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Abstract 

 

In this part of the two-part series of essays, we first derive some equations for further physical redshift distances. 

We then analyze a catalog with 132,975 quasars, for which both the apparent magnitude m and the redshift z are 

given, in order to find the today’s value of the parameter β0 of the theory presented. We then use this value to 

determine the today’s value of the radius R0a of the Friedmann sphere using a magnitude redshift diagram of 19 

SNIa. 

With the help of the known values of R0a and β0, statements about astrophysical data from the black hole in the 

galaxy M87 can be made. In addition, the today’s Hubble parameter H0 results from both parameters. 

Furthermore, we calculate the values of the further physical redshift distances for the black hole in M87 and all 

19 SNIa. 

The resulting parameter values are: β0 ≈ 0.731, R0a ≈ 2,712.48 Mpc and H0 ≈ 65.638 km / (s ∙ Mpc). The today’s 

mass density of the Friedmann sphere is ρ0 ≈ 4.843 x 10
-27

 g / cm
3
. For the mass of the Friedmann sphere we find 

MFK ≈ 1.206 x 10
56

 g. 
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 1. For Recall 

 

Based on the physical approach for the dynamic path of photons (light path) through the universe 
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we found in the first part of the series of articles [1] for the non-approximated redshift distance 

 

 

 
 

.
1

1
1

1

1
),;(

0

0

00 





















 z

zz

R
RzD a

a


  

 

(I, 31)

 
 

In the above equation, R0a is the physical distance of any observer from a coordinate origin (r = 0). 

In this paper we designate all distances that are related to a coordinate origin with "R" and all differences of such 

distances with "D". 

 

For the relations relevant in the context of cosmology, we found the magnitude-redshift relation in Part I of the 

essay series with the help of the redshift distance 
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(I, 38) 

 

the angular size-redshift relation 
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(I, 40) 

 

and the number-redshift relation 
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(I, 46)

  

In the following chapter we calculate further physical redshift distances related to the coordinate origin and 

differences of these distances that are very interesting for cosmology. 

 

2. Derivation of further physical redshift distances 
 

 

The starting point for the derivation of the further redshift distances are the elementary equations 
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This results in the following distances 
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(2) 

 

Ree is the then distance between the galaxy emitting the light and the origin of the coordinates - at the time te the 

light was emitted. 

Rea is the distance of the observer's galaxy from the origin of the coordinates at that time. 

R0e is the today’s - at time t0, at which the light is absorbed by the observer - distance of the light-emitting galaxy 

from the origin of the coordinates. 

R0a is today's distance of the galaxy containing the observer from the origin of the coordinates. 

 

These distances become concretely with equation (I, 31) 
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and 
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and of course too 
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These distances from the coordinate origin result 
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(6) 

 

De is the then (te) distance between the observed galaxy and the galaxy in which the observer is located. 

 

Furthermore we find 
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(7) 

 

D0 is the today’s distance between the two participating galaxies. 

 

The following figures illustrate the equations for the further redshift distances, where we have normalized all 

distances to R0a. 
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Figure 1. Redshift distance Rea normalized to the distance R0a. 

 

This distance does not depend on the parameter β0. 

 

 

 
 

Figure 2. Redshift distance R0e normalized to the distance R0a for various values of the parameter β0. 
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Figure 3. Redshift distance Ree normalized to the distance R0a for different values of the parameter β0. 

 

 

 
 

Figure 4. Today's (t0) redshift distance D0 normalized to the distance R0a for various values of the parameter β0. 
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Figure 5. The at that time (te) redshift distance De normalized to the distance R0a for various values of the 

parameter β0. 

 

In the specialist literature, none of these redshift distances are known and they cannot be derived there, 

respectively. 

 

We will give concrete values for these redshift distances for the galaxy M87 and 27 SNIa below. 

 

 

3. Determination of the parameter values 
 

3.1 Magnitude-redshift relation 
 

 

The apparent magnitude m depends according to Eq. (I.38) in addition to the measurable redshift z also on the 

parameters β0 and m0a. 

 

To find both parameters, the quasar catalog by Véron-Cetty [2] is suitable in which measured redshifts and 

apparent magnitudes of 132,975 quasars are given. 

Fig. 6 shows all these quasars in a single magnitude-redshift diagram, where we have used log10(cz) as the 

abscissa. 
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Figure 6. Magnitude-redshift diagram for all 132,975 quasars according to M.-P. Véron-Cetty et al. [2]. 

 

A clear edge can be seen on the right side of the accumulation of measurement points, which indicates minimum 

apparent magnitudes for associated redshifts. The apparent magnitudes are usually up to far to the left of this 

edge in the diagram. 

If we form redshift intervals with mean values of the redshifts and the corresponding mean values for the 

apparent magnitude, this fact leads to a clear curvature of the mean value curve in the direction of the redshift 

axis. 

The quasars cannot therefore be described in the diagram by a linear curve. This suggests that our redshift 

distance [i.e. ultimately Eq. (I, 38)] could be suitable for the measured values. 

 

It is precisely this strange magnitude-redshift diagram that has stimulated us to think about cosmological 

distance determinations for many years [10]. 

 

To evaluate the quasar data set, we first create 75 z-intervals with 1,773 quasars each. For these intervals we 

calculate the mean values <zi> and the associated mean values <mi> of the quasars. For all intervals we also 

calculate the standard deviations σm, i and also the standard deviations σz, i. The latter, however, do not play a role 

in the analysis of the data set. The appendix contains the associated table, which also contains all σm, i. 

 

Figure 7 shows the magnitude-redshift diagram after averaging with all of the standard deviations σm, i and σz, i 

calculated by us. 
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Figure 7. Magnitude-redshift diagram of the mean values <zi> and <mi> with inserted standard deviations σm, i 

and σz, i. 

 

The curvature of the curve expected on the basis of Figure 6 can be clearly seen. This curvature should be 

explained by means of theory. More precisely: The theory has to explain the curvature! 

 

We use the likelihood function 
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for the evaluation. 

pk with k = 1, 2 stands for the two parameters we are looking for, β0 and m0a. 

 

If we use our magnitude-redshift relation (I, 38), the result is concrete 
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(8a) 

 

Using the quasar data and using the usual mathematical procedure, we can find the parameters β0 = 0.7311668 

and m0a = 20.1346. 

 

Figure 8 shows the result of the mean value formation and the adaptation of the theory to the curvature of the 

mean value curve. 
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Figure 8. Magnitude-redshift diagram for 132,975 quasars according to M.-P. Véron-Cetty et al. [2]. 

 

For comparison: 

In Part I of the series of articles we found the somewhat larger value m0a ≈ 20.24 of today's apparent limit 

magnitude for much fewer quasars under the justified assumption of β0 = 1. There, this value for β0 best 

describes the curvature of the measured value curve for large redshifts. 

 

To interpret the measured magnitude-redshift relation: 

From our point of view, the quasars came in to being historically slowly as relatively weakly luminous objects at 

a point in time that corresponds to about z ≈ 4.3. The quasars later behaved as the theory expects in flat space 

and moved with time - i.e. for decreasing redshifts z - on average along the theoretical curve (in the diagram 

from top right diagonally to bottom left). The quasars have gradually died out in the recent past and have become 

relatively bright in the process. 

 

The dependence of the calculated standard deviations σm, i on the redshift mean values <zi> is shown in Figure 9. 
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Figure 9. Standard deviations σm, i as a function of <zi>. 

 

If we consider the first and last point in the diagram as outliers and therefore simply do not take them into 

account when evaluating the magnitude-redshift diagram of the quasars, we find the parameters β0 = 0.5486497 

and m0a = 19.9555 for the values. 

Because of the differences to the values mentioned above, we might come up with the idea of taking the mean 

values of each of these. But we will not do that in the following. 

 

 

3.2 Number-redshift relation 
 

 

We use the following variance to evaluate the number-redshift relation 
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pk with k = 1, 2 stands for the two parameters we are looking for, β0 and N0a. 

 

If we insert our number-redshift relation (I, 46), the result is concrete 
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(9a) 

 

Using simple mathematics, we find N0a = 146,816 for the theoretically expected total number of quasars, if we 

use the value β0 = 0.7311668 found via the magnitude-redshift relation. 

The expected number is slightly larger than the actual number of quasars measured. This indicates a certain 

incompleteness of the measurements. 
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Figure 10 shows the graphic result. 

 

 

 
 

Figure 10. Number-redshift diagram for the 132,975 quasars according to M.-P. Véron-Cetty et al. [2]. 

 

Another possibility is to determine both parameters directly via the number-redshift relation, i.e. not to use the 

value of β0 from the magnitude-redshift diagram of the quasars. This leads to the parameter values N0a = 159,140 

and β0 = 0.8653211. Both values are slightly larger than those noted above. 

  

Overall, we could build a mean value using three different values of β0. However, we will not make use of this in 

the following. 

 

 

3.3 Angular size-redshift relation 
 

 

As in Part I, we use the measurement data from K. Nilsson et al. [3] to find an average linear size of the cosmic 

objects measured there. 

 

The starting point is the variance 
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Here, pk with k = 1, 2 stands for the two parameters we are looking for, β0 and δ / R0a. 

 

If we use our angular size-redshift relation (I, 40), the result is concrete 
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(10a) 
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The comparison of the theory with the measurement data using β0 = 0.7311668 results in a value of δ / R0a = 6.06 

x 10
-5

. 

 

Figure 11 shows the graphic result. 

 

 

 
 

Figure 11. Angular size-redshift diagram according to K. Nilsson et al. [3]. 

 

For the purpose of comparison, the theoretical curve from the literature was drawn in (see Part I). This curve 

cannot explain the position of the measured values in the diagram. 

 

The determination of the linear size δ requires the knowledge of R0a. Because the absolute magnitudes are known 

for some SNIa (which differ slightly from one another), we can determine R0a using a magnitude-redshift 

diagram of these objects. We'll do that in the next chapter. 
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The methods taken into account in [4] for determining the maximum apparent magnitude and thus the associated 
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For our purposes, we calculate the mean values from these data and assign them to the relevant SNIa. 

 

0 

0,5 

1 

1,5 

2 

2,5 

3 

3,5 

4 

2,5 3 3,5 4 4,5 5 5,5 6 6,5 

lo
g

1
0
(L

A
S

) 
 [

 a
rc

s
e
c
 ]

 

log10( cz ) 

log10(LAS) as function of log10( cz ) 
with β0 = 0.7311668 and δ/R0a = 0.0000606 



14 

 

We calculate the absolute magnitudes Mi of the SNIai using (μTRGB - mCSP_B0) and (μCeph - mSC_B) and then always 

calculate an average value <Mi> if both value pairs are specified for one and the same SNIa. From all the 

absolute magnitudes obtained in this way, we finally form the mean value of the absolute magnitude <M> ≈ -

19.245, which enables us to determine the distance R0a with the aid of the parameter m0a, which results from the 

magnitude-redshift diagram of the SNIa. The simple equation for this is 
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The graphic result is shown in Figure 12. 

 

 

 
 

Figure 12. Magnitude-redshift diagram for 27 SNIa according to W. L. Freedman et al. [4]. 

 

The theoretical curve lies exactly on the linear trend line (dashed in red), the equation of which is given in the 

figure. 

Using m0a ≈ 22.922 and the mean value of the absolute brightness <M> = -19.245, the distance R0a ≈ 2,712.48 

Mpc we are ultimately looking for is the essential result of this data analysis. 

 

With the help of the value of R0a and using the equation (an approximation for small redshifts!) 
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the today's Hubble parameter H0 ≈ 65.638 km / (s ∙ Mpc) results. This value is slightly below the Planck value 

(2018) with H0, Planck ≈ 67.66 km / (s ∙ Mpc) [5].  

 

In Table 8 in the appendix, all the values we used for the magnitude-redshift diagram of the 27 SNIa are 

compiled. 

 

Starting from the equation 

 

log10( cz ) = 0,201 mB + 0,6564 
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equation (11) results for today's mass density: 

 

.
2

3
2

0

2

0

2

0

aRG

c 


   

 

(11) 

 

With the theoretical parameters β0 and R0a determined by us, we find ρ0 ≈ 4.843 x 10
-27

 g / cm
3
 for today's matter 

density in the universe. 
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(12) 

 

the constant mass of the Friedmann sphere results in MFK ≈ 1.206 x 10
56

 g. 

 

Because we generally do not consider the accuracy here, we simply specify the decimal places with up to 3 

places, whereby the mathematical analysis of the data usually delivers more decimal digits. 

 

With the known value R0a ≈ 2,712.48 Mpc we can calculate the mean linear size of the Nilsson objects [3] to be 

δ ≈ 0.164 Mpc, because we have found δ / R0a = 6.06 x 10
-5

 for them. 

Using R0a and β0, of course, all linear dimensions of these objects can be calculated using their angular size and 

redshift. 

 

 

3.5 Calculation of the further redshift distances for the SNIa and M87 

 
 

Because we were able to determine R0a, we can graphically display the further redshift distances in a form that is 

not normalized to R0a. The result is shown in Figure 13, using the values we found for β0 and R0a. 
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Figure 13. Redshift distance D (light path) and the further redshift distances Di (i = 0, e) and Rjk (j = 0, e; k = e, 

a) as a function of the redshift up to z = 11. 

 

For the representation we have chosen z ≤ 11, because currently no cosmic objects with larger measured 

redshifts are known. 

 

To interpret Figure 13: 

a) For D -> R0a the redshift z goes towards infinity. This means that no observer can observe objects for which is 

D ≥ R0a ≈ 2,712.48 Mpc. 

b) As already mentioned in Part I, the light path distance D = R0a - Ree is always greater than the distance 

differences D0 (today) and De (then). 

In particular, the light path D is not equal to the today’s distance D0 between the two astrophysical objects. 

c) The distances Rjk are physical distances from a coordinate origin and develop directly with the change in the 

scale parameter a(t) over time. For large redshifts, the scale parameter was correspondingly small and, as a 

result, the associated distances were also correspondingly small. 

d) The distance De at that time is interesting: It shows a maximum for a specific redshift and only approaches 

zero for very large redshifts. This is also the reason for the further approximation of D0 to D only for very large 

redshifts. 

 

Table 1 summarizes all calculated redshift distances of the 27 SNIa. 

 

SNIa Rea Ree R0e R0a De D0 D 

1980N 2,700.72 2,692.70 2,704.43 2,712.48 8.02 8.05 19.78 

1981B 2,703.02 2,696.56 2,706.00 2,712.48 6.46 6.48 15.92 

1981D 2,700.72 2,692.70 2,704.43 2,712.48 8.02 8.05 19.78 

1989B 2,706.26 2,702.02 2,708.23 2,712.48 4.25 4.26 10.47 

1990N 2,703.02 2,696.56 2,706.00 2,712.48 6.46 6.48 15.92 

1994D 2,703.02 2,696.56 2,706.00 2,712.48 6.46 6.48 15.92 

1994ae 2,698.51 2,689.00 2,702.92 2,712.48 9.52 9.57 23.49 
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1995al 2,695.53 2,683.98 2,700.87 2,712.48 11.54 11.61 28.50 

1998aq 2,700.16 2,691.76 2,704.05 2,712.48 8.40 8.44 20.72 

1998bu 2,706.26 2,702.02 2,708.23 2,712.48 4.25 4.26 10.47 

2001el 2,703.04 2,696.60 2,706.02 2,712.48 6.44 6.46 15.88 

2002fk 2,695.72 2,684.31 2,701.00 2,712.48 11.41 11.48 28.17 

2003du 2,690.74 2,675.97 2,697.59 2,712.48 14.78 14.90 36.51 

2005cf 2,692.33 2,678.63 2,698.68 2,712.48 13.70 13.81 33.86 

2006dd 2,700.72 2,692.70 2,704.43 2,712.48 8.019 8.054 19.78 

2007af 2,694.66 2,682.53 2,700.27 2,712.48 12.13 12.21 29.95 

2007on 2,700.72 2,692.70 2,704.43 2,712.48 8.02 8.05 19.78 

2007sr 2,697.17 2,686.74 2,702.00 2,712.48 10.43 10.49 25.74 

2009ig 2,689.75 2,674.30 2,696.90 2,712.48 15.45 15.58 38.18 

2011by 2,700.16 2,691.76 2,704.05 2,712.48 8.40 8.44 20.72 

2011fe 2,708.37 2,705.56 2,709.67 2,712.48 2.81 2.81 6.92 

2011iv 2,700.72 2,692.70 2,704.43 2,712.48 8.02 8.05 19.78 

2012cg 2,703.02 2,696.56 2,706.00 2,712.48 6.46 6.48 15.92 

2012fr 2,700.75 2,692.76 2,704.45 2,712.48 7.99 8.03 19.72 

2012ht 2,699.45 2,690.58 2,703.56 2,712.48 8.88 8.92 21.91 

2013dy 2,699.79 2,691.13 2,703.79 2,712.48 8.65 8.69 21.35 

2015F 2,701.03 2,693.23 2,704.64 2,712.48 7.81 7.84 19.26 

 

Table 1. Redshift distance D and the further redshift distances Di and Rjk of all 27 SNIa. 

 

To interpret the distances from Table 1: 

For a more detailed explanation, we take the SNIa 2006dd, for example, and use it to interpret the meaning of 

the distances in the table. 

The "light-travel time" always means the time interval between the emission of light (time te, 2006dd) by the SNIa 

2006dd and today (t0), i.e. Δt = t0 - te, 2006dd. This light-travel time is generally different for all observable cosmic 

objects, here especially for the individual SNIa we have considered. 

 

a) Today's (t0) distance between the selected SNIa and us as observers is D0 ≈ 8.054 Mpc. 

b) The then (te) distance between this SNIa and us as observers was De ≈ 8.019 Mpc. 

According to this, the distance between the two cosmic objects has increased by about 0.035 Mpc during the 

light-travel time Δt = t0 - te, 2006dd. 

c) The SNIa has been shifted expansively away from the origin of the coordinates by ΔRe = R0e - Ree ≈ 11.73 

Mpc during the light-travel time due to the time-dependent scale parameter a(t). 

d) The galaxy with us as observers has been expansively shifted away from the origin of the coordinates by ΔRa 

= R0a - Rea ≈ 17.765 Mpc during the t light-travel time travel due to a(t). 

The difference between the two displacement distances is of course the increase in the distance between the two 

cosmic objects noted above. 

e) The light path covered by the photons within the time Δt = t0 - te, 2006dd (redshift distance) is D ≈ 19.78 Mpc. It 

is unequal to the other mentioned distances Di and also greater than these. 

 

 

3.6 Evaluation of the data from the black hole in M87 

 
 

For the sake of simplicity, we summarize the data from the literature on the galaxy M87 with the black hole 

(BH) in it in the first line of Table 2 {s. [6] and [7]}. 

The second line lists the data specified here, which usually differ from those in the literature. 

 

 
D [ Mpc ] MB [ mag ] z mB [ mag ] ΘBH [ μas ] δ/2 = RS [ pc ] MBH [ g ] 

literature 16.9 / 16.8 -23.5 0.004283 9.6 42 

 

1.2928E+43 

we 19.45 -21.84 

   

0.227 2.3584E+45 

 

Table 2. Summary of data from galaxy M87 with the black hole in it. 
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The theory was adapted to the measured angle size ΘBH from the literature. Overall, a larger redshift distance D, 

a smaller absolute magnitude MB and a significantly larger mass MBH of the black hole follow. 

 

Table 3 lists the values found by means of our theory for all redshift distances Rjk, Di and for D. 

 

[ Mpc ] Rea Ree R0e R0a De D0 D 

we 2,700.92 2,693.03 2,704.56 2,712.48 7.89 7.92 19.45 

literature --- --- --- --- --- --- 16.8 

 

Table 3.  Redshift distances Di, D and Rjk from the black hole in M87. 

From these values, the expansion-related shifts in distance of the galaxy M87 and of the galaxy with us as 

observers can be calculated, which took place during the time of light travel. 

 

The theory from the literature does not know the first 5 listed distances. It can therefore not be calculated using 

this theory and also not determine in terms of value. 

 

The distance D differs because of the physical meaning: In our theory, D is the real physical light path, which is 

not the case in the literature. 

 

We briefly interpret the meaning of the distances in Table 3, whereby the light-travel time is again defined as 

above: 

a) Today's (t0) distance between the black hole (BH) or the galaxy M87 and us as observers is D0 ≈ 7.92 Mpc. 

b) The then (te) distance between the BH (or M87) and us as observers was De ≈ 7.89 Mpc. 

Accordingly, the distance between the two cosmic objects has increased by about 0.03 Mpc during the light-

travel time Δt = t0 - te, BH, M87. 

c) The BH (or M87) has been shifted expansively away from the origin of the coordinates by ΔRe = R0e - Ree ≈ 

11.53 Mpc during the light-travel time due to the time-dependent scale parameter a(t). 

d) The galaxy with us as observer was expansively shifted away from the origin of the coordinates by ΔRa = R0a 

- Rea ≈ 11.57 Mpc during the light-travel time due to a(t). 

e) The light path (redshift distance) covered by the photons during the time Δt = t0 - te, BH, M87 is D ≈ 19.45 Mpc. 

It is unequal to the other mentioned distances Di and also greater than these. 

 

Figure 14 shows the various calculated distances in a clear form. 
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Figure 14. Visualization of the distances Di, D and Rjk with regard to M87 and observer. 

 

The distances are not drawn to scale here. 

 

 

3.7 Maximum values known today: Galaxy UDFj-39546284 and Quasar J0313 

 
 

The galaxy UDFj-39546284 [8] currently holds the record among the galaxies with a redshift of z = 10.3, while 

the quasar J0313 [9] with z = 7.642 holds the analog record among the quasars. 

 

Table 4 shows the corresponding distances Rjk, Di and D together. 

 

object name z D D0 De Ree R0e Rea R0a object 

J0313 7.642 2,681.858 1,789.782 207.103 30.622 264.636 313.872 2,712.480 quasar 

UDFj-39546284 10.300 2,703.075 1,905.566 168.634 9.405 106.281 240.042 2,712.480 galaxy 

 

Table 4. All calculated redshift distances Rjk, Di and D for the two cosmic objects with the maximum redshifts. 

 

Table 5 summarizes the spatial shifts of the objects with respect to the coordinate origin due to the expansion 

during the associated light travel times. 

 

object name R0e - Ree R0a - Rea object 

J0313 234.014 2,398.608 quasar 

UDFj-39546284 96.876 2,472.438 galaxy 

 

Table 5. Expansion-related shifts in the distance of the quasar and the galaxy. 

 

We have already explained above how the tables are to be interpreted. 

 

Figure 15 shows the distances Di and D of the 3 special astrophysical objects analyzed here in a diagram, 

whereby we have entered all numerical values for the distances in Mpc. 
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Figure 15. All distances Di and D for M87, J0313 and UDFj-39546284. 

 

The middle curve shows the current distances D0 of the objects from us as observers. These distances are clearly 

smaller than the associated light paths D. 

 

 

4. Final considerations 
 

4.1 Hubble parameter 

 
 

At this point we explicitly point out that our equation of today's Hubble parameter - which also only applies to 

very small redshifts - differs significantly from the definition (!) used in the literature: 
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(13) 

 

For an arbitrary point in time t this is 
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(13a) 

 

The index a generally indicates the proximity to the observer (r = ra). 

 

In our theory, the numerator contains the constant physical speed of light c in a vacuum, while the current, i.e. 

variable, spatial expansion speed (da/dt) can be found at this point in the literature. 

 

In the more recent past - time tx - our distance from the coordinate origin Rxa < R0a was slightly smaller than the 

current one and the Hubble parameter was therefore correspondingly larger (also via the parameter βx). 

 

In the case of the Hubble parameter in literature, the - actually non-physical - spatial expansion speed da/dt can 

have been arbitrarily large and, in addition, the scale parameter a(t) arbitrarily small. 

Both types of Hubble parameters therefore show completely different behavior! 

 

In addition, our Hubble parameter is actually made up of physical quantities, while the Hubble parameter in the 

literature is only defined using the non-physical scale parameter a(t), even if the latter can be assigned a suitable 

unit of measurement - e.g. Mpc. This means that a(t) per se is not a physical distance. This meaning only applies 

to the real physical distance R (t) = a(t) r and the differences that can be calculated from it. 

 

The Hubble parameter is the proportionality factor between the Hubble speed V = cz and a distance, i.e. the 

actual Hubble law applies 
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For the redshift z it simply follows 
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(15) 

 

In the literature, the redshift z is therefore dependent on the ratio of the current speed of the observer (his galaxy) 

related to the origin of the coordinates to the speed of light in the product with the ratio of an object distance D lit 

and the current distance of the observer's galaxy from the origin of the coordinates. 
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Our redshift, on the other hand, is dependent on the ratio of the light path distance D and the current distance of 

the observer galaxy from the coordinate origin R0a and is besides proportional to the factor that contains the 

parameter β0. 

Using the parameter β0 
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we see in our case 
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i.e. an direct dependence on the Schwarzschild radius RS, or more precisely on the ratio R0a to RS. 

 

Overall, it is somewhat unclear in the literature what exactly corresponds to the distance Dlit. 

 

Figure 16 shows the difference between the non-approximated redshift distance D and the linear Hubble redshift 

distance that is approximated. 

 

 

 
 

Figure 16. Non-approximated redshift distance D compared to the linear Hubble redshift distance. 

 

It can be seen that the two curves already clearly separate from each other at z ≈ 0.04, and that Hubble's law 

results in distances that are significantly too large for larger redshifts, so that it is no longer applicable from 

around this value. 

 

Recall: 

Of course, it should be noted that the Hubble parameter H0a in our theory results from an approximation for 

small redshifts z. 
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4.2 Mean values 

 
 

If we replace in the equation (I, 38) 
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the parameter m0a using equation (I, 47)  
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From this equation it follows immediately 
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or, if we introduce the distance module μ = m - M 
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Note: 
While the redshift z and the apparent magnitude m are actual measured variables, the distance module μ is to be 

regarded as a parameter because the absolute magnitude M cannot be measured directly. 

 

The parameter β0 is known to us from the evaluation of the Quasar catalog by Véron-Cetty [2]. In [4] the 

following parameters characterizing all 27 SNIa are given: absolute magnitude MB, redshift z and maximum 

apparent magnitude mB. 

This allows us to calculate the associated R0a, i for all SNIai (i numbers the individual SNIa). Table 6 shows the 

result: 

 

zi R0a,i [ Mpc ] zi R0a,i [ Mpc ] zi R0a,i [ Mpc ] 

0.00435635 2,685.59 0.00229826 2,989.52 0.00845251 2,160.13 

0.00350242 2,620.06 0.00349242 3,130.03 0.00456316 2,811.99 

0.00435635 2,685.59 0.00621763 3,059.04 0.00151772 2,602.36 

0.00229826 2,868.15 0.00807892 2,850.38 0.00435635 2,636.57 

0.00350242 3,608.37 0.00748518 2,242.44 0.00350242 2,749.87 

0.00350242 2,699.68 0.00435635 2,685.59 0.00434300 2,543.10 

0.00517691 3,137.28 0.00661458 2,079.37 0.00482667 2,956.51 

0.00629102 2,821.83 0.00435635 2,636.57 0.00470325 2,488.62 
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0.00456316 3,069.12 0.00567726 2,088.18 0.00423960 2,902.49 

< R0a > = 2,733.65 

     

Table 6. Various distances R0a, i of the 27 SNIai calculated using the distance modules μi. 

 

It may seem strange that we get a different value for R0a, i for each SNIai, which is actually the current physical 

distance of the observer from the coordinate origin (r = 0). In particular, the R0a, i for almost equal redshifts zi 

should match! 

But if we form the mean value of the 27 calculated values R0a, i, we find <R0a> ≈ 2,733.65 Mpc. This value is 

very close to the value R0a ≈ 2,712.48 Mpc, which we found above. 

 

Overall, we must obvious conclude that the part of cosmology we are considering is essentially a science of 

averages. 

In principle, this could be seen clearly from the beginning, if we retrospectively look a little more closely about 

the evaluation we carried out, e.g. the Quasar catalog and the subsequent finding of R0a. 

 

Only the consideration of a large number of cosmic objects results in the correct values of astrophysically and 

cosmologically relevant quantities, respectively, which then are partly mean values only. 

 

 

5. Concluding remarks 

 
 

The light path D(z) of the photons through the expanding universe corresponds to a dynamic distance and is 

therefore an apparent one. This distance is not identical to the today’s distance D0(z) between the objects. 

For every conceivable observer, the cosmic objects are not spatially where they appear at first glance! 

In cosmology nothing is what it seems to be if we look at distances. 

 

Of course, all cosmologically relevant astrophysical objects have a today’s distance D0. However, this is not 

observable, but we can calculate it. 

Photons that are emitted at this distance from the observed galaxy cannot have reached us so far. 

 

A fundamental property of quantum mechanics is that it can only make probability statements about the 

microscopic objects it deals with. Here it is seen that both the measuring and the theorizing astrophysics and 

cosmology, respectively, strictly speaking, can only make statements about mean values of very distant and large 

objects. 

This may be one of the reasons why both theories - the theory for the extremely small and the theory for the 

extremely large - do not fit together; i.e. cannot be brought together. 

 

 

 

Note of thanks: 

I would like to thank my wife for the long-standing toleration and the corresponding endurance of my almost 

constant virtual absence. What would I be without her?! 

 

6. Appendix 
 
 

In this table appendix, we provide the essential data that we have used and some of the data that we have edited 

or generated for general purposes. 

 

< V >i < z >i σm,i < V >i < z >i σm,i < V >i < z >i σm,i 

17.12072194 0.269543711 1.25551062 19.5118161 1.28508799 0.79265674 19.7439932 1.86740102 0.8223715 

18.42994924 0.434725324 0.69496662 19.4960406 1.30997857 0.82617985 19.7431839 1.90379949 0.8745066 

18.77986464 0.514410603 0.68208433 19.5406994 1.33635871 0.79628275 19.73815 1.91629442 0.85608298 

18.92177101 0.571495206 0.70268585 19.5648675 1.36044896 0.84936023 19.7370051 1.94113536 0.83013271 

19.01993232 0.621120135 0.69571033 19.5526283 1.38646193 0.85285126 19.6390299 1.96661139 0.91303871 
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19.07454597 0.665043993 0.72385254 19.5667343 1.41249746 0.82510058 19.7247377 1.99498872 0.83486627 

19.10685279 0.710045685 0.76943643 19.5917766 1.43823632 0.84883691 19.7073435 2.02761873 0.85770271 

19.20756345 0.750830795 0.74776464 19.5835759 1.46348111 0.81435344 19.7225437 2.05895826 0.83582282 

19.23878173 0.788362662 0.82397969 19.6146701 1.4877084 0.77561435 19.7209927 2.09067964 0.87548608 

19.34673999 0.823077834 0.84208852 19.6560914 1.50872984 0.80798031 19.7166723 2.12286464 0.87190043 

19.35605189 0.857111675 0.83026192 19.6421545 1.53039989 0.82193001 19.7562211 2.15726452 0.83914146 

19.35379019 0.889902425 0.83562264 19.6730062 1.55031021 0.78502817 19.6955838 2.1915251 0.87311109 

19.35354202 0.925268472 0.83309066 19.669718 1.57141117 0.81671189 19.7102256 2.23148844 0.89180926 

19.36111675 0.958962211 0.80795962 19.691489 1.59370615 0.79783244 19.6203328 2.27565595 0.8814518 

19.36687535 0.99085674 0.81407063 19.6689622 1.61663057 0.79869119 19.6516638 2.32895262 0.90747466 

19.39208122 1.021072758 0.83447413 19.7130344 1.64024196 0.79496734 19.7034969 2.39616356 0.89952989 

19.41216018 1.049862944 0.81581048 19.7208742 1.66227637 0.79948606 19.6915454 2.47184715 0.93743249 

19.43737733 1.076128596 0.81828949 19.7568415 1.68460462 0.79535961 19.7660462 2.57089058 0.97654953 

19.47736041 1.10186802 0.79353868 19.6973942 1.70912747 0.83259167 19.7708009 2.71401918 0.95905229 

19.4307727 1.129618161 0.80360659 19.7453187 1.7323057 0.83488167 19.7781162 2.90122279 0.85728912 

19.45345178 1.157690919 0.80262312 19.7723632 1.75403384 0.80160723 19.9208291 3.05796277 0.78948482 

19.4499718 1.18469656 0.81310891 19.7568754 1.77625888 0.80788436 20.0279357 3.20401523 0.77347127 

19.50609701 1.208890017 0.7810332 19.7599436 1.79742358 0.80969081 20.2283362 3.40521263 0.78550396 

19.48940778 1.233098139 0.80906834 19.7587704 1.82113988 0.83363286 20.5549521 3.7254264 0.73269653 

19.47597857 1.259028765 0.79685819 19.7435195 1.84394303 0.82211045 21.3169261 4.34427862 1.27303027 

 

Table 7. Mean values from the Quasar data set used according to [2]. 

 

<z>i (with i = 1 ... 75) are the 75 mean values of the redshifts of the quasars in the redshift intervals formed. 

<V>i are the associated 75 mean values of the apparent visual magnitude of the quasars. 

σm, i are the standard deviations with respect to the apparent magnitudes (m-axis in the redshift-magnitude 

diagram). 

 

 

zi (end of interval) Ni zi (end of interval) Ni 

0.24669 622 3.45369 128,884 

0.49338 3,891 3.70038 130,205 

0.74008 12,827 3.94708 131,357 

0.98677 25,495 4.19377 132,019 

1.23346 41,724 4.44046 132,432 

1.48015 58,818 4.68715 132,669 

1.72685 78,456 4.93385 132,848 

1.97354 97,109 5.18054 132,902 

2.22023 110,358 5.42723 132,924 

2.46692 117,810 5.67392 132,932 

2.71362 121,463 5.92062 132,949 

2.96031 123,820 6.16731 132,972 

3.20700 126,835 6.41400 132,977 

 

Table 8. Numbers Ni summed up in the redshift intervals zi of the quasars according to [2]. 

 

 

SNIa μTRGB μCeph μ or <μ> mCSP_B0 mSC_B mB or <mB> Mi or <Mi> VNED z 

1980N 31.46 

 

31.46 12.08 

 

12.08 -19.38 1,306.00 0.004356347 

1981B 30.96 30.91 30.94 11.64 11.62 11.63 -19.31 1,050.00 0.003502423 

1981D 31.46 

 

31.46 11.99 

 

11.99 -19.47 1,306.00 0.004356347 

1989B 30.22 

 

30.22 11.16 

 

11.16 -19.06 689.00 0.002298257 

1990N 

 

31.53 31.53 12.62 12.42 12.52 -19.01 1,050.00 0.003502423 

1994D 31.00 

 

31.00 11.76 

 

11.76 -19.24 1,050.00 0.003502423 
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1994ae 32.27 32.07 32.17 12.94 12.92 12.93 -19.24 1,552.00 0.005176915 

1995al 32.22 32.50 32.36 13.02 12.97 13.00 -19.37 1,886.00 0.006291019 

1998aq 

 

31.74 31.74 12.46 12.24 12.35 -19.39 1,368.00 0.004563157 

1998bu 30.31 

 

30.31 11.01 

 

11.01 -19.30 689.00 0.002298257 

2001el 31.32 31.31 31.32 12.30 12.20 12.25 -19.07 1,047.00 0.003492416 

2002fk 32.50 32.52 32.51 13.33 13.20 13.27 -19.25 1,864.00 0.006217635 

2003du 

 

32.92 32.92 13.47 13.47 13.47 -19.45 2,422.00 0.008078922 

2005cf 

 

32.26 32.26 12.96 13.01 12.99 -19.28 2,244.00 0.007485178 

2006dd 31.46 

 

31.46 12.38 

 

12.38 -19.08 1,306.00 0.004356347 

2007af 31.82 31.79 31.81 12.72 12.70 12.71 -19.10 1,983.00 0.006614576 

2007on 31.42 

 

31.42 12.39 

 

12.39 -19.03 1,306.00 0.004356347 

2007sr 31.68 31.29 31.49 12.30 12.24 12.27 -19.22 1,702.00 0.005677261 

2009ig 

 

32.50 32.50 13.29 13.46 13.38 -19.13 2,534.00 0.008452514 

2011by 

 

31.59 31.59 12.63 12.49 12.56 -19.03 1,368.00 0.004563157 

2011fe 29.08 29.14 29.11 9.82 9.75 9.79 -19.33 455.00 0.001517717 

2011iv 31.42 

 

31.42 12.03 

 

12.03 -19.39 1,306.00 0.004356347 

2012cg 31.00 31.08 31.04 11.72 11.55 11.64 -19.41 1,050.00 0.003502423 

2012fr 31.36 31.31 31.34 12.09 11.92 12.01 -19.33 1,302.00 0.004343005 

2012ht 

 

31.91 31.91 12.66 12.70 12.68 -19.23 1,447.00 0.004826672 

2013dy 

 

31.50 31.50 12.23 12.31 12.27 -19.23 1,410.00 0.004703254 

2015F 

 

31.51 31.51 12.40 12.28 12.34 -19.17 1,271.00 0.0042396 

      
<M>= -19.24 

   

Table 9. Summary of the data which we used from the 27 SNIa according to [4]. 

 

SNIa values that can be traced back to a mean value are marked in green (bold). 

The individual meanings of the data can be found in the article mentioned. 

 

The data for the angular-size redshift diagram can be found in full in [3]. 
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