Coding the Quadratic Formula
Using TI84-CE Python

Timothy W. Jones
January 15, 2022

Abstract

Texas Instruments have added coding in Python to their TI-83
family of calculators. The question this paper attempts to address is
why. This investigation starts by considering the programming lan-
guage of Python and its benefits, especially as contrasted with TI-84
Basic (the standard language for these calculators). It then consid-
ers the implementation issues that confront the idea. As an example,
Python is highly extensible, but calculators are by their nature highly
proprietary, not extensible. And then there is the interface with its
other products Smartview and Connect. These are designed to aid
teachers and programmers respectively by porting calculator features
to PC programs. Does Python inter-phase with these? How well?
These concerns are motivated and organized by a concrete program-
ming challenge: seek to code the quadratic formula (we’ll define what
that means) in Python and attempt to port it to a calculator — as
easily as possible, if possible, noting issues and problems as we go
along.

Introduction

I suspect teachers of high school algebra classes were shocked to see Python
on student calculators. What on earth could that mean was my initial reac-
tion. I had heard of the programming language Python and occasionally was
tempted to try to learn it, but always my particular thought was why bother.
I already knew Javascript and TI-84 Basic and that seemed enough for my

needs. That said programming in TI-83 Basic had proven to be frustrating
for me several times.

The two most annoying things are TI-Basic does not implement functions
and variable names are limited to one capital letter. It is difficult, under these
constraints to structure code, especially when, as a teacher, you should show
good programming styles. Knowing Javascript well made this annoyance
pronounced; I knew structuring my programs was possible in a different
language, like Javascript, but alas not the language of these TI calculators.
So I was open to the idea of TI-84 Python, even more would I be open to
TI-84 Javascript!

If all of the above sounds similar to your experiences, you will find it
hardening to know that Python has some very nice features. In particular it
kind of forces good programming structure. It forces forces coders to indent
lines; in fact, it delimits using indention! That is its most salient feature.
It also, as you would expect, supports functions and varyingly long variable
naming. It is a robust language, comparable to Javascript or C. The latter
is suggested by its use of an import idea.

Smartview and Connect do support Python, but not as strongly as these
support TI-Basic. One can’t edit Python code in Connect and port it for
testing to a physical calculator, for example. This inter-phase is the standard
mode for TI-Basic programs. To get Python programs into Smartview from
a physical calculator, attached via a usb cord, is not as clear and clean as
doing the same with a TI-Basic program. It can be done.

Enough of coming attractions. I will show issues, constraints, beauties,
and annoyances by way of a programming challenge: code the quadratic
formula (QF) in Python on a TI-84 CE with Python calculator using, as
possible conveniences, Connect and Smartview. I've done the same in classic
TI-Basic, so a compare and contrast opportunities will arise. First, what
does it mean exactly to code the QF?

QF: The discriminant

Let’s start with something easy. Prompt for the coefficients of the generic
Az? + Bx + C quadratic, crunch the discriminant, B? — 4AC, and display
the result. Smartview can do both TI-Basic and Python programs easily, in
theory. I say theoretically because it took me a few seconds to do it in Basic
and half an hour to do it in Python.

I actually gave up trying to input the simple Python code using the
calculator’s editor. The problem is one has to step through all characters of
Python and you must constantly figure out whether you are in alpha mode
lower case, alpha mode upper case, or non-alpha mode regular. So trying to
type A = int(input(”A =7)) is a real annoying challenge. Granted one can
type this in or one can navigate the menu system and find int and input, but
then you might be in insert mode or type over mode — in addition to lower
case, upper case, regular case modes just mentioned.

T& Thonny - C\Users\Dell\programshgetDiscWPythonupy @ 3317
File Edit View PRun Tools Help
I 7= 0 % @ | B2 T-smartView™ CEforthe T-84 PlusFamily — O
gf-with-frac.py © getDiscWPython.py File: Edit View Actions Help
1 A=int{input(“A=")) =
» W
2 B=int(input("B=")) B sAoa= @

3 C=int(input("C="))
4 D=B¥*¥)_4¥p%C - —
5 pr‘int("Disc iS",D)] --E-[.I-Tln-r--n.v-w-l;_: Ti-84 Plus CE
=4 EDITOR: HYPYDIS
"'Cd FROGRAN LINE 0651 o 1]
=int{input{"A="])
EB=int(input({"B="})
C=int{input("C="])
D=B##¥2-4kA%C
print{ Disec is",D)

Figure 1: Use a Python editor to make the code for the calculator.

Immediately one senses why designers made TI-Basic so constrained. Re-
served words like disp and prompt delete in one keystroke and are treated as
units: no ambiguity in their creation, you must drill into the program menu
system to create them. There is no case sensitivity for user created words as
there is just one case: upper.

But: you can use an editor to create Python code and bring it easily
into Smartview. Thonny is a nice, free editor. Figure 1 shows how I ended
up creating the program successfully. Note the missing capital A in the
calculator’s editor screen shows the problem of ambiguous character entry
modes. I think it’s in insert mode, but I'm not sure. Note: the manual for
TI1-84 Python stresses how to Smartiew (and Connect) can inter-phase with a
Python environment, as they call it, like Thonny: for good reason. Entering

Python code using the build in editor is best done by those only into serious
sadomasticism.

£ TExas [NSTRUMENTS TI-84 Plus CE

HORMAL FLOAT AUTO a+bli RADIAM MP []
EDIT HEHU: [alphal [£5]
FROGRAM: GETDISC
:pramGET3
:B2-4RC2D

:Disp D

Figure 2: Caption for ti-getDisc

B TExAS INSTRUMENTS Ti-84 Plus CE

HORHAL FLOAT AUTD a+bi RADIAH HP n
EDIT HENU: [alrhal [§5]1

PROGRAM:GET3
:Prompt H.B.C

Figure 3: Caption for ti-get3

The code for the basic version is given in Figure 2. Here I use the calcu-
lators version of functions. I made a GET3, Figure 3, program and inserted
into the GETDISC program. My motivation is that I frequently want to
get three variables named A, B, and C and rather than make each afresh
for a program, it is good coding practice to make one version and re-use it.
Python and TI-84’s version of it can do this.

QF: Cases

We now are in a position to stipulate what we mean by coding the quadratic
formula. There are five cases, meaning five types of solutions: a single real
and rational solution, two real and rational solutions (that counts as case
2), two real and irrational solutions (involving a simplified radical), for the
third case, two complex rational solutions (for the fourth case), and finally
two complex irrational (radical) solutions (for the fifth case).

All cases are resolved by an appeal to the discriminant, D. If D = 0,
Case 1. We must determine if D is a perfect square, like 4, 9, or 16, for
example. This is achieved in Basic by computing fPart(sqrt(abs(D))). If

3 TExAs INSTRUMENTS TI-84 Plus CE

|NORHAL FLOAT AUTD avbi RADIAN HP |:||
| EDTT HENU: [aTphal [§5] ,
|[PROGRAM: GETQFCOM
:pramGETDISC
:abs(D)2E
J{E)+F
:fPart(F)-G

Figure 4: Caption for ti-get-decimal-part-of-d

this is 0, meaning the decimal part is 0, then D is a perfect square. Code
for Basic is given in Figure 4. TI-84 Python doesn’t have the equivalent of
this function, but, here it is, you can make your own in a jiffy in Python and
Python TI84. That code is shown in Figure 5.

9 def getDecimalPart(x):
return x-int(x)

Figure 5: Caption for python-get-decimal-part

IR S
el |

Bl s

=
]
LE

2l Sl
1

= a0 OO0 =~ O N e G0 Mg —= 05 00 00 =~ 3 LT

=

EBEEEE S
I

— 0 H FR F R

Lo o™ ™ o o e ™ o
e Bl el] Bl

2

=

=l
T e T

)

prgmiETDISC

abs(D)=E

f[E]*F

fPart(F)=G

It (D=8)

Then

Disp "ONE RAT ROOT"
End

It (D=8)

Then

It (G=8)

Then

Disp "EL PS RAT ROOTS"
Else

Disp "EL RAD ROOTS ("
End

End

It (D<8)

Then

It (G=8)

Then

Disp "CP PS RAT ROOTS"
Else

Disp "CP RAD ROOTS ("
End

End

Figure 6: Caption for ti-qf-shell

The shell program in both Basic, Figure 6 and Python, Figure 7 are given.
Figure 15 (below — way) gives test cases. So, if you want to turn this screed
into a tutorial, see if you can make both work with the test cases. Notice
how the shell for basic is not indented and is hard to read. Indenting per
good good style gives errors. Indenting is forced in Python. The next goal
is to fill in the details. Notice we are going for exact solutions with radicals,
not just roots in approximate decimal forms; we want reduced fractions with

simplified radicals, a more difficult proposition.

1 from math import *
2 def getDisc(a,b,c):
return b**2-4%a*c
def getDecimalPart(x):
return x-int(x)
def getQf(a,b,c):
D = getDisc(a,b,c)

E = sgrt(abs(D))
F = getDecimalPart(E)
if (D==08):
11 print("D is zero, one root")
12 if (D>8):
13 print("D is greater than zero, two real roots")
1 if (F==0):
15 print("Real perfect square, rational roots")
6 else:
print("Real radical roots")
18 if (D<@):
19 print("D is less than zero, two complex roots")
26 if (F==8):
21 print("Complex perfect square, rational parts")
2 else:
print("Complex radical roots")
return
getQf(3,5,7)

Figure 7: Caption for python-shell

QF: Central peeves

Before filling out the details for the programs, here is a list of peeves. T184
Python does not have a GCD function. Regular Python does. It’s part
of the standard math functions that one imports, see Figure 8. One can
make, once again, a GCD functions using a nice recursive function; it’s an
implementation of the Fuclidean algorithm. The GCD function is necessary
to reduce fractions — mentioned in the various cases. This is shown by way
of a screen capture using Connect, Figures 9; Figure 10 shows some of TI-84
Python’s math functions — no GCD. The recursive function works on the
calculator — we’ve got a GCD, GD it. Just in case readers are wondering:
there are 59 math functions listed at Pythons wiki, there are 22 on the TI-84
version of Python.

math. ged(*integers)
Return the greatest common divisor of the specified integer arguments. If any of the arguments is nonzero,
then the returned value is the largest positive integer that is a divisor of all arguments. If all arguments are
zero, then the returned value is @. ged() without arguments returns a.

New in version 3.5.

Changed in version 3.9 Added support for an arbitrary number of arguments Formerly, enly two argumenis
wers supported

Figure 8: Caption for python-has-gcd

(= EDITOR: MYGCD

PROGREAH LINE 6801
from wmath import %
def myGCD([x,v]):

if y==0;

return =
r=int[fmod(=,v])
return myGCD(y.r)

Figure 9: Caption for python-my-gcd

EDITOR: HYGCD
o th module
i Const Trig

@:trunc()
A:frexp()

Esc |Heodul

Figure 10: Caption for ti-python-no-ged

Another function is required to simplify square roots, to pull out any
perfect squares. Here Python shines and in Basic we are forced to make an
insert of code — if we wish to hide functionality, per good coding practice.
The Basic code is given in Figure 11 and Figure 12 gives the Python function.
One is forced in the Basic version to use global variables, the H and J — very
inconvenient. The Basic is a stand alone version. Test it with 4, 16, and 500.
Note the unicode in the Python version; these give a plus, minus symbol +
(Latex does it too) and the square root symbol (v/2). Former yes in TI84
version of Python, latter no.

Regular Python does then support unicode characters. As mentioned, we
need a square root symbol and Thonny and regular Python delivers; the TI184

Disp " (D)"
Prompt D
abs(D)=E
V(E})=F

fPart (F)-G
iPart(F)-=H
For{X,1,M)

If (fPart(E/X2)=8)
Then

X=H

#11 | End

12 End

13 EfHZ2=d

g14 | If (4=1)

Then

Disp H,"PS"
#17 | Else

Disp: B, ™ ("
End

= R
Cad P b

= |

e vl e
= I3 LT

=

el L i = T S e R R

L= I e R a

2N

J O3 Lm0

[l S

Figure 11: Caption for ti-basic-simplify-radical

and its Python does not. In contrast TI-Basic does via navigation into its
menu system: the second test key (see Figure 11). There is a char function
in regular Python and a chr function in TI84 Python, but some characters
are generated and some aren’t. There appears to be no clear documentation
to help a programmer. Yet TI84 Python in its example programs uses \n
which strikes me as awkward — hailing back to the C programming language.

In general, the import feature in TI84 Python brings in proprietary TI
specific modules with sometimes odd naming conventions. This means that
you have to be careful in making code in Thonny that you hope will run
in your calculator. The manual on TI84 mentions this. What solves this
situation is to make Connect support an editor for TI84 Python, something
it does not do.

Perhaps here is as a good a place as any to mention that getting programs
to work on calculators is generally a silly endeavor, unless you need the
portability. In an academic setting, it is good to have a single portable,
affordable platform and that’s the TI84 CE with Python’s main selling point.
My usual teaching modality is to code in TI-Basic using Smartview and have

5 def getSimplifyRadical(a,d):
H=1
for j in range(l,a):
if (a/j**2-int(a/j**2)==0):

H=3
J = afH**2
if {1==1):

return getFrac(int(H),d)
else:
return "\uB0B1"+ "(" +getFrac(int(H),d) +")" + "\u221A" + str(int(1))

Figure 12: Caption for python-simplify-radical

students copy what I do. If I can’t code Python in the built in editor,
but must go to Thonny (likely not on my classroom’s teachers PC), then
its potential as a vehicle for teaching Python programming is pretty much
zapped from the get-go. But maybe students at home, can use Thonny with
youtube videos and enjoy porting it to their calculators for use during tests in
their math classes! In this regard, the Python book Doing Math With Python
tells the back-story of this saga: Python has lots of imports like sympy that
do symbolic math, graphics, you name it. This could spell out doom for TI
calculators soon! A motive is brewing in my mind for the question why TI
Python?

def getFrac(a,b):
c=a/gcd(abs(a),abs(b}))
d=b/gcd(abs(a),abs(b))
if di=1:
return str(int(c))+"/"+str{int(d))
else:
return str{int(c))

Figure 13: Caption for python-get-frac

Finally, within this category of pet peeves, readers may have noticed a call
to getFrac in the last Python code. The function called is given in Figure 13.
Basic does allow an in-line to frac conversion off its math key, Figure 14. But
this proves difficult to use in programs; we want a string to concatenate with
other strings. This getFrac function in turn forced the creation of myGCD —
one divides out of the numerator and denominator the GCD of the original
fraction’s versions of these. Excel, regular Python, and TI84’s Python do not
deliver such a function with two arguments — I had to make this function.
There I’'m done with irritating things.

10

£ TEXAS [MSTRUMENTS TI-84 Plus CE

HORHAL FLOAT AUTO o+bi RADIAH HEP I]

678 Frac

.
E_I:Iw

Figure 14: Caption for ti-frac

The beauty is you can get complete solutions to quadratics with this
calculator, Python, and Excel and it is a great challenge for students.

QF: Complete solutions

S0 rewuarr
ONEROOT | X2 — 2X +1 1 47 getQf(1,-2,1)
RPS XZ+5X +6 % —a 48 getQf(1,5,6)
RFS 20X° — 23X + 6 | 3/4, 2/5 45 getQf(20,-23,6)
RPS I FI2X — 16| L, -1 56 getQf(4,12,-16)
RSQ X? X +2 242, 2 - /2 51 getQf(1,-4,2)
RSQ OXZ _30X + 18 | 5/3 £ V7/3 52 getQf(9,-30,18)
PS X7 _4X 1 & 2+ 26, 2 - % 53 getQf(1,-4,8)
IPS OXZ - 30X + 31| 5/3 L4 54 getQf(9,-30,34)
ISQ) XP_AX 48 2+iV2, 2—iy2 55 pgetQf(1,-4,6)
15Q) OXZ — 30X +32 | 5/8£iT/3 lgeth(9,-3@,32)

Figure 15: Caption for test-quadratics-and-thonny-calls

Drum roll. Figure 15 has the 10 test cases with their sets of three coeffi-
cients being called by the function getQf. In Thonny these give the correct
roots with radicals, Figure 16. As mentioned, TI84 Python can’t do these
radical signs. So we amend the code as shown in Figure 17: the program I'm
going to load into my physical TI84 with Python calculator via Connect. In
a moment the results of that trial. Figure 18, captured with Connect, shows
success. Note I checked carefully that the name of the square root function
was the same in TI84’s version.

Using Basic, there is no way to call a function several times without a
lot of troublesome work: a for loop that reassigns fixed global variables and
reruns a program stored separately. That works, but ugh!

11

2E{1)v2
S/3£(1/3)N7
2412

2-12

5/3+i1
5/3-i1

2+ (1)¥21
5/3+(1/3)V¥71

Figure 16: Caption for thonny-correct-root-finding-with-radical-sign

Conclusion

Texas Instruments deserves credit for reading the educational tea leaves. If
they add the same functionality to Connect as they provide with Basic, they
likely will have a good formula that will stave off for a time a likely future
where calculators, like slide rules, become at best quaint.

Note the forgo the obvious, programming complete solutions of quadratics
(meaning exact solutions too) is a nice challenge. We have used if statements,
for loops, recursion, functions, and good programming structure; all was
tested with a list of possible types of quadratics. Good classic math crunched
well with the latest in technology. I’'ll make a youtube video later. Not
investigated yet is the possible coup de grace for calculators — the graphic
components possible with Python! Enough of those tiny screens! And way
enough of the pencils. https://www.youtube.com/watch?v=g3d132La0ls

12

https://www.youtube.com/watch?v=g3dl32LaOls

getlFshellpy gf-withfracpy teveriion-getOF py

1 - from math import sqrt
2 def gatDisc{a,b,c):
3 return b**1-4%a%c
4 def getDecimalPart{x):
5 return x-int{x)
6 def getGCD(x , ¥):
T if y == f;
) return %
9 r = inti{x ¥ ¥)
10 return getGiDy |, r)
11 def petFracia,b):
12 ceafpatGED{abs{a), abs (b))
13 d=b/fpetGCD{abs(a) , abs (b))
i4 if dl=1;
15 return strlink{c))+"/Testr{int{d)}
16 elza:
17 return stri{int(c))
0 def getSimplifyRadicalla,d):
L H=l
Fiil for 7 in range(i,a):
1 iF {getbecimalPart{afi™"i =ity
2 H=jf
23] & sfH""D
il A (Jumll}:
35 raturn getFrac{int{H}) ,d}
A wlsa:
X raturen “he0eB1%s T sgetPrac{int(Hld) #7)" + "SQAT(T @ ste(int(2)) 4-":1"1]
J0 def getQFia.b, c):
o] D = getDiscia,b,c)
“:m E = sgrifabs{0)})
31 F = getDecimalPart(E)
32 £ [Das=@):
33 print{zetFrac(-b,7%a})
34 1F (Def) -
- 7] IF {F=}:
36 printi{getFrac{-b,2%a)+"+1 sgetFrac{int (£} ,2%a))
37 print{getFrac(=-b, 2*a)s"-i"sgetFrac(int(E), 2%a))
) elae:
39 print{getFrac(-b, 2*a) + petiimplifyRadical{absi{D),2*a) +"i%}
48 if (D»8):
41 1€ {Fit):
42 print{getFrac{-b+int{E},2%a)}}
K print{getFrac{-b-iot(E},¥®a}} #Fodll =il
el #lae:
A5 print{getFrac-b,2%a) « getSimplifyRadicallD, 2*a))
ith return

Figure 17: Caption for ti-qf-code-all-lines
13

r‘f-_“ FY¥THON SHELL : |I]

i
-4

2+{1)8QRT(2)
5/3%({1/3)8QRT(7)
2+iZ

2-iz2

5/3+i1

§5/3-i1

2 (1)1SART(2)i
2/3(1/3)8ART(7)1
a2 |

[Fns.. [a A #]Tools [Editor[Files|

Figure 18: Caption for connect-add-file-from-computer-part3-success

14

