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Abstract

Deep-learning models estimate values using backpropagation. The activation function
within hidden layers is a critical component to minimizing loss in deep neural-networks. Rec-
tified Linear (ReLU) has been the dominant activation function for the past decade. Swish
and Mish are newer activation functions that have shown to yield better results than ReLU
given specific circumstances. Phish is a novel activation function proposed here. It is a com-
posite function defined as f(x) = xTanH(GELU(x)), where no discontinuities are apparent in
the differentiated graph on the domain observed. Four generalized networks were constructed
using Phish, Swish, Sigmoid, and TanH. SoftMax was the output function. Using images from
MNIST and CIFAR-10 databanks, these networks were trained to minimize sparse categorical
crossentropy. A large scale cross-validation was simulated using stochastic Markov chains to
account for the law of large numbers for the probability values. Statistical tests support the
research hypothesis stating Phish could outperform other activation functions in classifica-
tion. Future experiments would involve testing Phish in unsupervised learning algorithms and
comparing it to more activation functions.

1 Introduction
Deep-learning algorithms are capable of solving complex problems. They use a series of synaptic

weights and perceptrons to mimic the human thinking process. The success of training deep neural-
networks (DNN) relies much on the activation function used in them. In each perceptron, two
phases occur: a summation and transformation. In the summation, the inputs are multiplied with
synaptic weights, which are initially generated at random, with a Hadamard product [12]. The
transformation step consists of the summated vector being parsed through an activation function in
addition to an optional bias [11]. Early architectures used TanH and Sigmoid extensively. However,
the more complex DNNs required better activation functions.

The most commonly used activation function in DNNs is Rectified Linear (ReLU) [2]. It is a
less probability inspired piecewise function with no discontinuities. It has a jump discontinuity
when differentiated due to the sharp turn at the origin. Experiments demonstrated that ReLU
increased the performance in DNNs, outperforming TanH [1] and Sigmoid [8]. However, ReLU has
some faults. One of the biggest ones is the dying ReLU issue, but luckily leaky ReLU partially
solved this issue via augmenting the negative domain of the function [3].

Swish and Mish are newer activation functions that have recently gained traction [9]. They
are both composite and comprise at least one existing activation function. Unlike ReLU, these
functions are non-linear, and their derivatives are void of discontinuities. They both perpetually
increase and pass through the origin (0, 0). The new activation function created here would follow
the parameters of Swish and Mish [6].

A new activation function was fabricated here. It is comedically named Phish. Phish is defined
as f(x) = xTanH(GELU(x)). Phish is monotonic, unlike other activation functions where the slope
is completely positive. On the interval from [0, ∞], it is completely positive and passes through
the origin (0, 0). Phish estimates update gradients for backpropagating DNN algorithms.

An experimental simulation to compare Phish to existing functions will be conducted. The
levels of independent variable will be Phish, Swish, Sigmoid, and TanH. There was no control.
The dependent variable was the minimization of sparse categorical crossentropy (SCC), which is
one of the most common loss functions in classification. Several control variables will be held, such
as the DNN layers, optimizer, output function, and learning rate.
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2 Phish Activation Function

2.1 Backpropagation and Update Gradients
Activation functions are derived with the purpose of generating non-linearity to the inherently

linear data transformed from the input layer of a neural-network. Backpropagation is the process
where each synaptic weight in deep-learning algorithms are iteratevely finetuned to complete a
task using loss calculated between the expected and actual outcomes. Suppose there is a multilayer
perceptron with with weights, and biases adjusted through an arbitrary activation function A(x).
In this multilayer perceptron, as with most, the weights are defined the simple matrix
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to represent the baseline values, which are usually randomly generated within a [-1, 1] interval.
The less complex bias vectors can be represented by a one dimensional version of the matrix seen
above. In addition, the weighted sum (aka. the values parsed through the activation function) is

z =

n∑
i=1

xiwi + b (2)

The weighted input can be obtained and parsed through A(x) for the intermediate column vector
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where there exists elements until the nth degree. To calculate the update gradient, the rate of
change in loss L must be determined. Theoretically, though impractical, this can be determined
via calculating the slope between two datapoints with an infinitesimal distance. The standard
error can be approximated via finding the instantaneous rate of change in loss (eg. determining a
partial derivative in respect to z). When
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the calculated error can be propagated to every weight in the neural-network. Using the weighted
input, loss derivative, and activation function derivative, the update gradient can be calculated
using basic algebra such that
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A[l−1]′(z[l−1]) (5)

across many iterations. Due to space constraints, optimization and further analysis of partial
derivatives has been omitted. As can be seen, the activation function and its derivative are critical
in the training of deep neural-networks (DNNs) in supervised classification, or in unsupervised clas-
sification (eg. discriminators in generative adversarial networks). Substituting various activation
functions can vastly alter the minimization of loss.
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2.2 Derivation and Implementation
Much like Mish, Phish is a composite function. It comprises two existing activation functions,

those being TanH and GELU. The inner function GELU 1, is defined as
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x
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(6)

to approximate ReLU

ReLU(x) = x+ = max(0, x) =

{
x if x > 0

0 if x < 0
(7)

such that no discontinuities occur on the differentiated graph. ReLU is perhaps the most used
activation function in DNNs. It has shown to be effective in large-scale classification problems,
often used in image classification.

The outer activation function TanH2, is is defined by

TanH(x) =
ex − e−x

e−x + ex
(8)

Since Phish is expressed in terms of other equations and variables, the true form of the equation
can be determined. Therefore, through substituting variables and rearranging the terms, the Phish
equation in the most pure form can be defined as
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Using the backpropagation equation derived in the introduction, the activation function A(x) can
be substituted with any activation function to simulate the calculation of update gradients. Such
gradients for Phish require its derivative. Update gradient calculation can be formulated via
substituting the Phish derivative.
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Based on the assumption that
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where z is any complex number, the derivative can be calculated by substituting integrals, rear-
ranging the terms, and applying the chain rule onto all sides.
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3 Evaluation
A simulation was conducted to compare activation functions. The levels of independent variable

were Phish, Swish, Sigmoid, and TanH. Phish was the control. The minimization of loss was studied
using DNNs.

1GELU is an approximation of the ReLU activation function defined as The main implementation of such a
function is to avoid the large jump discontinuity apparent in ReLU, which occurs at the origin (0, 0) on the
Cartesian coordinate system. The non-linear function seems to outperform ReLU and ELU in certain tasks in
language processing and classification.

2

TanH is the analogue hyperbolic tangent function often used throughout trigonometry. Similar in concept to
Sigmoid, it has two horizontal asymptotes. However, these exist at y=±1, which indicates that the domain is half
negative. Therefore, TanH+existsonlyrightwardoftheorigin(0, 0), whichitcrosses.
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One Intel i7 computer was obtained. Python3 was installed onto the machine with machine-
learning and linear algebra dependencies. For the procedure, 170,000 training and 50,000 testing
images were gathered. The images were preprocessing via normalization and cropping. The pre-
processing was limited to generalize the training process.

A generic neural-network was fabricated for testing. It comprised an input layer, four hidden
layers, and an output layer. The output layer was always used SoftMax. The models were compiled
with the Adam optimizer. Binary classification crossentropy loss

J(w) =
−1

n

n∑
j=1

[yj log(ŷj) + (1− yj) log(1− ŷj)] (13)

was substituted with SCC.

∴ J(w) = −
n∑

j=1

yj log(ŷj) (14)

where w represents the arbitrary parameters of a given network with the y values representing the
predicted and true labels. This was done so the network would assume correct classifications can
only be a single prediction.

SoftMax was used for the output layer. It is a deep-learning probability distribution function
used in multi-class identification problems. It is

σ (−→z )i =
ezi∑K
j=1 e

zj
(15)

where the input and output functions of the network calculate for the input vector. During testing,
K=10 was constant because each of the databanks used had ten possible labels.

The levels of independent variable were tested. This was done twenty-five separate times for
each activation function. The minimization of SCC was recorded.

This project was conducted on a laptop without graphics processing units or cloud servers.
Therefore, a large scale cross-validation was not reasonable. A memoryless stochastic model was
more favorable for such a purpose. Thus a Markov chain was developed to simulate the process,
which can be seen in the appendix.
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Graph 1: The Effect of Activation Functions on Minimizing Sparse Categorical Crossentropy
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The effect of activation functions on minimizing the loss in classification for DNNs was tested.
Various datasets were used to simulate classification backpropagation. Phish (red), Swish (green),
Sigmoid (blue), and TanH (orange) can be seen in graph 1.

This particular graph shows the trend when training on MNIST fashion. The graph was the
average loss across epochs calculated from twenty-five trials. Across the various epochs, it can be
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seen that Phish and Swish had a similar minimization of SCC. TanH and Sigmoid had significantly
lower reduction of loss compared to Swish and Phish. From the data collected it could be inferred
that

Similar patterns were apparent when the networks trained on MNIST numbers and CIFAR-10
image databanks. Phish consistently outperformed TanH and Sigmoid. It was either on-par or
slightly superior to Swish. The results of the experiment show that Phish is a promising alternative
activation function.

Table 1: Statistical Analysis at 0.05 Significance Level under 48 Degrees of Freedom

T-Test Calculated Value Table Value Result
Phish vs. TanH 56.331 2.011 Significant
Phish vs. Sigmoid 35.088 2.011 Significant
Phish vs. Swish 1.996 2.011 Not Significant
Swish vs. TanH 55.846 2.011 Significant
Swish vs. Sigmoid 33.785 2.011 Significant
Sigmoid vs. TanH 17.208 2.011 Significant

This data table shows the compared levels of independent variable. Six independent parametric
t-tests 3 were calculated to determine the significance of the data collected. The value of significance
was at 0.05, and was granted 48 degrees of freedom. A table value of 2.011 was used. A null
hypothesis was generated. It stated that there would be no difference between any of the tested
activation functions when given the task of minimizing sparse categorical crossentropy.

Five of the six comparisons were significant. The Phish vs. Swish test was not significant,
which showed that through the testing, both activation functions delivered similar results by the
tenth epoch. This logic can be seen in the similarities in calculated values between Phish, Swish,
and the other functions. Phish vs. TanH delivered the greatest difference in performance, with
Phish on average having the lowest loss and TanH having the highest. The variance of the Swish
and Sigmoid datasets were also noticeably higher than the other two functions.

4 Discussion

4.1 Procedural Flaws
There were many sources for error in the experimentation done to determine the properties of

Phish. The first was that Phish was only compared to three other activation functions. Another
flaw was that only one architecture was tested for classification, where many could have been tested.
Other combinations of optimizers, metrics, losses, and layers may result in different findings.

In addition, a true simulation of the loss was never conducted. Only stochastic replications
of limited simulations were analyzed. This was due to the limitations of devices in this research,
as only a single laptop was available. While Markov chains can simulate probability, they cannot
predict the change in probability.

To remedy these errors in the future, various types of classification algorithms could be tested
using the activation functions. More functions could be compared as well. Lastly, better computers
and cloud servers could be used to conduct the advanced simulations required to test Phish, that
would otherwise impractical on a laptop.

4.2 Future Applications
Future applications of the activation function proposed in this research may vary. The first

application would be further testing on types of datasets. MNIST and CIFAR-10 were used in
this research. MNIST is a relatively simple dataset that most deep-learning models could solve
[13]. CIFAR-10 consists of RGB images, which requires better models to solve [7]. Still, testing
Phish on MNIST and CIFAR-10 only would limit knowledge on its properties. ImageNet is a

3T-tests were a favorable method to testing for significance in this dataset. Traditionally, a one way ANOVA
test could imply significance. However, that is suitable for identifying differences and patterns holistically. This
experiment sought to determine whether Phish is more or less effective at loss minimization. Therefore, comparing
pairs of activation functions using independent t-tests was more ideal.
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public databank consisting of RGB images with an average resolution of 469×387 pixels [10].
It is organized according to the WordNet hierarchy, and is often used when to test pretrained
convolutional neural-networks.

Specialized layers in the networks used for testing were omitted throughout evaluation. Further
testing could determine the effect of Phish on such models. Specific examples would include
recurrent neural-networks. These networks were engineered to solve the vanishing gradient problem
[14]. Gated recovery unit and long-short term memory algorithms are extensions of recurrent
neural-networks [5]. When testing time series data, Phish could be implemented in these algorithms
via substituting Sigmoid layers.

Another example of a future study would be utilizing Phish in generative adversarial networks.
These algorithms comprise of two models, often multilayer perceptrons, engaging in a minimax
game. The first model is the generator, which captures the distribution of a given dataset. The
second one is the discriminator, which differentiates samples from the dataset and ones generated
by the generator. Ideally, the loss of the discriminator would be maximized with the accuracy
yielding 1

2 everywhere. Testing Phish in a model with the purpose of maximizing loss would be an
interesting future study [4].

5 Conclusion
Phish is a novel non-motonic activation function. It delivered higher performance in MNIST and

CIFAR-10 image classification than Sigmoid and and TanH. It rivals Swish in loss minimization.
The function perpetually increases without an upper bound. Its derivative is always positive. Phish
evaluates calculations that increase the speed of loss minimization. Unlike ReLU, Phish is fully
differentiable. Future studies could involve training generative adversarial networks with Phish
and examining the performance. This project was conducted under adult approval with antivirus
software.
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6 Appendix

6.1 Markov Chains
A Markov chain is a stochastic graph model based in probability. They are favorable for

simulating large networks of events because they are memoryless. Each chain yeilds a stochastic
transition matrix (STM).

The Markov model on Ω results in the stochastic process (X0, X1, X2, ... Xt) in which the
transition state between x and y complies with the properties

Xt ∈ Ω,∀t (16)

and

P[Xt+1 = y|Xt = x,Xt−1 = xt−1, ...X0 = x0] = P[Xt+1 = y|Xt = x] =: P (x, y) (17)

In addition, the STM exists with non-negativity

∀x, y ∈ Ω, P (x, y) ≥ 0 (18)

and stochasticity ∑
y∈Ω

= P (x, y) = 1,∀x ∈ Ω (19)

where each row converges to 1. This Markov model is continuous, with no termination node with
100% probability of returning to itself on the graph, and a 0% chance of transferring to any other
stage. In addition, there is technically an appropriate start node in this graph. However, since this
Markov model will be ran for extended periods of time, the law of large numbers states that the
probability of the event occurring will be affected minimally from the first event, especially since
there are only two possible stages in this model. Therefore, the chance of starting at either stage
was 50% always.

Figure 1: Markov Chain Model used for Simulating Cross-Validations for Deep Neural-Networks
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The Markov chain utilized here is a two stage graph with four global locations and two local
ones for each stage. An minimalistic representation of the adjacency matrix could be fabricated
accordingly with 4×4 dimensions. The probability values were guaranteed using the STM

ωij = Ω =

[
P1(T ) P2(T )
P2(F ) P1(F )

]
(20)

The Markov simulation was conducted where the P1(T ), P1(F ), P2(T ), and P2(F ) were retrieved
from a cross-validation. For each activation function, a DNN was trained across ten epochs. The
prediction ratios were implanted into four graphs. Each graph was simulated for 10,000 iterations
twenty-five times to follow the ideal experimental design.

6.2 Deep Neural-Networks
A generalized model building framework is ideal when testing narrow components of deep-

learning models such as activation functions. This is to minimize the lurking/confounding variables
that may be introduced via convolutional, pooling, and recurrent layers. Forget and memory gates
were also omitted from the model for the same reasons.

The testing model comprised an initial flattening layer, six hidden layers, and one output layer.
The flattening layer manipulated the image data into a one-dimensional array for the next layer.
The six hidden layers used one of the four activation functions tested and contained between 32-128
layers each. The output layer was always ten neurons, because MNIST, and CIFAR-10 both have
ten classes. It used SoftMax instead of a Sigmoid, as probability of classification was distributed
between more than two classes. The models trained using sparse categorical crossentropy loss and
the Adam optimizer, which combines aspects of the previously engineered AdaGrad and RMSProp
methods.
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