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Abstract

How to deal with conflict is a significant issue in Dempster-Shafer evidence the-

ory (DST). In the Dempster combination rule, conflicts will produce counter-

intuitive phenomena. Therefore, many effective conflict handling methods have

been presented. This paper proposes a new framework for reducing conflict

based on principal component analysis and relatively similar transformation (P-

CARST), which can better reduce the impact of conflict evidence on the results,

and has more reasonable results than existing methods. The main character-

istic feature of the BPAs is maintained while the conflict evidence is regarded

as a noise signal to be weakened. A numerical example is used to illustrate the

effectiveness of the proposed method. Results show that a higher belief degree

of the correct proposition is obtained comparing previous methods.
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1. Introduction

Dempster-Shafer theory (DST) is an effective model to deal with imprecise,

vague, partially uncertain information [1, 2]. The uncertain information from

multi-source sensors or experts, which is always described by basic probability

assignments (BPAs), can be aggregated by the combining rule, e.g. Dempster

combination rule to obtain more accurate results. Therefore, DST has been

widely used to address plenty of scientific applications, such as information

fusion [3, 4, 5], pattern recognition [6], risk analysis [7, 8], multiple attribution

decision making (MADM) [9, 10, 11].

However, there are some shortcomings in classical DST proposed by Demp-

ster and Shafer [1, 2]. The main disadvantage is that aggregating extreme

conflicting evidence may lead to counterintuitive results. The abnormal phe-

nomenon caused by highly conflict evidence in DST is firstly discussed by Prof.

Zadeh [12]. When there is a big conflict between the evidence participating in

the synthesis, the result of the fusion may be contrary to common sense. Var-

ious effective methods have been developed in the evidence theory to solve the

compatibility and difference of multi-source information. Briefly, there are two

strategies to deal with conflict management in DST according to the reason-

s discussed above: (1) one is to improve the combination rule. The focus of

this direction lies in how to reallocate the conflict. For instance, Yager thinks

that the conflict should be assigned to the unknown information, i.e. the full

set [13], Smets thinks that the conflict should be assigned to the empty set s-

ince the conflict may be caused by the object outside the FoD. Some extension

versions of DST are also developed, e.g. Dezert-Smarandache theory (DSmT)

[14], transferable belief model (TBM) [15], evidential reasoning rule (ER) [16],

generalized evidence theory (GET) [17]. (2) the other strategy is modifying the

measure of the body of evidence, there are now a variety of measures for the

compatibility and difference of evidence bodies, such as Murphy’s [18] average
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measure, Deng’s [19] similarity measure,Jiang’s [20] information entropy mea-

sure, Jiang’s [21] correlation coefficient measure, Xiao’s [22] divergence measure,

Mi and Kang’s [23] evidence gravity measurement, Shang and Deng’s [24] AE-

K-Means measurement, etc. Giving reasonable weight to the evidence to be

fused, which can make DST converge faster, thereby enhancing the reliability

of the fusion result.

In work-related to machine learning, Wen proposed a concept of relative

transformation for machine learning [25]. Relative Transformation (RT) is used

to simulate the relative perception of humans on the focused object. Relative

perception transforms the original data space into a relative space, which means

that the information of the focused object depends not only on its characteristics

but also on the characteristics of other objects. The relative transformation

makes the isolated point far away from the normal point to suppress noise.

However, the result of the relative transformation is not stable, which is not

conducive to improving the robustness of the fusion system.

Principal component analysis (PCA) uses coordinate rotation to maximize

the variance of the data in the principal direction, that is, the projection of

the entire data in this direction is the most scattered, other directions are often

related to noise, and abandoning them can reduce noise to a certain extent. PCA

is often used to process high-dimensional data, and has good applications in

dimensionality reduction and noise reduction [26, 27, 28, 29], image analysis [30,

31, 32, 33, 34], and text mining [35, 36, 37]. Its characteristics are: determine the

potential dimensionality of the data, remove unimportant data, and reconstruct

the original data set.

In this article, a new method of weakening conflict evidence combination,

called the principal component analysis of relative similarity transformation

(PCARST), is proposed. The proposed method analyzes the main features

from the perspective of relatively similar transformation, to achieve the effect of

noise reduction. Furthermore, numerical examples show that the new method
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can better distinguish between trust evidence and conflict evidence than do

other existing conflicting evidence weakens methods.

The main contributions of this article are as follows:

(1) This is the first study in evidence theory that combines relative similarity

conversion and principal component analysis, and measures conflict evidence

and trust evidence from a new perspective.

(2) PCARST is a universal framework that can weaken the impact of conflict

on the final result.

(3) Compared with the previous method, PCARST has a better ability to

weaken collisions.

The structure of this article is organized as follows. The second part reviews

basic knowledge and related work. The third part proposes a new method

to weaken the conflict evidence, and gives a numerical example. The fourth

part compares and discusses with previous methods. The fifth part introduces

an application example and discusses the rationality and effectiveness of this

method. Finally, the sixth part summarizes this article.

2. Preliminaries

In this section, some preliminaries are briefly introduced.

2.1. Dempster-Shafer (DS) theory of evidence

The Dempster-Shafer theory (DST) of evidence, which was first proposed by

Dempster [1] and then developed by Shafer [2], is regarded as a generalization

of the Bayesian theory of probability. Due to its ability to handle uncertainty

or imprecision embedded in the evidence, the DS theory has increasingly been

applied in recent years [38, 39, 40], and applied to multiple attribute decision

analysis problems [9, 41], etc.

The introduction of DS theory are briefly summarized as follows:
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(1) “Frame of discernment” [2]:

Let Θ = {H1,H2, . . . , HN} be a finite set of n elements, and P (Θ) denote

the power set composed of 2N elements of Θ.

P (Θ) = {Ø, {H1}, {H2}, . . . , {HN}, {H1 ∪H2}, {H1 ∪H3}, . . . ,Θ} (1)

(2) “Basic probability assignment (BPA)” [2]:

The BPA function or mass function is defined as a mapping of the power

set P (Θ) to a number between 0 and 1.

m : P (Θ) → [0, 1] (2)

and which satisfies the following conditions:

m(Ø) = 0,
∑

A⊆P (Θ)

m(A) = 1 (3)

The mass m(A) represents how strongly the evidence supports A.

(3) “Belief and plausibility functions” [2]:

The belief function Bel is defined as

Bel : P (Θ) → [0, 1] and Bel(A) =
∑
B⊆A

m(B) (4)

and the plausibility function Pl is defined as

Pl : P (Θ) → [0, 1] and P l(A) = 1−Bel(Ā) =
∑

B∩A̸=Ø

m(B) (5)

Bel(A) and Pl(A) are the lower limit and the upper limit, respectively,

of the belief level of hypothesis A which is illustrated in Figure 1. Both

imprecision and uncertainty can be represented by them.
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 The level of ignorance in A Bel(A)  Bel(A)

 Pl(A)

 Min belief  Max belief 

Figure 1: The relation between Bel and Pl.

(4) “Dempster’s combination rule”:[42]

Two bodies of evidence X and Y regarding Θ can be used to calculate the

belief level for some new hypothesis C as follows:

The measure of conflict K is given as

K =
∑

X∩Y=Ø,∀X,Y⊆Θ

mi(X)×mi′(Y ) (6)

and the mass function after combination is

m(C) = mi(X)⊕mi′(Y )

=


0,∑

X∩Y =C,∀X,Y ⊆Θ

mi(X)×mi′ (Y )

1−K ,

if X ∩ Y = Ø,

if X ∩ Y ̸= Ø.

(7)

2.2. Relative transformation (RT)

To simulate the effect of the relative perception, Wen propose a notion of

relative transformation (RT) [25]. Suppose an original n-dimensional space Xn

is defined, m samples in original space Xn is denoted by xi =
(
xi
1, x

i
2, . . . , x

i
n

)
,

i = 1, 2, ...,m. The relative space is defined as Y m, the samples in relative space

is denoted by yj =
(
yj1, y

j
2, . . . , y

j
m

)
, j = 1, 2, ...m. The relative transform (RT)

f is defined as

Y m = f (Xn) (8)
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The element yji of the sample yj in relative space can be represented as

yji = f
(
xi, xj

)
= d

(
xi, xj

)
(9)

where the function d is the distance function, e.g., Euclidean distance. Some

special properties of the RT have been given in Ref.[25], e.g., the ability to

handle noisy data, fault detect.

Especially, RT has a good performance to cope with the noisy data because

RT has the augmenting effect on the distance between the samples from the

original space to relative space, i.e., if the samples behave coherence, they will

be gathered more after RT, and if a sample is an outlier, it will be further away

from other samples.

2.3. Principal components analysis (PCA)

Principal component analysis (PCA) was introduced by Karl Pearson [43]

and developed by Harold Hotelling [44], which is regarded as an orthogonal linear

transformation that transforms the original data into a new coordinate system

to obtain the greatest variance. The data in the new system assigns the data

on the first coordinate (namely the first principal component) with the biggest

variance, and one the second coordinate with the second biggest variance, etc.

PCA has been used in many scopes, e.g., dimensionality reduction [45, 46], noise

signal detections [27].

Assume we have m samples x(i), i = 1, . . . ,m, each sample x(i) has n

features, the original data is described by matrix D = [di,j ]mn, i = 1, . . . ,m,

j = 1, . . . , n. The procedure of the PCA is briefly summarized as follows:

Step 1: Shift the sample mean of each column to zero using x (i) = x (i) −
1
m

m∑
j=1

x (j).

Step 2: Obtain the covariances matrix XTX.

Step 3: Obtain the eigenvalues λ = [λ1, . . . , λm] and the corresponding
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eigenvectors v = [v1, . . . , vm] of the covariances matrix XTX.

Step 4: Select the corresponding eigenvectors to assemble a new eigenvector

matrix En,k according to the k greatest eigenvalues.

Step 5: Project the data to the new coordinate system using DEn,k.

Inspired by RT and PCA, we proposed a new management plan. The fol-

lowing section will discuss the BPA conflict in DST.

2.4. Previous framework to modify the conflict evidence

In the complex information world, the sources of information are diverse.

The first screening and then fusion of different information can make the final

result more reliable. Murphy [18] proposed the idea of the average weight of

evidence, that is, to give each piece of evidence the same weight. Deng [19] used

the concept of evidence distance to determine the new weight with the sum

of the similarity between himself and all other evidence and assigned a lower

weight to conflicting evidence. The main methods are as follows:

Step 1: Construct a similarity measure matrix (SMM). Sij=1-d(mi,mj ) is

the similarity measure.

SMM =



1 S12 · · · S1n

S21 1 · · · S2n

...
...

. . .
...

Sij

...
...

. . .
...

Sn1 Sn2 · · · 1


Step 2: Calculate the support degree of each piece of evidence.

Sup(mi) =

n∑
j=1,j ̸=i

S(mi,mj) (10)
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Step 3: Calculate weights and normalize.

Crdi =
Sup(mi)
n∑

i=1

Sup(mi)
(11)

MAE(m) =
n∑

i=1

(Crdi ×mi) (12)

Since then, many researchers have assigned various weights based on this

framework. The most important one is to modify the matrix value directly.

For example, Jiang [21] uses correlation coefficient to replace similarity, Mi and

Kang [23] use evidence theory gravitational value instead of similarity.

3. Proposed method to weaken the conflict evidence using PCAoRST

In this section, a generalized method, called principal component analysis

based on relative similarity transformation, is proposed for conflict evidence.

Model multiple sources of evidence as a BPA model and transform it into

a relatively similar model. Currently, methods to measure BPA relationship-

s include similarity, correlation coefficient, RB divergence measure, evidence

gravity, etc. However, these standards can be divided into the relative Sim-

ilarity Model (RSM) and the Relative Gap Model (RGM). We transform the

RGM into an RSM for a definition for unified processing. Finally, we perform

PCA processing on the relative similarity model based on relative similarity

transformation.

Definition 1. Let the FoD be Θ, suppose we have t BPAs mi, i = 1, . . . , t. The

relative similarity transformation(RST) of BPAs is defined as follows:

Xi : mi
RST−−−→ Yi : RSMi = (RSMi1, · · · , RSMin) (13)
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Then the matrix after relative similarity transformation is defined as follows:

RSM =



1 RSM12 · · · RSM1n

RSM21 1 · · · RSM2n

...
...

. . .
...

RSMij

...
...

. . .
...

RSMn1 RSMn2 · · · 1


(14)

The RSMij represents the degree of the relative similarity between evidence

i and evidence j.

Definition 2. The definition of the relative similarity transformation of the

relative gap model is as follows:

RSM(i, j) =



1−RGM(i, j), 0 ≤ RGM(i, j) ≤ 1

t∑
i=1

(RGM(i, t)×RGM(j, t))√
t∑

i=1

RGM(i, t)×
√

t∑
j=1

RGM(j, t)

.RGM(i, j) ≥ 0
(15)

3.1. Procedure of the proposed method

In this method, we regard the degree of the relative similarity associated with

a certain evidence body as several characteristics of this evidence body. The

improved method maximizes the variance on the first principal component of the

data by rotating projection. The most critical features of low-dimensionality are

retained to show the data’s variability better. That is to say, all characteristics

in this direction are the most scattered, which means that more information

is retained, which is equivalent to a projection of the feature set on the angle

with the most information. After PCARST projection processing, the length

of the projection intercept is regarded as the new weight source. The complete

PCARST process is shown in Figure 2.
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Figure 2: The process of PCARST.

The steps of using PCARST to weaken conflict evidence are as follows:

Step 1 (Build a relatively similar model): The original BPA data set is

mapped by a relatively similar transformation, and construct a relatively similar

model RSM = [RSMi,j ]tt, i = 1, . . . , t, j = 1, . . . , t. If it is a relative gap model,

use the Eq.(15) to transform it into a relative similar model.

Step 2 (RSM’s data centering): Shift the sample mean of each column of the
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relative similarity matrix to zero using RSM (i) = RSM (i) − 1
t

t∑
j=1

x (j). The

centralized matrix of RSM is regarded as X.

Step 3 (Construct the covariance matrix): Obtain the covariances matrix

XTX. The elements of matrix XTX express the degree of difference between

the two characteristics.

Step 4 (Eigenvalue decomposition of covariance matrix): Obtain the eigen-

values λ = [λ1, . . . , λt] and the corresponding eigenvectors v = [v1, . . . , vt] of the

covariances matrix XTX.

Step 5 (Transform data into low-dimensional new space): Select the corre-

sponding eigenvectors vmax(λ) according to the greatest eigenvalues, and project

the data S to the new coordinate system using Svmax(λ).

One of the most critical issues is selecting several eigenvalues in this step.

If the dimension is too large, the noise reduction rate is not high, and the data

error will be enormous if the dimension is too small. In response to this problem,

a classic way is to consider the percentages left by different feature values. The

processed data represents the original data as much as possible. In this article,

our principle is λi∑
λi

≥ 90%. The information represented by the eigenvalues is

shown in Figure 3.
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Figure 3: Graphical eigenvalue information.

The depth of the color in the figure represents the amount of information

contained in the feature value of the corresponding location.

Step 6 (Get new weight): Obtain the PCA weight W of each BPA using

W =
|Svmax(λ)|∑ |Svmax(λ)| .

Step 7 (Evidence average): Average the BPAs to one BPA by the weight W ,

i.e. m̄ =
∑

miW (j).

Step 8 (Evidence fusion): Aggregate the average BPA m̄ t − 1 times using

the Dempster combination rule.

According to intuition, conflicting evidence should be given a smaller weight,

so that it has a smaller impact on the result in the process of evidence fusion.

This will be illustrated in the numerical examples in the next section.

3.2. Numerical Example

To illustrate the superiority of the proposed method, some numerical calcu-

lations will be constructed.
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Example 1. An example in Ref.[19] is used to describe the procedure of the

proposed method. The example includes five BPAs, which is shown as follows:

m1 : m1 (A) = 0.5,m1 (B) = 0.2,m1 (C) = 0.3

m2 : m2 (A) = 0,m2 (B) = 0.9,m2 (C) = 0.1

m3 : m3 (A) = 0.55,m3 (B) = 0.1,m3 (A,C) = 0.35

m4 : m4 (A) = 0.55,m4 (B) = 0.1,m4 (A,C) = 0.35

m5 : m5 (A) = 0.6,m5 (B) = 0.1,m5 (A,C) = 0.3

Step 1, we can calculate the correlation coefficients in Ref.[21] to obtain the

similarity matrix RSM, which is shown as follows

RSM =



1 0.3762 0.8908 0.8908 0.8922

0.3762 1 0.1499 0.1499 0.1449

0.8908 0.1499 1 1 0.9981

0.8908 0.1499 1 1 0.9981

0.8922 0.1449 0.9981 0.9981 1


Step 2, we shift the sample mean of each column to zero. The centralized

matrix of RSM using RSM (i) = RSM (i)− 1
t

t∑
j=1

x (j) is regarded as X.

X =



0.1900 0.0120 0.0831 0.0831 0.0856

−0.4338 0.6358 −0.6579 −0.6579 −0.6617

0.0808 −0.2143 0.1922 0.1922 0.1914

0.0808 −0.2143 0.1922 0.1922 0.1914

0.0822 −0.2192 0.1903 0.1903 0.1933


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Step 3, we obtain the covariances matrix XTX, which is denoted by,

XTX =



0.2441 −0.3262 0.3479 0.3479 0.3501

−0.3262 0.5443 −0.5414 −0.5414 −0.5441

0.3479 −0.5414 0.5499 0.5499 0.5528

0.3479 −0.5414 0.5499 0.5499 0.5528

0.3501 −0.5441 0.5528 0.5528 0.5559


Step 4, we obtain the eigenvalues λ = [0, 0, 0, 0.0352, 2.4088] and the corre-

sponding eigenvectors v = [v1, . . . , vt] of the covariances matrix XTX, which

are shown as follows:

v =



−0.0063 −0.2720 0.3844 0.8288 0.3022

0.0088 0.3799 −0.5669 0.5593 −0.4705

0.7033 −0.1733 −0.4971 0.0048 0.4778

−0.7106 −0.1406 −0.4971 0.0048 0.4778

0.0198 0.8555 0.1916 0.0169 0.4804


Step 5, we select the corresponding eigenvectors vmax(λ) according to the

greatest eigenvalues, and project the data S to the new coordinate system using

Svmax(λ).

Svmax(λ) =



1.4050

−0.1440

1.6337

1.6337

1.6355


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Step 6, we obtain the weight W of each BPA using W =
|Svmax(λ)|∑ |Svmax(λ)|

W =

∣∣Svmax(λ)

∣∣∑ ∣∣Svmax(λ)

∣∣ =



0.2178

0.0223

0.2532

0.2532

0.2535


In this article, we take the feature direction corresponding to the maximum

feature value, because the maximum feature transformation can retain the in-

ternal information of the data to the greatest extent, and it is expected to have

the largest dispersion in the projected dimension.

4. Comparing with previous methods

This section uses the example in Section 4 and compares the improved

method with the existing conflict measurement methods. The results are as

follows:
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Table 1: Fusion results produced by various methods

Method m1,m2 m1,m2,m3 m1,m2,m3,m4 m1,m2,m3,m4,m5

Dempster [42] m(A) = 0 m(A) = 0 m(A) = 0 m(A) = 0

m(B) = 0.8571 m(B) = 0.6316 m(B) = 0.3288 m(B) = 0.1228

m(C) = 0.1429 m(C) = 0.3684 m(C) = 0.6712 m(C) = 0.8772

Murphy [18] m(A) = 0.1543 m(A) = 0.3500 m(A) = 0.6027 m(A) = 0.7958

m(B) = 0.7469 m(B) = 0.5224 m(B) = 0.2627 m(B) = 0.0932

m(C) = 0.0988 m(C) = 0.1276 m(C) = 0.1346 m(C) = 0.1110

Deng et al. [19] m(A) = 0.1543 m(A) = 0.4861 m(A) = 0.7773 m(A) = 0.8909

m(B) = 0.7469 m(B) = 0.3481 m(B) = 0.0628 m(B) = 0.0086

m(C) = 0.0988 m(C) = 0.1657 m(C) = 0.1600 m(C) = 0.1005

Proposed m(A) = 0.1543 m(A) = 0.7923 m(A) = 0.9627 m(A) = 0.9896

m(B) = 0.7469 m(B) = 0.1130 m(B) = 0.0030 m(B) = 0.0001

m(C) = 0.0988 m(C) = 0.0157 m(C) = 0.0239 m(C) = 0.0066

m(A,C) = 0 m(A,C) = 0.0138 m(A,C) = 0.0105 m(A,C) = 0.0036

Jiang [21] m(A) = 0.1543 m(A) = 0.7839 m(A) = 0.9528 m(A) = 0.9873

m(B) = 0.7469 m(B) = 0.1131 m(B) = 0.0078 m(B) = 0.0006

m(C) = 0.0988 m(C) = 0.0929 m(C) = 0.0313 m(C) = 0.0090

m(A,C) = 0 m(A,C) = 0.0101 m(A,C) = 0.0080 m(A,C) = 0.0030

Proposed m(A) = 0.1543 m(A) = 0.8286 m(A) = 0.9615 m(A) = 0.9891

m(B) = 0.7469 m(B) = 0.0762 m(B) = 0.0031 m(B) = 0.0002

m(C) = 0.0988 m(C) = 0.0793 m(C) = 0.0259 m(C) = 0.0075

m(A,C) = 0 m(A,C) = 0.0159 m(A,C) = 0.0095 m(A,C) = 0.0033

Xiao [22] m(A) = 0.1543 m(A) = 0.6722 m(A) = 0.9413 m(A) = 0.9871

m(B) = 0.7469 m(B) = 0.2271 m(B) = 0.0177 m(B) = 0.0011

m(C) = 0.0988 m(C) = 0.0929 m(C) = 0.0327 m(C) = 0.0083

m(A,C) = 0 m(A,C) = 0.0078 m(A,C) = 0.0083 m(A,C) = 0.0035

Proposed m(A) = 0.1543 m(A) = 0.8235 m(A) = 0.9610 m(A) = 0.9897

m(B) = 0.7469 m(B) = 0.0810 m(B) = 0.0048 m(B) = 0.0003

m(C) = 0.0988 m(C) = 0.0799 m(C) = 0.0226 m(C) = 0.0058

m(A,C) = 0 m(A,C) = 0.0156 m(A,C) = 0.0115 m(A,C) = 0.0042

Mi and Kang [23] m(A) = 0.1543 m(A) = 0.8648 m(A) = 0.8648 m(A) = 0.9591

m(B) = 0.7469 m(B) = 0.0382 m(B) = 0.0382 m(B) = 0.0238

m(C) = 0.0988 m(C) = 0.0833 m(C) = 0.0833 m(C) = 0.0145

m(A,C) = 0 m(A,C) = 0.0137 m(A,C) = 0.0137 m(A,C) = 0.0026

Proposed m(A) = 0.1543 m(A) = 0.8991 m(A) = 0.8991 m(A) = 0.9513

m(B) = 0.7469 m(B) = 0.0093 m(B) = 0.0093 m(B) = 0.0035

m(C) = 0.0988 m(C) = 0.0774 m(C) = 0.0774 m(C) = 0.0412

m(A,C) = 0 m(A,C) = 0.0142 m(A,C) = 0.0142 m(A,C) = 0.0039

1 In Mi and Kang’s method, the value of the adjustable parameter δ is set to 1/4.
2 In addition, since the belief universal gravitation characterizes the magnitude of the mea-

sure between different bodies of evidence, for the two identical bodies of evidence, m3 and

m4, their values before and after fusion are the same.17
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Figure 7: The weight of the non-target
set (noise) is compared between Xiao

and the proposed method
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Figure 8: The weight of the non-target
set (noise) is compared between

MiKang and the proposed method

In Table 1, non-target set B (noise) is supported by a piece of evidence.

From Figure 5 to Figure 8, the PCARST method we proposed has the best

effect in reducing the weight of non-target set B (noise), which is better than

other methods. Therefore, the PCARST method has certain advantages.
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5. Application

5.1. Fault Diagnosis

The practical application of fault diagnosis illustrates the feasibility and ef-

fectiveness of PCARST. Generally, an autonomous vehicle needs to use multiple

sensors at the same time, such as radar sensors and sonar that can detect obsta-

cles by implementing obstacles. Multi-sensor fusion methods are often used to

control an autonomous car more safely and reliably. However, no matter which

type of sensor has its advantages and disadvantages, according to the record,

three possible faults make the car unable to make a judgment: low oil pressure,

ABS failure, and solenoid valve stuck, which are recorded as F1, F2, and F3.

Five sensors, denoted as S1, S2, S3, S4, S5, measure them and model the results

into BPA. The corresponding models are shown in Table 2. It can be seen from

the table that m5 has given the wrong information due to sensor failure. The

above methods can identify and weaken fault information, but the PCARST

way we proposed has the highest ability to weaken conflicts and is superior to

other methods. When conflicting evidence occurs, its weight decreases and the

method suffers the most negligible impact. In practical applications, example of

fault diagnosis [47] is used to illustrate the superiority of the PCARST method.

Table 2: BPAs representation of sensor failure.

m(F1) m(F2) m(F3) m(Θ)

m1 0.65 0.15 0 0.2

m2 0.7 0.1 0 0.2

m3 0.7 0 0 0.3

m4 0.75 0.05 0 0.2

m5 0 0.2 0.8 0
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Table 3: The fusion results.

F1 F2 F3 Θ

Deng et al. 0.9918 0.0051 0.0022 0.0009

Proposed 0.9950 0.0039 0.0002 0.0009

Jiang 0.9937 0.0045 0.0009 0.0009

Proposed 0.9942 0.0043 0.0006 0.0009

Xiao 0.9908 0.0055 0.0028 0.0009

Proposed 0.9951 0.0039 0.0001 0.0009

Mi and Kang 0.9950 0.0042 0.00002 0.0008

Proposed 0.9956 0.0036 0 0.0008

The results in Table 3 show that when conflict evidence m5 appears, we can

see that the improved method recognizes the fault better and reduces the weight

of the fault. This application shows that our method has certain advantages.

6. Conclusion

Reducing the impact of conflicting evidence is a long-term problem that

needs to be resolved in evidence fusion. Based on PCA and relative transfor-

mation, we propose a new method of weakening conflict evidence, a principal

component analysis method of relatively similar transformation, thereby effec-

tively reducing the pollution of evidence noise to the final result. Its charac-

teristics are: (1) PCARST maps the original evidence to a relatively similar

model. This relatively similar modification process is the preprocessing of P-

CA. (2) PCARST uses the principle of maximum variance to find the long axis

of the direction with the largest difference in each position of a group of sample

points and uses a small amount of data to represent the original data as much

as possible to achieve reduction the purpose of noise. This article illustrates the
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method and application of the proposed scheme with numerical examples. In

the future, weakening the conflict of evidence is still a problem that needs to be

solved continuously.
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