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Abstract 

The motivation for the continuous dimensionality of spacetime near the Fermi scale stems 

from two premises, namely, 1) dimensional regularization of perturbative quantum field 

theory (QFT), 2) the existence of non-trivial fixed points of Renormalization Group 

equations. Here we discuss a third reason, rooted in the behavior of non-equilibrium 

phase-space flows.  
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1. Introduction 

It is known that, both in principles and methodology, QFT is built as replica 

of classical equilibrium thermodynamics. However, it is also known that 
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equilibrium thermodynamics is not universal and that there are many 

collective phenomena that fall outside of its realm of validity. By contrast, 

non-equilibrium thermodynamics (NET) is an evolving field of research whose 

methods apply to a far broader range of contexts [1-2]. Moreover, NET may 

be linked to complex manifestations of nonlinear dynamics including chaos, 

bifurcations, non-integrable behavior, pattern formation and multifractals, 

self-organized criticality, anomalous diffusion, and fractional kinetics, as 

well as to exotic phenomena in condensed matter, materials science, 

chemistry, and fluid physics [5-8, 10-14]. Insofar QFT is involved, a key 

ingredient of NET is that open systems outside equilibrium undergo 

decoherence, leading to the transition from quantum to classical behavior in 

the presence of persistent and unbalanced perturbations [9].   

In line with the ideas of complex dynamics, it can be argued that the 

continuous dimensionality of spacetime may be inferred from two premises, 

namely, 1) dimensional regularization of perturbative QFT, and 2) the 

existence of non-trivial fixed points of Renormalization Group equations [5]. 
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In this brief report we suggest that NET offers an independent route to the 

minimal fractal geometry of spacetime in proximity to the Fermi scale. 

The paper is organized in the following way: section two elaborates on the 

topic of generic phase-space flows and their Lyapunov exponents; section 

three covers the connection between fractal dimensionality and the rate of 

information loss, as well as the emergence of fractal attractors in phase-space 

driven by the onset of NET.           

2. Generic flows in phase-space 

Let  ( ) ,t   =  represent the phase-space state of a generic system of 

classical fields   with momenta  = .  The phase-space is denoted by M  

and its dimension by D . Omitting the vector notation for simplicity, phase-

space trajectories are described by the first-order differential equation [3] 

 F = ( )  (1) 

in which F  is a vector-valued function of dimension D . The solution of (1) 

represents a phase-space trajectory (or flow) in M  and maps a phase point 0( )  
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to another point ( )t  as in 0( ) ( )tt f =  . An arbitrary perturbation vector 

evolves in time according to   

 ( )J =    (2) 

where the Jacobian matrix ( )J   determines either the growth or shrinking 

tendency of the phase-space point ( )t . If the perturbation is normalized to 

unity ( 1 = ) and points in a particular phase-space direction, matrix 

elements built from the Jacobian quantify the local growth or decay of ( )t  

and fix the local Lyapunov exponent ( ( ))t   at the phase-space point 

}( ) { ( ), ( )t t t  = . The evolution of an elemental volume in phase-space is 

described by 

 ( ) ( )

1

)( ) (0)
D

D D
l

l

V t V t  
=

 exp(  (3) 

where l  represent global Lyapunov exponents. Alternatively, the sum of 

global Lyapunov exponents may be computed from [3]  

 
( )

1

( )(ln )D D

l
l

td V
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
=

= =
  (4) 
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3. Information loss and the emergence of fractal dimensions 

With reference to fig. 1, consider a system of classical fields in a stationary 

non-equilibrium state. Because the system is driven away from equilibrium, 

on a time-average basis, there is an irreversible energy transfer ( )Q  to a 

reservoir (referred to as a “bath”). In our context, the “thermostat” is a 

regulator whose function is to maintain a constant energy balance either by 

absorbing the instantaneous surplus or releasing the instantaneous energy 

deficit to the system. As Fig. 1 indicates, the transfer between thermostat and 

system is controlled by the parameter  . It can be shown that the equations 

describing the behavior of the overall ensemble take the form [3-4] 

 ({ },{ }) ( )i i X t   = +  (5a) 

 
( )

({ },{ }) ( ) i
i

i i

i

V
X t s

   


= − + − 


 (5b) 

Here, X and X stand for the driving “forces”, ( )iV   for  the potential 

function, whereas i−  denotes the action of the thermostat on the field i  

selected with the binary switch }{0,1is  . Although   may fluctuate and 
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assume either positive or negative values, its time average 0   stays 

positive as energy is extracted from the system in the long run.  

 

Fig 1: Thermodynamic model of the field system (5)  

By (4), the following thermodynamic relations hold [3-4] 

 
( )

11

ln
0

D ND
irr

il

il

dSd V
d s

dt dt

 
==

= = − = −    (6) 

where Boltzmann constant is set to unity ( 1)Bk = , d  is the dimension of the 

physical space and where 

 0irr

dQ
dS

T
=  (7) 

It follows from (6) that, since the rate of entropy production (or information 

loss) (7) is continuous, the dimensionality of spacetime d  must also be a 

continuous function of time ( )d d t= . Moreover, a positive average entropy 

System Bath Thermostat 

Q   
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surge ( 0)irrS   necessarily implies a monotonically increasing spacetime 

dimension ( 0d  ), from the early Universe to the present era of cosmological 

evolution. This conclusion is in line with the philosophy of dimensional flow 

and fractional field theory [5].   

Two asymptotic cases are of interest regarding (6): 

a) an analog of the thermodynamic limit condition is given by an 

unbounded  entropy rate (or instantaneous thermalization) ( )irrS →  for 

systems having infinitely many regulated fields ( , 1,iN s i→ =  ), 

b) an analog of a vacuum condition given by a vanishing entropy rate (or 

infinite thermalization time) ( 0)irrS =  for a vanishing number of 

regulated fields (N  , 0,i is =  ). 

Following [3], a key observation is that the stationary measure of the system 

resides on a fractal attractor with a vanishing phase-space volume. Also, the 

Gibbs entropy is shown to diverge to minus infinity, which indicates that the 

thermodynamic entropy (expressed as derivative of the internal energy with 

respect to the entropy), is undefined for such stationary non-equilibrium 

states. 
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It would be instructive to take the limit 3d→  and evaluate the potential 

impact of these findings on the path-integral formulation of QFT and on the 

standard computation of transition amplitudes using propagators.  
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