
The Need for Speed: Julia Vs. Python

M.T White

Abstract

In a world that is dominated by speed and instant gratification, it comes as no surprise that the

technologies that are necessary to power applications also have to be as fast as possible.

Currently, the programming language Python is the ruler of the programming world. Python is

being used to program everything from web applications to advanced AI systems. However, in

recent years a challenger has emerged that is attempting to dethrone Python. Julia is a new

programming language that is touted as a Python killer. Sporting an expressive syntax and a JIT

compilation using LLVM it has the speed of C++ with the development feel of Python. Though

it is often considered faster than Python there are several areas that most studies ignore such as

code styling and general program architecture. As such, this study looks at the speeds of basic

functionalities such as for loops, printing basic math equations to the console, and if statements

of both Python and Julia to determine just how much faster Julia is. By only studying the listed

commands all bias to architecture and coding style can be mitigated or eliminated and a true

understanding of how much faster Julia is can be determined.

1.1 Introduction

Julia is a fairly new programming language that has a simplistic, expressive syntax similar to

Python or MatLab and it is touted to have the same execution speed as a compiled language such

as C++. Currently, Julia is being explored across many different fields such as machine learning

and mathematical computations. According to the official website, Julia code compiles to native

code for multiple platforms because of the LLVM compiler [2]. Even with the recent rise of

Python as the most popular programming language by many surveys, Julia is often touted as a

Python killer.

Julia was released to developers in 2012 with Julia 1.0 being released in 2018 [1]. Due to the

age of Julia little work has been done in the way of benchmark testing. Some studies are

available that demonstrate the speed advantages of Julia over Python. For example, The

computer language benchmarks game website list many complex algorithm benchmark tests

between Julia and Python [3]. However, what is not looked at are benchmarks for core

functionality such as loops, control statements, and basic mathematical equations that usually

make up the core of most complex algorithms and programs. With that being said, at the

fundamental level, how much faster is Julia than Python? The following will explore the two

languages along with experimental results derived from core functionality such as loops, controls

statements, and mathematical expression in an attempt to answer that question.

1.2 Python

To understand the benchmarks between Julia and Python one must first understand the

differences between Python and Julia. As it stands as of now, there are two versions of Python.

There is Python2 and Python3. Python2 is an older version of Python that is mainly used to

support legacy codebases while new projects are created with the later version Python3. For the

study presented in this article, all Python code was written using Python3.

In general, Python is a dynamically typed, interpreted language that offers a very expressive

syntax that is very easy to read. Python is by no means a new language; its debut was in 1991.

Python has a very rich ecosystem and is currently a popular platform for machine learning, data

analytics, web development, as well as many other applications. Due to the very simplistic

syntax of Python, it is often used by scientists and engineers that need to quickly write programs

[4]. According to Oliphant the clean syntax, indentions, modules, and easy-to-read loops play a

significant role in drawing in scientists and engineers [4].

The only drawback to Python is that it is interpreted which means that programs written in

Python will traditionally be slower. Source code for languages that are interpreted is translated

line-by-line. As such, compared to compiled languages such as C++, a script written in Python

will execute at a significantly slower rate.

1.3 Julia

Julia offers the same easy-to-read and easy-to-understand syntax that is offered by Python. Also,

like Python, Julia is a dynamically typed language. However, as stated before Julia uses LLVM

to compile source code as opposed to interpreting source code like Python. More specifically

Julia is a JIT compilation. Julia is also dynamically typed which means it has a similar feel to a

scripting language [2]. In short, developers developing using Julia will have a similar experience

to developing with Python. However, the mere fact that Julia is compiled means that it will

automatically have an advantage over Python in terms of execution speed.

Though Julia is advantageous to Python in terms of execution speed it is not without its general

drawbacks. The main drawback comes from the language’s immaturity. Unlike Python that has

been actively developed for the past 30 years, Julia is a new language. This immaturity means

that there is a lack of solid experimental data on performance, a limited and immature ecosystem,

and a general lack of knowledge when it comes to the language.

2.1 Experiment Background

Testing with complex algorithms is without a doubt an excellent benchmark for a language's

execution speed. However, programs with significant size and complexity will usually introduce

biases such as programming style, code design, and so on which can play a significant role in

tainting the results of the benchmark test. Two major factors that can affect the benchmark test

of two different languages are coding style and architecture [5]. This is especially true for

benchmarking large applications as each programming language dictates how a program will be

set up and executed. As a way to gain an insight into how fast each language runs an experiment

that disregards coding style and architecture must be employed.

2.2 Experiment

To determine how much faster Julia is compared to Python a set of rudimentary operations will

be carried out. A set of test runs were timed using native functionality for both Julia and Python.

For Julia, @time was used to measure the execution speed of a code block. The @time

command in Julia is a Macro that will return the time it took to run an expression as well as the

total number of bytes that were allocated for the execution before the value of the expression is

returned [6]. All code that was written in Julia was executed in the Julia shell.

In terms of Python, a script was created in IDLE. Time was measured in the Python script by

recording the difference from the time at the start of the script’s execution to the end of the

execution of the script. Though the import of the time library may add extra time to the overall

execution time of the Python script, the extra time will be ignored due to time measurements

being taken right before the operation is performed and after the operation is finished.

Regardless, this gives a better one-to-one look at the raw execution speeds of the operation for

both languages.

The tests measured the execution time of a for loop that counts for 1 to 4, a control statement,

and a basic math computation. Though the list is not a comprehensive list of all the functionality

that the languages offer, these are core attributes that programmers will see in their day-to-day

activities. To test the execution speeds, each code block was run 10 times. The run time for

each code block is recorded in Table 2. The slowest, fastest, and average execution times for

each of the ten cycles were recorded.

2.3 Setup

As logic will dictate physical computing power will play a role in the execution speeds of a

language. As such, if the experiment presented in this article is reproduced the execution speeds

may vary; however, the general difference should still favor the fastest language. The

experiments for this study were conducted on a standard HP laptop computer that has an i5

processor and 8GB of RAM. In short, the machine is similar to what would be found in a normal

development environment.

2.4 Code

The code that was used to carry out the tests can be found in Table 1.

Table 1

Test Code for Julia and Python

Code Julia Python

Control

@time begin

 x = 3

 if x == 3

 print("done")

 end

 end

import time

start = time.time()

x = 3

if x == 3:

 print("done")

end = time.time()

print(end - start)

@time begin

 for i in 1:4

import time

start = time.time()

For Loop print(i)

 end

 end

for i in range(1,4):

 print(i)

end = time.time()

print(end - start)

Print a math statement

@time begin

 print(3+3)

 end

import time

start = time.time()

print(3+3)

end = time.time()

print(end - start)

As can be seen, the code for the examples is very simple and due to the simplicity of the code

biases such as architecture and style are non-existent to minimal at worst.

3.1 Results

The results were collected by running each respected section a total of ten times. As such, the

Python script was run ten times as well as the Julia snippet. The data in Table 2 is the resultant

of the ten execution cycles. Table 2 logs the fastest, slowest, and average execution times of the

runs.

Table 2.

Time Comparison

Time Julia Python

For Loops

Fastest Time Secs 0.000502 0.0109804

Slowest Time Secs 0.000997 0.0309765

Average Time Secs 0.0005879 0.02178407

Flow Control

Fastest Time Secs 0.000143 0.0110004

Slowest Time Secs 0.003487 0.0269847

Average Time Secs 0.000698 0.01478628

Print Math Statement

Fastest Time Secs 0.00015 0.008036

Slowest Time Secs 0.001476 0.026996

Average Time Secs 0.000454 0.01529

As can be seen, when it comes to basic commands, commands that will be used to build more

complex algorithms Julia does have a significant execution advantage. From the data in Table 2,

it can be deduced that the average differences between each category range from 0.0141 seconds

to .0212 seconds with the biggest advantage in execution stemming from loops with a .0212

second difference favoring Julia. The closest execution speeds were in the control statement

group with a 0.0141-second difference in favor of Julia. In short, in terms of pure execution,

Julia is superior to Python.

4.1 Future Work

Another area to explore in future research is to study how computing power and computing

environments influence the speed differential between the two programming languages. Most

literature focus on benchmarking the languages on a single computer and as such all the

differentials will be based on the same hardware and environment. With Julia being such a new

language future research should focus on its speed in different computing environments such as

environments running other operating systems, running Julia in containers, and so on.

4.2 Conclusion

In terms of this study, Julia does live up to its claims of being faster than Python. As can be seen

in the code in Table 1, barring the boilerplate code for timing purposes both languages share a

similar syntax. In terms of execution speed, the biggest difference in runtime between the two

languages was in the for loop category with a .0212 second difference. Even the closest time

difference still had a 0.0141 second time difference with the fastest execution speed in favor of

Julia. What can be deduced is that Julia is faster; however, there are still drawbacks to using

Julia. Due to the immaturity of the language, there are still a lot of unknowns when it comes to

how Julia performs in different conditions, an immature ecosystem, and a general lack of

knowledge of the language. However what can be deduced is that as the language ages and the

ecosystem, knowledge base, and general interest in the language matures, Julia may become a

superior alternative to Python especially in fields where the expressive syntax of Python and

execution speeds of C++ are desired.

References

[1] Miller, S. (2018). MIT-created programming language Julia 1.0 debuts.

https://news.mit.edu/2018/mit-developed-julia-programming-language-debuts-juliacon-0827

[2] The Julia programming language. https://julialang.org/

[3] The computer benchmarks game https://benchmarksgame-

team.pages.debian.net/benchmarksgame/fastest/julia-python3.html

[4] Oliphant, T. E. (2007). Python for scientific computing. Computing in science &

engineering, 9(3), 10-20.

[5] Sells, R. (2020, March). Julia Programming Language Benchmark Using a Flight Simulation.

In 2020 IEEE Aerospace Conference (pp. 1-8). IEEE.

[6] JLHUB. http://www.jlhub.com/julia/manual/en/function/function/colon-at-time

