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Abstract 

Entangled quantum systems can connect to the environment by means of a Bell state measurement. This is true for instance 
for teleportation and entanglement swapping. While the results are well understood it is not quite clear if they involve nonlocal 
action or if they are determined in advance. Models based on the fact that the partners of an entangled pair have the same value 
of a statistical parameter do not apply here. Therefore, in this work a model is presented which reproduces the quantum 
mechanical predictions, but is not based on common statistical parameters. It refutes Bell's theorem. The manuscript is a 
contribution to understanding the coupling of entangled systems with their environment. Since the coupling systems do not 
have to be connected by common statistical parameters, there is no need to look for them in further work. The manuscript is 
thus a step forward towards a complete theory describing quantum physical reality as thought possible by Einstein, Podolsky 
and Rosen. 
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1. Introduction 

Entanglement swapping allows particles that were not 
previously in contact to become entangled. This entanglement 
can be accomplished using Bell state measurements [1]. Many 
physicists are convinced that this process is non-local. This 
conviction is ultimately based on the assumption of Bell's 
theorem validity [2]. It states that quantum mechanics cannot 
be local because it cannot be described by local realistic 
models with hidden variables. A detailed description of the 
literature and arguments regarding Bell’s theorem can be 
found in  [3]. Bell's theorem was refuted by a local contextual 
model with hidden variables [4] which correctly predicts 
quantum mechanical expectation values with polarization-
entangled particles. This model is based on the fact that both 
members of an entangled pair are connected by a common 
hidden parameter. 

However, assuming a common value of a hidden 
parameter for the members of an entangled pair, as also 
proposed by Bell [5],  cannot explain phenomena such as 
entanglement swapping and teleportation [6-9]. When photons 
that did not interact before become entangled by entanglement 
swapping they cannot have a common parameter with a 
statistical distribution.  

With the locally realistic model [4], Bell's theorem was 
formally refuted. It correctly reproduces the quantum 

mechanical expectation values of entangled particles. 
However, it remains unsatisfactory that well-known 
phenomena such as entanglement swapping and teleportation 
cannot be explained in this way. The added value of the model 
presented in this paper is that this shortcoming has been 
addressed. With a model that not only predicts the quantum 
mechanical correlations with entangled photons but also 
explains teleportation and entanglement swapping,  the 
understanding of the physical correlations also increases. To 
circumvent the difficulties mentioned above, we introduce a 
model in which the indistinguishability of the entangled 
photons explains the physical states, as in [4], but in which the 
photon pairs do not share the value of a statistical parameter. 
The question then arises as to how the photons on side B get 
information regarding the position of the polarizer on side A 
without communication. This information comes first from the 
mixing ratio of the horizontally and vertically polarized 
photons from the constituent initial states (see model 
assumption MA2), which contribute to the selection, and 
second from the initial conditions and the conservation of 
angular momentum (see model assumption MA3), which 
couple both sides.  

The reader is assumed to be familiar with the Bell states 
Y+, F-, F+ and F- the definition of which can be found in 
the literature [1]. For each Bell state, we show what a selection 
of photons by a polarizer on one side means for the state on 
the other side. The results are listed in Table 1. From this, 



Bell state measurement locally explained Eugen Muchowski  

 2  
 

expectation values for correlation measurements on entangled 
photons and the states for entanglement swapping and 
teleportation are derived. 

2. A new model for polarization entangled photons 
with local hidden variables 

2.1 Model overview  

In polarization measurements, photons can choose one of 
two perpendicular exits of the polarizer. A model with hidden 
variable must describe which of these two possible exits a 
photon will take. Four model assumptions are introduced, 
which are outlined and then described in italics:  
MA1 introduces the statistical parameter 𝜆  which controls 

the polarizer exit that a photon will take. This model 
assumption is the same as MA1 in [4]. 

MA2 describes the polarization of a selection of photons 
from an entangled pair. This is a new model 
assumption. 

MA3 describes the coupling  of photons from an entangled 
pair. This is a new model assumption. 

MA4 states that photons carry the complete set of the 
hidden variable after a measurement. This model 
assumption is the same as MA4 in [4]. 

Figure 1 shows the coordinate systems and nomenclature 
of the experiments with polarization entangled photons.  

 
 

 

 
 
 
 
 
 
 
Figure 1: The SEPP (source of entangled photon pairs) emits 
entangled photons propagating towards the adjustable 
polarizers PA and PB and detectors DA-1 and DA-2 on wing 
A and DB-1 and DB-2 on wing B. A coincidence measuring 
device (not seen in the picture) encounters matching events. 
The polarization angles are defined in the x–y-plane, which is 
perpendicular to the propagation direction of the photons. The 
coordinate systems are left-handed with the z-axis in 
propagation direction for each wing, with the x-axis in 
horizontal and the y-axis in vertical direction.  
 
 
 

2.2 Model assumptions 

Model assumption MA1: The statistical parameter 𝜆, 
uniformly distributed between 0 and 1,  controls which of the 
two polarizer exits the photon will take. Given the polarizer 
setting a and the photon polarization j  we define d = a - j  
as the difference between the polarizer setting and the 
polarization of the photon. The function A(d,l) indicates 
which polarizer exit the photon will take.  

A(d,l) can have values +1 and -1. For 0 £ d  < p/2, we define 
A(d,l) = +1   for  0 £ 𝜆 £ cos2(𝛿), (1) 
meaning the photon takes polarizer exit a and 
 
A(d,l) = -1  for cos2(𝛿) < 𝜆 £ 1,  (2) 
meaning the photon takes polarizer exit a+ p/2. MA1 is valid 
for single photons as well as for each wing of entangled 
photons. 
The case p/2 £ d < p is covered referring to the other exit of 
the polarizer. Then equation (2) applies and the range of 
values of 𝜆 for positive results is cos2(𝛿) < 𝜆 £ 1.  The case d 
< 0 is covered by reversing the polarizer direction by 180°. 
Thus, -p £  d < -p/2 is equivalent to 0 £ d < p/2 and  
-p/2 £  d < 0 is equivalent to  p/2 £  d < p. 
Thus A(d,l) = +1  
for 0 £ d  < p/2 and 0 £ 𝜆 £ cos2(𝛿),  (3.1) 
for -p/2 £  d < 0 and cos2(𝛿) < 𝜆 £ 1, (3.2) 
for p/2 £ d< p and cos2(𝛿) < 𝜆 £ 1, (3.3) 
for -p £  d < -p/2, and 0£ 𝜆 £ cos2(𝛿) and (3.4) 
A(d,l) = -1  otherwise. (3.5)  
  
Model assumption MA2: If the fractions of horizontally 
and vertically polarized photons from the entangled state 
contributing to a photon stream selected by a polarizer are 
cos2(a) and sin2(a) respectively, obtain a common 
polarization of a or - a, because of the indistinguishability of 
the photons.  

The fractions of horizontally and vertically polarized 
photons that leave a polarizer exit a are cos2(a) and sin2(a) 
respectively. This makes up for the common polarization. The 
selection comprises all photons that take the same polarizer 
exit. Photons with polarization a and a+p/2 come in equal 
shares, due to symmetry reasons. MA2 accounts for the fact 
that the polarization of photons from the entangled state is 
undefined because of their indistinguishability, but is changed 
and re-defined by  entanglement. Thus, the photons of a 
selection cannot be distinguished by their polarization. This 
argument has  already been made in [4] but only for photon 
pairs with common hidden variables.  MA2 is a contextual 
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assumption, because the polarization of a selection coincides 
with the setting of a polarizer. However, this is a local realistic 
assumption, because it assigns a real value to the physical 
quantity polarization. MA2 leaves open whether the 
polarization of a selection is positive or negative. To 
distinguish this we use the initial conditions taking into 
account the conservation of angular momentum. This leads to 

Model assumption MA3: Each Bell state is a mixture of 
indistinguishable constituent photon pairs in equal shares 
whose components have the same polarization 0° or 90°  for 
F+ and F- and an offset of  p/2 for Y+ and Y-. The 
constituent photon pairs make up the initial state.  

The coupling of a selection on wing A with polarization 
a and the corresponding selection of the partner photons on 
wing B with polarization b is a relation between the 
normalized signs of the polarizations on both sides and is 
given   
For   Y+ and F+ as sign’(a)1 = sign’ (b)2, and (4.1) 

 for  Y- and F- as sign’(a)1 = - sign’ (b)2, (4.2) 
where the normalized sign’ is given by 
sign’(a) = sign(a)  for -p/2 £ a £  p/2 and  
sign’(a)  = sign(a-p)  for p/2 £  a  £ 3p/2 and 
sign’(a)  = sign(a-2p)  for 3p/2 £  a  £ 2p, (5) 
with a and a-p denoting the same polarization and the 
suffixes 1 and 2  denote the sides.  

From equation (5) we obtain  

sign’(a) = - sign’(a+ p/2) =  sign’(-a- p/2). (6) 
 

Model assumption MA4: Photons having left a 
polarizer exit a have polarization a with l evenly 
distributed in the range 0 £ l £  1. 
MA4 emphasizes that photons carry the full set of hidden 
variables after leaving the polarizer. 

2.3 Predicting measurement results for single photons 

Using equations (3.1 or 3.4), a photon with polarization j 
is found behind the exit a of a polarizer with probability 
Pd =          = cos2(d), (7) 
where d = a- j with 0 £ d < p/2 or  -p £  d < -p/2. 
Using equations (3.2 or 3.3) for -p/2 £  d < 0 or p/2 £ d < p we 
refer to the other exit of the polarizer and have, with  
J* = d - p/2 
Pd =  = 1-cos2(J*) = cos2(J), as well.       (8) 
    
With d = a- j we obtain the same Pd for a photon in state 
cos(j)*|H> + sin(j)*|V> by projection onto  
cos(a)*<H| +  sin(a)*<V| according to QM (i.e., Born’s rule). 
 
 

2.4 Conclusions from the model assumptions 

MA2 has  the consequence that the selection by a polarizer in 
position a on one side corresponds to a selection with 
polarization a+p/2 or -a-p/2 on the other side.(for Y+ or Y-) 
This can be seen from the following consideration: According 
to equations (7,8) a polarizer PA set to a selects a fraction of 
cos2(a) of horizontally polarized photons 1 and a fraction of 
sin2(a) of vertically polarized photons 1. This means that 
partner photons 2 are also selected, but with perpendicular 
polarization, resulting in a selected fraction of cos2(a) = 
sin2(a+ p/2) of vertically polarized photons 2 and a selected 
fraction of  sin2(a) = cos2(a+ p/2) of horizontally polarized 
photons 2. Due to MA2 the polarization of the selected 
photons 2 is a+ p/2 or -a- p/2.  

From equations (4.1) and (6)  we obtain for Y+ the 
polarization -a- p/2  of the partner photon 2  with the same 
normalized sign as that of the polarization a. For Y-  we obtain 
the polarization a+ p/2  of partner photon 2  with an opposite 
normalized sign of the polarization a in accordance with 
equation (4.2). 
 

For F+ and F- we find that the selection by a polarizer in 
position a on one side corresponds to a selection with 
polarization a or -a  on the other side. Again a polarizer PA 
set to a selects a fraction of cos2(a) of horizontally polarized 
photons 1 and a fraction of sin2(a) of vertically polarized 
photons 1. This means that partner photons 2 are also selected, 
but in this case with the same polarization, resulting in a 
selected fraction of cos2(a) of horizontally polarized photons 
2 and a selected fraction of  sin2(a) of vertically polarized 
photons 2. Due to MA2 the polarization of the selected 
photons 2 is a  or -a. 

According to equation (4.1) we obtain the polarization of 
the partner photons 2 of a for F+ as sign’(a)1 = sign’(a)2 and 
of -a for F- as sign’(a)1 = - sign’(-a)2 in accordance with 
equation (4.2). The results for all four Bell states are presented 
in  Table 1.  
 

Bell state A B 

Y-: a a + p/2   

F+ a a   

Y+ a -a -p/2   

F- a -a  
 
Table 1: polarization of partner photons 2 at wing B for 
different Bell states for a selection of photons 1 with a 
polarizer set to a at wing A. 
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The Bell states Y- and F+ are known to be rotationally 
invariant. The same applies to the states Y+ and F- as well if 
the coordinate system on wing B is changed from left- to right-
handed. In this case, the polarization values for Y+ and F- in 
column B in Table 1 change sign, so that the difference 
between A and B is constant and therefore independent of a. 
Model assumption MA3 reproduces the conservation of spin 
angular momentum. This is shown in the quantum formalism. 

Let |R> and  |L> denote the state of the right and left polarized 
photons, respectively. These are related to the spin direction. 
The connection to the linear polarization is given by 

|R> = 1/√2 *(|H> + i|V>) and 

|L> = 1/√2 *(|H> - i|V>) with (9) 

|H> = 1/√2 *(|R> + |L>) and 

|V> = -i/√2 *(|R> - |L>). (10) 

 This provides for the four Bell states with the suffixes A and 
B denoting the wings of the entangled states. 

𝚽+= 1/√2 *(|HA>|HB> + |VA>|VB>)   

=  1/√2 *(|RA>|LB> + |LA>|RB>), (11) 

𝚿- = 1/√2 *(|HA>|VB> - |VA>|HB>)  

=  i/√2 *(|RA>|LB> - |LA>|RB>), (12) 

𝚽- = 1/√2 *(|HA>|HB> - |VA>|VB>)   

=  1/√2 *(|RA>|RB> + |LA>|LB>), (13) 

𝚿+ = 1/√2 *(|HA>|VB> + |VA>|HB>)  

= -i/√2 *(|RA>|RB> - |LA>|LB>), (14) 

For 𝚽+ and 𝚿- the total spin of the photon pairs vanishes 
because left and right polarization cancel. This also applies to 
𝚽- and 𝚿+ if the coordinate system on wing B is rotated by 
180°, i.e. the photons exit the source in the opposite direction. 

𝚽+ and 𝚿- are rotationally symmetrical. So it also applies 

𝚽+= 1/√2 *(|H‘A>|H‘B> + |V‘A>|V‘B>) (15)  

for each angle a of a rotation of the coordinate system, with 

|H’>  = cos(a) *|H> + sin (a) *|V> and 

|V’>  = -sin(a) *|H> + cos (a) *|V> .  (16) 

Projection onto <H‘A|  yields 

<H‘A| 𝚽+> = |H‘B>  = cos(a) *|H B > + sin (a) *|V B >. (17) 

So we see that a projection or selection of 𝚽+ by a polarizer 
PA in position a means the state or polarization of the partner 
photons in direction a. The projection for 𝚿- yields 

<H‘A| 𝚿-  > = |V‘B>  = -sin (a) *|H B > + cos(a) *|V B >.  (18) 

This state is orthogonal to a. A projection or selection of 𝚿- 
by a polarizer PA in position a results in the direction a + p/2. 
for the state or polarization of the partner photons.  

𝚽- and 𝚿+ are also rotationally symmetrical if the coordinate 
system on wing B is rotated by 180°, i.e. the photons exit the 
source in the opposite direction. This means with  
|H*B> = -|HB> that  (19) 

𝚽- = 1/√2 *(-|HA>|H*B> - |VA>|VB>). (20)  

Because of the rotational symmetry also applies 

𝚽- = 1/√2 *(-|H‘A>|H*‘B> - |V‘A>|V‘B>)  (21) 

for each angle a of a rotation of the coordinate system, with 

|H’>  and |V’> given by equation (16) . 

Projection onto <H‘A|  yields 

<H‘A| 𝚽-> = -|H*‘B> = -(cos(a) *|H*B > + sin (a) *|V B >)= 
cos(-a) *|H B > +sin (-a) *|V B >. (22)  

So we see that a projection or selection of 𝚽- by a polarizer 
PA in position a means the state or polarization of the partner 
photons in direction -a.  

For 𝚿+ the projection gives 

 <H‘A| 𝚿+ > = |V‘B>  = -sin (a) *|H* B > + cos(a) *|V B > 
= -sin (-a) *|H B > + cos(-a) *|V B >. (23) 

This state is orthogonal to -a. A projection or selection of 𝚿+ 
by a polarizer PA in position a results in the direction -a- p/2 
for the state or polarization of the partner photons. 

This altogether tells us that of the two possibilities given by 
MA2, only the one given by MA3 is consistent with 
conservation of angular momentum. For the relationship 
between the position of the selective polarizer and the 
polarization of the partner photons, the conservation of the 
spin angular momentum means the same sign of a on both 
sides for 𝚽+ and 𝚿- and the opposite sign for 𝚽- and 𝚿+  as 
described in Table 1. 

2.5 Calculating expectation values for photons in singlet state 

We have seen above that all selected photons 1 from the 
singlet state which take PA exit a have polarization a while 
their partner photons 2 have polarization a+p/2. Seen from the 
other side we can conclude that if photon 2 leaves polarizer PB 
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at b we have matching events if those photons 2 with 
polarization b would leave PB with an assumed setting of 
a+p/2. Note, that l is evenly distributed in the value range 0 £ 
l £ 1 for the photons 2 with polarization b. This can be seen 
examining the initial states and applying equations (3.1) - (3.4) 
to horizontally polarized photons and vertically polarized 
photons.  For example, the horizontally polarized photons with 
0 £ 𝜆 £ cos2(𝛿) and the vertically polarized photons with cos2(𝛿) 
< 𝜆 £ 1 contribute to a selection with polarization b for 0 £  d  
< p/2.   

Thus, the probability that photons 2 with polarization  b  
would pass PB at a + p/2 can be obtained by equations (7) and 
(8), using d = a+p/2 - b  thus yielding  
Pd = cos2(d) = cos2 (a+p/2 - b  ) = sin2(a-b),  (24)  
where d is the angle between the PB polarizer setting b  and  
the polarization a + p/2  of photons 2 selected by PA. 

The expectation value for a joint measurement with photon 
1 detected behind detector PA at 𝛼 and partner photon 2 
detected behind detector PB at 𝛽 is as obtained from [4] 
E(𝛼,𝛽) = SA*B*PA,𝛼 *PB,𝛽|A,𝛼  for A,B=+1,-1. (25) 
Here PA,𝛼 is the unconditional probability to detect (A = 1) or 
not detect (A = -1) photon 1 at 𝛼 and PB,𝛽|A,𝛼 is the conditional 
probability for photon 2 to have the outcome B at PB set to b if 
photon 1 has outcome A at PA set to a. With Pd from equation 
(24), we get, in particular, that: 
P+1,𝛽|+1,𝛼 = P-1,𝛽|-1,𝛼 = Pd and 

P+1,𝛽|-1,𝛼 = P-1,𝛽|+1,𝛼 = 1 - Pd.      (26)                                 
 
The constituent photons of the singlet state with polarization 0° 
and 90° contribute to the probability P1,𝛼 to find a photon 1 at a 
according to equation (7,8), with fractions ½cos2(a) and 
½cos2(a-p/2) respectively, taking into account that the photons 
of 0° and 90° contribute in equal shares to the total stream of 
photons on either wing. Thus,  

P1,𝛼 = ½(cos2(a) + cos2(a-p/2)) = ½ = P-1,𝛼. (27) 
With the above definitions, we get, from equations (24)–(27):  
E(𝛼,𝛽) = ½(1* Pd -1*(1- Pd) -1*(1- Pd) +1* Pd) = 
= Pd  - (1- Pd) = sin2(a-b) - cos2(a-b) = -cos(2(a-b)), (28) 
in accordance with QM. As the expectation value E(a,b) in 
Equation (28) exactly matches the predictions of quantum 
physics, it also violates Bell's inequality.  

2.6 Applying the model to entanglement swapping  

Entanglement swapping  uses a protocol in which two 
wings of different systems, each in singlet state, are entangled 
by a Bell state measurement of the two remaining 
wings[1,2,8].  

Let AB and CD be the two initial systems in singlet state. 
Then we define the outer pair AD and the inner pair BC. With 
a Bell state measurement between B and C we want to 
entangle A and D. However, this coupling is random in the 
case of entanglement swapping. Therefore four resulting Bell 
states are possible. How are these results for the inner pair BC 
related to the state of the outer pair AD?  This is determined 
by applying table 1 to the pairs of channels. AB and CD are 
always in state Y-. BC is obtained by the Bell state 
measurement.  

 

Figure 2: Entanglement swapping entangles wings A and D 
by a Bell state measurement between B and C.  

Thus, we obtained the results of Table 2.  Compared with 
Table 1 we see that the Bell state of the outer pair AD is equal 
to the measured Bell state of the inner pair BC according to 
QM [8]. Note that the polarizations  a + p   and a  are equal 

 
Bell  
state 

ssstatestate BC 

A B C D 

Y-: a a + p/2   a (+ p) a + p/2   

F+ a a + p/2   a + p/2   a (+ p)  

Y+ a a + p/2   -a (- p) -a - p/2   

F- a a + p/2   -a - p/2   -a   
 

Table 2:  polarization of the photons of wings B,C and A,D 
for different Bell states obtained between B and C by applying 
table 1 with an assumed selection of photons by a polarizer set 
to a  at wing A. 

2.7 Applying the model to teleportation 

Teleportation uses a protocol in which an unknown state b 
is transferred to another wing B of a singlet state by Bell state 
measurement between the unknown b and wing A of the 
singlet state [9]. Using MA3 and Table 1 we obtain the 
polarizations at wing A and B. AB are always in the Y- state. 
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The polarization of the pair bA is obtained by measuring the 
Bell state.  

 
 

Figure 3: Teleportation of an unknown state ß to a remote 
wing B by a Bell state measurement between ß and Wing A  

Thus, we obtained the results shown in Table 3. The results 
at wing B can be converted to the state b  by simple rotation 
or mirroring. This result is in accordance with quantum 
mechanical calculations [9]. Note that the polarizations b + p   
and b are equal. 

 
 

Bell state bA A B 

Y- b + p/2 b (+ p) 

F+ b b + p/2   

Y+ -b-p/2 -b 

F- -b -b +p/2 

 

Table 3: polarization of the photons of wings A and B for 
different Bell states obtained between the unknown b and 
wing A. 
 

3. Results, discussion and conclusions  

The model presented here is based on the selection of the 
photons by a polarizer (on one side of a photon pair in a Bell 
state). Owing to their indistinguishability, the selected photons 
have a common polarization that depends on the mixing ratio 
of the constituent horizontally or vertically polarized 
components. This ratio is the same or inverse on both sides 
depending on the Bell state. It is physically based on the 
conservation of spin angular momentum. Accordingly, there 
is a fixed connection between the polarization of the selection 
on one side and the corresponding polarization of the partner 
photons on the other side. These polarizations are present prior 
to any measurement.  

The Bell states were conceived in the model as mixtures 
of indistinguishable photon pairs. Because the Bell states are 
entangled they are not separable. This implies that the 

individual photons of an entangled photon pair have no 
physical reality. The physical reason for this is their  
indistinguishability. A Bell state splits into two systems of 
photon pairs with mutually perpendicular polarizations upon 
selection by a polarizer. This selection corresponds to a 
projection in quantum mechanics. By projecting the 
rotationally symmetric singlet state onto a direction on one 
side, the state on the other side is also fixed. In the model, this 
corresponds to the effect of the selection. Until now the 
problem with quantum physics was that the change of state on 
the opposite side was considered as a non-local interaction. 
This was suggested by Bell's theorem but refuted in [4] , and 
by the model presented. Because a selection on one side 
implies a corresponding selection on the other side, there is no 
action associated with a selection.  
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