞",ScientificForm[R∞,16],ScientificForm[R∞SI,16],
 ScientificForm[R∞/R∞SI-1,NumberSigns->{"-","+"}]},
{"Om1",ScientificForm[Om1,16],"n.a.","unusual"},
{"Om0",ScientificForm[Om0,16],ScientificForm[c/r0SI,16],
 ScientificForm[Om0*2*t0SI-1,NumberSigns->{"-","+"}]},
{"OmR∞",ScientificForm[OmR∞,16],ScientificForm[OmR∞SI,16],
 ScientificForm[OmR∞/OmR∞SI-1,NumberSigns->{"-","+"}]},
{"cR∞",ScientificForm[cR∞,16],ScientificForm[cR∞SI,16],
 ScientificForm[cR∞/cR∞SI-1,NumberSigns->{"-","+"}]},
{"H0  [1/s]",ScientificForm[H0,16],ScientificForm[HPC[QCB]/Mpc*km,16],
 ScientificForm[H0/(HPC[QCB]/Mpc*km)-1,NumberSigns->{"-","+"}]},
{"km/s/Mpc]",NumberForm[HPC[Q0],16],ToString[ NumberForm[HPC[QCB],16]]<> " ©",
 ScientificForm[HPC[Q0]/HPC[QCB]-1,NumberSigns->{"-","+"}]},
{"q1",ScientificForm[q1,16],"n.a.","unusual"},
{"q0",ScientificForm[q0,16],ScientificForm[q0SI,16],
 ScientificForm[q0/q0SI-1,NumberSigns->{"-","+"}]},
{"qe",ScientificForm[qe,16],ScientificForm[qeSI,16],
 ScientificForm[qe/qeSI-1,NumberSigns->{"-","+"}]},
{"U1",ScientificForm[U1,16],"n.a.","unusual"},
{"U0",ScientificForm[U0,16],ScientificForm[U0SI,16],
 ScientificForm[U0/U0SI-1,NumberSigns->{"-","+"}]},
{"W1",ScientificForm[W1,16],"n.a.","unusual"},
{"W0",ScientificForm[W0,16],ScientificForm[W0SI,16],
 ScientificForm[W0/W0SI-1,NumberSigns->{"-","+"}]},
{"S1",ScientificForm[S1,16],"n.a.","unusual"},



{"S0",ScientificForm[S0,16],"n.a.","unusual"},
{"σe",ScientificForm[σe,16],ScientificForm[σeSI,16],
 ScientificForm[σe/σeSI-1,NumberSigns->{"-","+"}]},
{"ae",ScientificForm[ae,16],ScientificForm[aeSI,16],
 ScientificForm[ae/aeSI-1,NumberSigns->{"-","+"}]},
{"ge",ScientificForm[ge,16],ScientificForm[geSI,16],
 ScientificForm[ge/geSI-1,NumberSigns->{"-","+"}]},
{"γe",ScientificForm[γe,16],ScientificForm[γeSI,16],
 ScientificForm[γe/γeSI-1,NumberSigns->{"-","+"}]},
{"µe",ScientificForm[µe,16],ScientificForm[µeSI,16],
 ScientificForm[µe/µeSI-1,NumberSigns->{"-","+"}]},
{"µB",ScientificForm[µB,16],ScientificForm[µBSI,16],
 ScientificForm[µB/µBSI-1,NumberSigns->{"-","+"}]},
{"µN",ScientificForm[µN,16],ScientificForm[µNSI,16],
 ScientificForm[µN/µNSI-1,NumberSigns->{"-","+"}]},
{"Φ0",ScientificForm[Φ0,16],ScientificForm[Φ0SI,16],
 ScientificForm[Φ0/Φ0SI-1,NumberSigns->{"-","+"}]},
{"GQ0",ScientificForm[GQ0,16],ScientificForm[GQ0SI,16],
 ScientificForm[GQ0/GQ0SI-1,NumberSigns->{"-","+"}]},
{"KJ",ScientificForm[KJ,16],ScientificForm[KJSI,16],
 ScientificForm[KJ/KJSI-1,NumberSigns->{"-","+"}]},
{"RK",ScientificForm[RK,16],ScientificForm[RKSI,16],
 ScientificForm[RK/RKSI-1,NumberSigns->{"-","+"}]},
{"α",ScientificForm[alpha,16],ScientificForm[alphaSI,16],
 ScientificForm[alpha/alphaSI-1,NumberSigns->{"-","+"}]},
{"δ",ScientificForm[delta,16],ScientificForm[deltaSI,16],
 ScientificForm[delta/deltaSI-1,NumberSigns->{"-","+"}]},
{"x~",ScientificForm[xtilde,16],ScientificForm[2.821439372`,16], "exactly"},
{"σ",ScientificForm[σ,16],ScientificForm[σSI,16], "exactly"}};

Grid[Prepend[data,{"Value\r","Calculated","SI\rCOBE ©","Δy\r"}],
Background->{None,{Lighter[Blend[{Blue,Green}],.8]}},Frame->All,Alignment->{Left}]

"Figure 9"

N06=SetPrecision[Rk[2/3]/Rn[2/3],20];

Plot[RS[10^y], {y, -3, 3}];
Show[{%,
  GV[Log10[0.656729], 0.996, 1.038], 
  GV[Log10[1.90812], 1.032, 1.036],
  GH[N06, Log10[.9*0.656729], 0.6], 
  GH[1.0354, Log10[.9*1.90812], 0.9]},
ImageSize -> Full, PlotLabel -> None, 
LabelStyle -> {FontFamily -> "Chicago", 12, GrayLevel[0]}]

"Figure 11"

Plot[QQ[10^t9],{t9,-8,8}];
Show[%,GV[-0.182570,-0.05,1.0365],
  GH[1,-8,8],GH[0,-8,8],
  GH[0.494482,-8,8],GH[0.302904,-8,8],
PlotRange->{0,1.0365},ImageSize->Full,PlotLabel->None,
LabelStyle->{FontFamily->"Chicago",12,GrayLevel[0]},AxesOrigin->{0,0}]

"Figure 12"

Plot[{alphaF[10^t10]}, {t10, -8, 8}] (* AlphaF *);
Show[%, GV[-0.18257004098843227, -0.008, 0.09],
  GH[0.07957741926604499, -8, 8],
  GH[0.007297363635890055, -8, 8],
  GH[0.016905867990336505, -8, 8], ImageSize -> Full, 
PlotLabel -> None, 
LabelStyle -> {FontFamily -> "Chicago", 12, GrayLevel[0]}]



"Figure 13"

"Composed of two parts (alpha-1 and delta)"

Plot[{deltaF[(10^(t10)/t1)^.5]}, {t10, (Log10[t1] - 16), (Log10[t1] + 16)},
  ImageSize -> Full, PlotLabel -> None, 
  LabelStyle -> {FontFamily -> "Chicago", 12, GrayLevel[0]}, 
  AxesOrigin -> {(Log10[t1] - 16), 1}]
Plot[{1/alphaF[10^t10]}, {t10, -8, 8},
  ImageSize -> Full, PlotLabel -> None, 
  LabelStyle -> {FontFamily -> "Chicago", 12, GrayLevel[0]}, 
  AxesOrigin -> {8, 0}];
Show[%, GV[-0.18257004098843227, -8, 145], GV[0, -8, 145], 
  GH[12.56637887007592, -8, 8],
  GH[137.0357912660098, -8, 8], 
  GH[59.15105929915021, -8, 8]]

"Figure 14"

Plot[{
  Log10[M2](*M2*),
  Log10[hb1/c/r1/(10^t10)](*M1*),
  Log10[hb1/c/r1/(10^t10)^2(*m0*)],
  Log10[1/(9Pi^2Sqrt[2]*delta/M2* (10^t10)^(7/3))](*me*),
  Log10[hb1/c/r1/(10^t10)^3(*mH*)]
},{t10,Log10[Q0]-70,Log10[Q0]+2}];
Show[{%,
  GV[N[-12/2],-52,152],
  GV[N[-2/3],-52,152],
  GV[0,-52,152],
  GV[Log10[Q0],-52,152],
  GH[Log10[M1],Log10[Q0]-70,Log10[Q0]+2],
  GH[Log10[m0],Log10[Q0]-70,Log10[Q0]+2],
  GH[Log10[me],Log10[Q0]-70,Log10[Q0]+2]},
ImageSize->Full,PlotLabel->None, PlotRange->{-42,142},
LabelStyle->{FontFamily->"Chicago",12,GrayLevel[0]}]

"Figure 15"

Plot[{
  Log10[M2](*M2*),
  Log10[hb1/c/r1/(10^t10)](*M1*),
  Log10[hb1/c/r1/(10^t10)^2(*m0*)],
  Log10[1/(9 Pi^2 Sqrt[2]*deltaF[10^t10]/M2*(10^t10)^(7/3))](*me(Q)*),
  Log10[1/(9 Pi^2 Sqrt[2]*delta/M2*(10^t10)^(7/3))](*me*), 
  Log10[hb1/c/r1/(10^t10)^3(*mH*)]
}, {t10, Log10[Q0] - 63.3, Log10[Q0] - 57.3}];
Show[{%, GV[-0.86836, -50, 150],
  GV[-1.55339, -50, 150], GV[0, -50, 150],
  GV[-6.21358, -50, 150], GV[Log10[2/3], -50, 150],
  GH[Log10[1.118124*10^115], Log10[Q0] - 63.3, Log10[Q0] - 57.3]}, 
ImageSize -> Full, PlotLabel -> None, 
LabelStyle -> {FontFamily -> "Chicago", 12, GrayLevel[0]}]

"Figure 16"

u1 = UeV[vQ0[1]]
u2 = UeV[vQ0[10^3]]
u3 = UeV[vQ0[QQrelU[M1 c^2/qe]]]
u4 = U1
QQrelU[U1] " Q(U1)"
QQrelU[U0] " Q(U0)"
M1*c^2 "Maximum M1c2"
U0*qe "U0*qe energy"
U1*qe "U1*qe energy"



M1 c^2/U1/qe "Enough for 11 electrons only"
l1 = Log10[u1]  (*Q=1*);
l2 = Log10[u2]  (*Q=103*);
l3 = Log10[u3]  (*Maximum M1c2=2.44470*10 *);⁵
l4 = Log10[u4]  (*Maximum voltage U1*);

Plot[QQrelU[10^t9], {t9, 87, 110}];
Show[{%,
  GV[l1, -50, 2000],
  GV[l2, -50, 2000],
  GV[l3, -50, 2000],
  GV[l4, -50, 2000]},
ImageSize -> Full, PlotRange -> {0, 1001}, PlotLabel -> None, 
LabelStyle -> {FontFamily -> "Chicago", 12, GrayLevel[0]}]

"Figure 17"

FindMaximum[QQ[QQrelU[10^t11]], {t11, 87, 110}]

Plot[{QQ[QQrelU[10^t11]]}, {t11, 87, 110}];
Show[{%,
  GV[l1, -0.08, 1.08], GV[l2, -0.08, 1.08],
  GV[l3, -0.08, 1.08], GV[l4, -0.08, 1.08],
  GH[1, 87, 110], GH[0.460918, 87, 110],
  GH[0.302904, 87, 110], GH[0, 87, 110]}, 
PlotRange -> {0, 1.0365}, ImageSize -> Full, PlotLabel -> None, 
LabelStyle -> {FontFamily -> "Chicago", 12, GrayLevel[0]}]

"Figure 18"

Plot[{1/4/Pi*(QQ[QQrelU[10^t10]])^2},{t10,87,110}] (* Alpha *);
Show[{%,
  GV[l1,-0.04,0.085],GV[l2,-0.04,0.085],
  GV[l3,-0.04,0.085],GV[l4,-0.04,0.085],
  GH[0.07957741926604,87,110],GH[0.007297363635890,87,110],
  GH[0.016905867990336,87,110]},
ImageSize->Full,PlotLabel->None, 
LabelStyle->{FontFamily->"Chicago",12,GrayLevel[0]}]

"Skipped Figure"

Plot[{4*Pi*(QQ1[QQrelU[10^t10]])^2},{t10,87,110}] (* alpha^-1 auch delta *);
Show[{%,
  GV[l1,-8,144],GV[l2,-8,144],
  GV[l3,-8,144],GV[l4,-8,144],
  GH[12.566378870075917,87,110],GH[137.0357912660098,87,110],
  GH[59.15105929915021,87,110]},
ImageSize->Full,PlotLabel->None, 
LabelStyle->{FontFamily->"Chicago",12,GrayLevel[0]}]




