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Abstract. In this paper we introduce a multivariate version of circles of parti-

tion introduced and studied in [1]. As an application we prove a weaker general
version of the Erdős-Turán additive base conjecture. The actual Erdős-Turán

additive base conjecture follows from this general version as a consequence.

1. Introduction

In [1] we have developed a method which we feel might be a valuable resource
and a recipe for studying problems concerning partition of numbers in specified
subsets of N. The method of circles of partition is very vast and rich and has yet
unexplored applications. This method is easy to use given its combinatorial affinity.
It is very elementary in nature and has parallels with configurations of points on
the geometric circle.

Let us suppose that for any n ∈ N we can write n = u+v where u, v ∈M ⊂ N then
the new method associate each of this summands to points on the circle generated
in a certain manner by n > 2 and a line joining any such associated points on the
circle. This geometric correspondence turns out to useful in our development, as
the results obtained in this setting are then transformed back to results concerning
the partition of integers.

In this paper we study a multivariate version of the method, where we allow our
base regulators to be the direct product

⊗
of subsets of the natural numbers N.

With the goal of studying a general version of the Erdős-Turán additive base con-
jecture, we introduce and study the notion of the axial potential of the multivariate
circle of partition.
Notations. We denote by Nn = {m ∈ N | m ≤ n} the sequence of the first n
natural numbers

2. Multivariate circles of partition

In this section we introduce and study the notion of multivariate circles of
partitions. We launch the following language.
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Definition 2.1. Let A ⊆ N. Then we denote with

C(n,
h⊗
i=1

Ai) =

{
[x1], [x2], . . . , [xh]| xi ∈ Ai, n =

h∑
i=1

xi

}
a multivariate circle of partition generated by n ∈ N with base regulators⊗h

i=1 Ai. We call members of the multivariate CoP multivariate points.

Definition 2.2. We denote the line L[x1],[x2],...,[xh] joining the points [x1], [x2], . . . , [xh]

as a axis of the multivariate CoP C(n,
⊗h

i=1 Ai) if and only if xi ∈ Ai for each

1 ≤ i ≤ h and n =
h∑
i=1

xi. We say the axis points [xi] for each 1 ≤ i ≤ h are axis

residents. We do not view the axis as any different among other axis L[x1],[x2],...,[xh]

upto the rearrangements of its residents points. In special cases where the points

[xk] ∈ C(n,
⊗h

i=1 Ai) such that hxk = n then we call [xi] the center of the multi-
variate CoP. If it exists, then we call it as a degenerated axis L[xk] in comparison
to the real axes L[x1],[x2],...,[xh], where not all of the weights xi can be equal. We de-

note the assignment of an axis L[x1],[x2],...,[xh] to the multivariate CoP C(n,
⊗h

i=1 Ai)
as

L[x1],[x2],...,[xh] ∈̂ C(n,
h⊗
i=1

Ai) which means [x1], [x2], . . . , [xh] ∈ C(n,
h⊗
i=1

Ai)

with

n =

h∑
i=1

xi

.
for a fixed n ∈ N with xi ∈ Ai for each 1 ≤ i ≤ h or vice versa and the number

of real axes of the generalized CoP as

ν(C(n,
h⊗
i=1

Ai) := #{L[x1],[x2],...,[xh] ∈̂ C(n,
h⊗
i=1

Ai) | xi 6= xj}.

for all 1 < i < j ≤ h. The lines L[x1],[x2],...,[xh] joining any h arbitrary points

[x1], [x2], . . . , [xh] ∈ C(n,
⊗h

i=1 Ai) which are not resident points in the multivariate
CoP will be referred to as a graph induced by the multivariate CoP.

Throughout this paper we will denote for simplicity the multivariate circle of
partition in simple wording as m-CoP. The notion of a multivariate axis is not
technically convenient to work with; nonetheless it is fairly manageable if we confine
ourselves to a certain class of axis of a typical CoP. As it will prove very useful in
the sequel and will feature very greatly in our results in the sequel, we find it more
prudent exploiting the notion of representative axis.

Definition 2.3. Let C(n,
⊗h

i=1 Ai) be a multivariate CoP and let [x1] ∈ C(n,
⊗h

i=1 Ai)
be a fixed point. Then we say the axis L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 Ai) belongs to

the class m axis of the multivariate CoP if

x2 + · · ·+ xh = m.
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Proposition 2.4. Let C(n,
⊗h

i=1 N) be a multivariate CoP. Then there are⌊
n− 1

h

⌋
axis-classes of the multivariate CoP.

Throughout this paper we will work within the axis-classes and use their repre-

sentatives. For any s axis-class of a multivariate CoP C(n,
⊗h

i=1 Ai)

Cs := {Ls[x1],[x2],...,[xh] ∈̂ C(n,
h⊗
i=1

Ai)}

we denote the representative axis of the class as <(Cs). Henceforth in counting the
number of axis of a typical CoP we will only count the number of representative
axis or simply the number of axis-classes. We denote more generally the set of all
representative axis of the axis-classes as

{<L[x1],[x2],...,[xh] ∈̂ C(n,
h⊗
i=1

Ai)}

and the number of all representative axis in the m-CoP as

#{<L[x1],[x2],...,[xh] ∈̂ C(n,
h⊗
i=1

Ai)}.

It has been observed that for a CoP with a natural number
⊗h

i=1 N base regulator
the number of representative axis is basically the quantity⌊

n− 1

h

⌋
.

3. Axial potential of multivariate circles of partition

In this section we introduce and study the notion of the axial potential of an
m-CoP. We launch the following language.

Definition 3.1. Let C(n,
⊗h

i=1 Ai) be a m-CoP. Then by the k th axial potential

denoted, bC(n,
⊗h

i=1 Ai)ck, we mean the infinite sum

bC(n,
h⊗
i=1

Ai)ck =

∞∑
n=1

#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 Ai)

}k
#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 Ai ∪

⊗h
i=1 N)

}k .
We say the k th axial potential is finite if the series converges; otherwise, we say it
diverges.

It is known that for any additive base A of order h with h ≥ 2 the quantity

# {n ≤ x | n ∈ A} ≥ x 1
h .

Using this fact, we then obtain a proof of the weaker variant of the general Erdős-
Turán additive base conjecture in the form below
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Theorem 3.2. Let A ⊂ N and suppose #
{
L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 A

}
> 0 for

all sufficiently large values of n. If |A ∩ Nn| ≥ n1−ε for any 0 < ε ≤ 1
h then

lim
n−→∞

#

{
h∑
i=1

xi |
h∑
i=1

xi = n, xi ∈ A, 1 ≤ i ≤ h

}
=∞.

Proof. Under the requirement A ⊂ N and #
{
L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 A)

}
> 0

for all sufficiently large values of n then it implies that

#

{
<L[x1],[x2],...,[xh] ∈̂ C(n,

h⊗
i=1

A)

}
> 0

for all sufficiently large values of n so that there exists some constant P := P(k) > 0
such that we can write

k∑
n=1

#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 A)

}h
#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 N)

}h = P
k∑

n=1

bn
1−ε−1
h ch

bn−1
h ch

�k

k∑
n=1

nh−hε

hh

bn−1
h ch

since #
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 N)

}
= bn−1

h c, so that we can compute the

hth axial potential

bC(n,
h⊗
i=1

A)ch =

∞∑
n=1

#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 A)

}h
#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 N)

}h
�

∞∑
n=1

nh−hε

hh

bn−1
h ch

�
∞∑
n=1

1

nhε
=∞

since 0 ≤ ε ≤ 1
h . It follows that

lim
n−→∞

#

{
<L[x1],[x2],...,[xh] ∈̂ C(n,

h⊗
i=1

A)

}
=∞

and it implies that

lim
n−→∞

#

{
h∑
i=1

xi |
h∑
i=1

xi = n, xi ∈ A, 1 ≤ i ≤ h

}
=∞.

This completes the proof. �
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Corollary 3.3. Let A ⊂ N and suppose #
{
L[x1],[x2] ∈̂ C(n,

⊗2
i=1 A

}
> 0 for all

sufficiently large values of n. If |A ∩ Nn| ≥ n1−ε for any 0 < ε ≤ 1
2 then

lim
n−→∞

#

{
2∑
i=1

xi |
2∑
i=1

xi = n, xi ∈ A, 1 ≤ i ≤ 2

}
=∞.

Proof. This follows by taking h = 2 in Theorem 3.2. �

Remark 3.4. Theorem 3.2 does indicate that notion of the axial potential cannot be
readily harnessed to tackle the actual general version of the Erdős-Turán additive
base conjecture, since we are constraint by the inequality 1 ≤ ε ≤ 1

h . We would

rather need the larger domain 1 ≤ ε ≤ 1 − 1
h as a requirement but then we will

certainly ran into a deadlock since the series
∞∑
n=1

1

nh

converges for h > 1 so that we cannot decide on the limiting value of the quantity

#

{
h∑
i=1

xi |
h∑
i=1

xi = n, xi ∈ A, 1 ≤ i ≤ h

}
.
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