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The refractive index and curvature relation is formulated using the Riemann-Christoffel curvature tensor.
As a consequence of the fourth rank tensor of the Riemann-Christoffel curvature tensor, we found that the
refractive index should be a second rank tensor. The second rank tensor of the refractive index describes
a linear optics. It implies naturally that the Riemann-Christoffel curvature tensor is related to the linear
optics. In case of a non-linear optics, the refractive index is a sixth rank tensor, if susceptibility is a fourth
rank tensor. The Riemann-Christoffel curvature tensor can be formulated in the non-linear optics but with a
reduction term. The relation between the (linear and non-linear) refractive index and a (linear and non-linear)
mass in curved space are formulated. Related to the Riemann-Christoffel curvature tensor, we formulate ”the
(linear and non-linear) generalized Einstein field equations”. Sine-Gordon model in curved space is shown,
where the Lagrangian is the total energy. This total energy is the mass of a kink (anti-kink) associated with
a topological charge (a winding number). We formulate the relation between the (linear and non-linear)
refractive index of the kink (anti-kink) and the topological charge-the winding number. Deflection of light is
discussed in brief where the (linear and non-linear) angle of light deflection are formulated in relation with
the mass (the topological charge, the winding number) of the kink (anti-kink).

I. INTRODUCTION

What is really happened if light passes through a medi-
um? This question becomes more interesting nowadays
related to conceptual development and technological in-
novation. One of the very important idea to understand
this question is the refractive index. The refractive index
of a medium is an optical parameter, since it exhibits
the optical properties of the material1. The refractive
index is one of the physicochemical properties of optical
medium2. It is a function that depends on various pa-
rameters, including the frequency of the applied electric
field3.

The refractive index, n, is defined as velocity of light of
a given wavelength in empty space or vacuum (c) divided
by its velocity in a substance, v,2

n =
c

v
(1)

It1 describes how matter affects light propagation,
through the electric permittivity, ε, and the magnetic
permeability, µ4

n =

√
ε

ε0

µ

µ0
=
√
εr µr (2)

where ε0 and µ0 are the permittivity and the permeabil-
ity of vacuum respectively, εr and µr is relative permit-
tivity and relative permeability of non-vacuum medium
respectively which the values are relative i.e. they depend
on the characteristics of medium4,5.

1 The sign of the refractive index is often taken as positive, but
in 1968 Veselago shows that there are substrates with negative
permitivity and negative permeability. In these substrates, the
refractive index has a negative value2.

In the most substrates, the refractive index decreases
by increasing temperature2. A denser material generally
tends to have a larger refraction index6. The refractive
index in an fibre optic can be changed due to external
forces such as the tensile force, the bending force7.

Mathematically, the refractive index is a zeroth rank
tensor (scalar) and it can not be a first rank tensor (vec-
tor), but it can be a second rank tensor, a third rank ten-
sor or a higher rank tensor (which is well known as non-
linear phenomena of second order, third order, etc)8. The
refractive index is the zeroth rank tensor, if the medium
or material is isotropic2. Generally, the refractive index
is written as the second rank tensor, nij , a 3× 3 matrix,
if the material is linear3. It can be the third rank tensor
or the fourth rank tensor if the material is non-linear10.

The refractive index has a large number of application-
s. It is mostly applied to identify a particular substance,
to confirm its purity or to measure its concentration. It
also can be used in determination of drug concentration
in pharmaceutical industry, to calculate a focusing pow-
er of lenses and a dispersive power of prisms. Also, it
can be applied to estimate a thermophysical properties
of hydrocarbons and petroleum mixtures2.

2 Isotropy comes from the Greek words isos (equal) and tropos
(way): uniform in all directions9. An isotropic material is a
material that has the same optical properties, regardless of the
direction in which light propagates through the material3,9.

3 Linear material is a material that when exposed to light at a
certain frequency will generate light with the same frequency5.
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II. THE REFRACTIVE INDEX AND THE
RIEMANN-CHRISTOFFEL CURVATURE TENSOR

Let φ(x, y, z) be defined and differentiable at each
point (x, y, z) in a certain region of space (i.e. φ de-
fines a differentiable scalar field). Then the gradient of φ
is defined by11, p.57

~∇φ =
∂φ

∂x
î+

∂φ

∂y
ĵ +

∂φ

∂z
k̂ (3)

In the tensorial form11

~∇φ = grad φ = φ,j =
∂φ

∂xj
(4)

where φ,j is the covariant derivative of φ with respect to

xj . Here, ~∇φ defines a vector field i.e. the gradient of a
scalar field is a vector field11,12.

Let us analyse the equation below13–15

1

R
= N̂ . ~∇ ln n(r) (5)

We write Nk as a tensorial representation, i.e. a first
rank tensor, of an unit vector, N̂ . By using relation in
eq.(4) and tensorial notation Nk for N̂ , the right hand
side of eq.(5) can be written as

Nk
∂

∂xj
[ln n(r)] (6)

Because of the Riemann-Christoffel curvature tensor is
the fourth rank tensor, so the refractive index in eq.(6)
should be written as the second rank tensor. We obtain
the relation between the curvature tensor and the refrac-
tive index tensor as below16

Rmijk
g

= Nk
∂ln nmi
∂xj

(7)

Eq.(7) implies that the curved space which is described
by the Riemann-Christoffel curvature tensor related nat-
urally to linear medium of optics.

How about the form of the non-linear refractive index
i.e. the refractive index related to the non-linear optics?
In optics, non-linear properties of materials are usual-
ly described by non-linear susceptibilities17. Mathemat-
ically, the optical non-linear response can be expressed

as a relationship between the polarization4, ~P (ω), and

the electric field, ~E(ω). Both, ~P (ω) and ~E(ω), are the
function of angular frequency, ω.

In the linear case, a relation between the polarization
and the electric field is simply expressed19

~P (ω) = χ(1)(ω) ~E(ω) (8)

4 Light is an electromagnetic wave, and the electric field of this
wave oscillates perpendicularly to the direction of light propaga-
tion. If the direction of the electric field of light is well defined,
it is polarized light. The most common source of polarized light
is a laser18.

where χ(1)(ω) is the first order susceptibility and it is a
scalar, whereas the polarization and the electric field are
vectors.

In the non-linear case5, the polarization can be mod-

elled as a power series of the electric field, ~E(ω), as below

~P (ω) = χ(1)(ω) ~E(ω) + χ(2)(ω) ~E2(ω)

+ χ(3)(ω) ~E3(ω) + ... (9)

where ~E2(ω) = ~E(ω) ~E(ω), ~E3(ω) = ~E(ω) ~E(ω) ~E(ω),
etc. The quantities χ(2)(ω) and χ(3)(ω) are known as the
second order and third order susceptibilities, respectively.
In general, χ(1)(ω), χ(2)(ω) and χ(3)(ω) are the second,
third and fourth rank tensors, respectively19. In optical
Kerr effect, the third order susceptibility, χ(3)(ω), related
to the non-linear refractive index3, p.34.

Now, we have a question: if the non-linear refractive
index related to the third order susceptibility and the
third order susceptibility is the fourth rank tensor19 then
how to define the non-linear refractive index related to
the fourth rank tensor of the third order susceptibility?
For linearly polarized monochromatic light in an isotrop-
ic medium or a cubic crystal, the non-linear refractive
index, n2, can be expressed by22

n2 =
12π

n0
Re χ(3)(ω) (10)

or

n0 =
12π

n2
Re χ(3)(ω) = 12π (n2)−1 Re χ(3)(ω) (11)

where n0 is linear refractive index and Re χ(3)(ω) is a real
part of the third order non-linear susceptibility. Eq.(10)
shows that the non-linear refractive index is a function
of the linear refractive index.

We see from eq.(7), the linear refractive index is the
second rank tensor and refer to Jatirian, et al.19 the third
order susceptibility is the fourth rank tensor, so we can
write eq.(11) as below

nmi = 12π npqrsmi χ(3)
pqrs (12)

where χ
(3)
pqrs is the fourth rank tensor of the real part of

third order susceptibility. It means that the non-linear
refractive index should be the sixth rank tensor, npqrsmi .

As we see from eqs.(11), (12), the non-linear refractive
index is the sixth rank tensor as follows

(n2)−1 = npqrsmi → n2 = nmipqrs (13)

Here, what we call the non-linear refractive index is npqrsmi .
We see from eq.(12), the non-linear refractive index is

5 A non-linear system is a system in which the change of the output
is not proportional to the change of the input20. In optics, the
non-linearity is typically observed only at very high intensities
(field strength) of light such as those provided by lasers21.
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a mixed tensor of fourth rank contravariant and second
rank covariant.

If we assume that the third order non-linear suscepti-

bility, χ
(3)
pqrs, has a positive value then the value of the

non-linear refractive index is smaller than the linear re-
fractive index. It implies that the speed of light in the
non-linear optics is larger than the speed of light in the
linear optics. It also implies that the light energy of the
non-linear optics is larger than the light energy of the
linear optics.

Substituting (12) into (7), we obtain

Rmijk
g

= Nk
∂

∂xj

{
ln
(

12π npqrsmi χ(3)
pqrs

)}
(14)

where π is a constant, so the gradient of π gives zero.
Using relation ln (ABC) = lnA + lnB + lnC, then
eq.(14) becomes

Rmijk
g
−Nk

∂ ln χ
(3)
pqrs

∂xj
= Nk

∂ ln npqrsmi

∂xj
(15)

Eq.(15) shows that the non-linear optics relates the sixth
rank tensor of the refractive index with the curvature
tensor.

The main difference between the linear optics, eq.(7),
and the non-linear optics, (15), is that there exist the

second term in the left hand side of eq.(15): Nk
∂ ln χ(3)

pqrs

∂xj .
If we assume that this term has a positive value, then the
curvature will be reduced by such term. It means that
the curvature in the non-linear optics is smaller compared
to the curvature in the linear optics.

III. THE REFRACTIVE INDEX AND A MASS IN
CURVED SPACE

Let us consider the Schwarzschild metric14,23 and as-
sume that the space is isotropic and spherically symmet-
ric. Then, the line element is14

ds2 = g00(r) c2 dt2 − grr(r) dr2

=

(
1− 2GM

c2r

)
c2 dt2 −

(
1− 2GM

c2r

)−1
dr2(16)

where r is the spatial coordinate and M is a mass of
an object in curved space. The world line corresponding
to the propagation of light is defined as null geodesic as
follows

ds2 = 0 (17)

Substitute this eq.(17) into (16), we obtain(
1− 2GM

c2r

)−1/2
dr

dt
=

(
1− 2GM

c2r

)1/2

c (18)

If we substitute dr/dt = v into (18) and rearrange the
terms, then we obtain(

1− 2GM

c2r

)−1/2(
1− 2GM

c2r

)−1/2
=
c

v
(19)

where c/v = n(r) as eq.(1), so we have the space de-
pendent refractive index, n(r), related to the mass of an
object, M , as below14,15

n(r) =

(
1− 2G

c2r
M

)−1
(20)

where G is the gravitational constant and c is the speed
of light in vacuum.

How to formulate the space dependent linear (the sec-
ond rank tensor) and non-linear (the sixth rank tensor)
refractive indices related to the mass of an object as ex-
pressed in eq.(20)? In order to answer this question, we
need to understand the quantities G, c in eq.(20). The
simple understanding of G is coming from the Einstein
field equation as follows24–26

Gµν = −8πG

c4
Tµν (21)

We are informed from eq.(21) that the gravitational con-
stant, G, is a scalar (because the speed of light, c, is a
scalar).

As previously stated, in case of the linear optics, we
take the space dependent refractive index as the second
rank tensor. Because of gravitational constant, G, the
speed of light, c, the spatial coordinate (distance), r, are
scalars, then eq.(20) can be written as

nmi =

(
1− 2G

c2r
Mmi

)−1
(22)

where Mmi is the second rank tensor of mass27,28.
In case of the non-linear optics, we substitute eq.(12)

into (22), then we obtain

npqrsmi =
1

12π χ
(3)
pqrs

(
1− 2G

c2r
Mmi

)−1
(23)

or, in analogy with (22)

npqrsmi =

(
1− 2G

c2r
Mmi
pqrs

)−1
(24)

We obtain from (23), (24), that

Mmi
pqrs =

c2r

2G

{
1− 12π χ(3)

pqrs

(
1− 2G

c2r
Mmi

)}
(25)

What is the value of Mmi
pqrs compared to Mmi?

Let us return to eq.(5). If we substitute eq.(20) in-
to (5), we obtain ”the Einstein field equation” for one
spatial dimension as below

1

R
= N̂ . ~∇ ln

(
1− 2G

c2r
M

)−1
(26)

How about ”the generalized Einstein field equation” for
the second rank tensor of the linear refractive index and
the sixth rank tensor of the non-linear refractive index?
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If we substitute eq.(22) into (7), we obtain

Rmijk
g

= Nk
∂

∂xj

{
ln

(
1− 2G

c2r
Mmi

)−1}
(27)

We call this equation (27) as ”the linear generalized E-
instein field equation”.

If we substitute eq.(24) into (15), we obtain

Rmijk
g
−Nk

∂ln χ
(3)
pqrs

∂xj

= Nk
∂

∂xj

{
ln

(
1− 2G

c2r
Mmi
pqrs

)−1}
(28)

This equation (28) is called ”the non-linear generalized
Einstein field equation”.

We see from eqs.(27), (28), the curvature of the non-
linear optics is smaller than the curvature of the linear

optics by factor Nk
∂ln χ(3)

pqrs

∂xj (we assume that this factor
has a positive value). This factor will affect the angle
of deflection of light. This will be discussed more detail
later.

IV. SINE-GORDON MODEL IN A CURVED SPACE

The Lagrangian density of the sine-Gordon model de-
fined on the curve has the following form29

L =
1

2
(∂tφ)2 − 1

2
F(∂sφ)2 − V (φ) (29)

where the function F(s) contains information about the
curvature of the considered space

F(s) =
1

a K(s)
ln

[
2 + a K(s)

2− a K(s)

]
(30)

Here, K(s) is the curvature of the central curve of the
isolating layer/junction and a is thickness of the dielectric
layer29,30. In a natural way, the above Lagrangian is29

L =

∫ +∞

−∞
ds L = Ek − Ep (31)

In this case, we treat L as the total energy, E. So,

E = L (32)

Using the natural unit, c = 1, we can treat the total
energy as mass, M , as below

E ∼M (33)

Topological charge is related to total energy31. The
total energy or mass6 of the kink (anti-kink)7 in the sine-
Gordon model is32

M = 8|Q| (34)

6 Here we use natural unit c = 1, so E = Mc2 gives E = M .
7 In this case, the kink (anti-kink) is a solution of the sine-Gordon

equation.

or

M = 8|N | (35)

if we treat the topological charge, Q, is equal to the
winding number, N , in harmony with the Skyrme’s idea.
Here, we should remember that the mass of kink (anti-
kink), eq.(34) or (35), is the mass which is formulated in
the curved space.

V. THE REFRACTIVE INDEX OF THE KINK IN
CURVED SPACE

A kink is a topological soliton in one-dimensional s-
pace, φ(x)33. Its energy density, at any given location,
does not vanish with time in the long time limit. By
definition, the kink is a map33

φ : Z2 → Z2 (36)

where Z2 denotes the group of integer with size or modulo
2. In general, Zp is group of integer with size or modulo
p. The elements of Zp are 0,±1, ..,±(p − 1). So, the
subscript 2 in Z2 of eq.(36) indicates the modulo of the
group of integer where the elements or members are 0
and ±134–36.

In the sine-Gordon model8, the topological charge is
given by32

Q =
φ(x = +∞) − φ(x = −∞)

2π
(37)

Refer to Skyrme38, the field configuration with boundary
conditions for the sine-Gordon model9 is given by

φ(x = +∞)− φ(x = −∞) = 2Nπ (38)

where N is the winding number.
If we accommodate the idea of Skyrme in eq.(38), by

substituting eq.(38) into (37), we obtain

Q =
2Nπ

2π
= N (39)

It means that the topological charge, Q, is equal to the
winding number10, N .

8 If we compare the sine-Gordon and φ4 models, the formulation
of the topological charge for both models looked different. Does
it mean that the formulation of the topological charge in the
φ4 model is more general than the sine-Gordon (e.g. if we take
m = π)? Here, m is a arbitrary normalisation parameter for the
topological charge. For the φ4 model, it is convenient to fix it to
1 so that the topological charge is in units of 1 (0, + 1, − 1).
For the sine-Gordon model, we can replace 2π by m so that the
topological charge will be in units of π (if our fields go from 0 to
π)37.

9 Actually, Skyrme uses α(x) as a notation for describing a single
angle-type field variable instead of φ(x).

10 In order to be classically stable, soliton should have energy with
special lower bound. The bound usually involves the topological
index: εφ∈Qn ≥ C|N |, where C is a constant andN is topological
index (which is similar with the winding number39)40 p.103.
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Fig. 4. Plot of the potential U(φ) = 1− cosφ in the
sine-Gordon model.

The vacua set has an infinite number of components32.

As previously mentioned, there exist the relationship
between the refractive index and the mass, as written in
eq.(20). By substituting eqs.(34), (35), into (20) we ob-
tain the relationship between the refractive index and the
mass of the kink (anti-kink) in the sine-Gordon model,
as below

n(r) =

{
1− 2G

c2r
(8|Q|)

}−1
=

{
1− 2G

c2r
(8|N |)

}−1
(40)

Eq.(40) show that the refractive index can be formulat-
ed related to the topological charge and it also shows
that the refractive index is also a function of the winding
number.

How about the linear and non-linear refractive indices
formulations related to the topological charge in the sine-
Gordon model? In case of the linear optics for sine-
Gordon model, we treat the refractive index as the second
rank tensor, and because G, c, r, m, λ are scalars, so
the topological charge is the second rank tensor, Qmi,
then eq.(40) becomes

nmi =

[
1− 2G

c2r
(8|Qmi|)

]−1
=

[
1− 2G

c2r
(8|Nmi|)

]−1
(41)

The non-linear refractive index for the sine-Gordon
model is

npqrsmi =
(

12π χ(3)
pqrs

)−1 [
1− 2G

c2r
(8|Qmi|)

]−1
=
(

12π χ(3)
pqrs

)−1 [
1− 2G

c2r
(8|Nmi|)

]−1
(42)

Here, in eqs.(41), (42), we treat the winding number as
the second rank tensor, as a consequence of the second
rank tensor of the topological charge.

VI. DEFLECTION OF LIGHT BY THE KINK

Gravitational lensing is a direct consequence of general
relativity. If light passes near an object of massive mass,
M , at an impact parameter, D, (i.e. its shortest distance
to the object), the curvature of space-time (due to such
the object of the massive mass) will cause light to be
deflected by an angle of deflection, Φ, as below41

Φ =
4G

c2D
M (43)

Fig. 5. Deflection of light by the massive mass of the
object42.

It means that the angle of deflection, Φ, by which light is
deflected depends on the impact parameter, D, and the
massive mass of the object, M43.

The linear mass of the kink (anti-kink) can be ex-
pressed in the sine-Gordon model, as below

Mmi = 8|Qmi| (44)

or

Mmi = 8|Nmi| (45)

By substituting eq.(45) into (25), we obtain the non-
linear mass of the kink (anti-kink) in the sine-Gordon
model, respectively, as below

Mmi
pqrs = U

[
1− 12π χ(3)

pqrs

(
1− U−1 8|Qmi|

)]
(46)

or

Mmi
pqrs = U

[
1− 12π χ(3)

pqrs

(
1− U−1 8|Nmi|

)]
(47)

where U = c2r/2G so U−1 = 2G/c2r.
How about the angle of deflection in case of the lin-

ear and non-linear optics? By substituting eq.(45), into
eq.(43), we obtain the angle of deflection by the linear
mass of the kink (anti-kink) in the sine-Gordon model as
follows

Φmi = V (8|Qmi|) (48)

or

Φmi = V (8|Nmi|) (49)

where V = 4G/c2D. Here, we note Φmi as the second
rank tensor (because we treat G, c, D, m, λ as scalars).
It is the consequence of the second rank tensor of the
topological charge.

By substituting eq.(47), into eq.(43), we obtain the
angle of deflection by the non-linear mass of the kink
(anti-kink) in the sine-Gordon model as follows

Φmipqrs = V
{
U
[
1− 12π χ(3)

pqrs

(
1− U−1 8|Qmi|

)]}
(50)

or

Φmipqrs = V
{
U
[
1− 12π χ(3)

pqrs

(
1− U−1 8|Nmi|

)]}
(51)
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where Φmipqrs is the sixth rank tensor. Eqs.(48), (50), show
that the angle of the light deflection can be linked to the
topological charge. Eqs.(49), (51), show that the angle of
the light deflection is a function of the winding number.

We see from eqs.(27) and (28), the curvature in the
non-linear optics is smaller than the curvature in the lin-

ear optics by a factor Nk
∂ln χ(3)

pqrs

∂xj (we assume that this
factor has a positive value). Because the curvature is re-
lated to the mass, then eqs.(27), (28) imply that the mass
of the non-linear optics, Mmi

pqrs is smaller than the mass

of the linear optics, Mmi. So, the angle of deflection in
the non-linear medium is smaller compared to the angle
of deflection in the linear medium.

VII. DISCUSSION AND CONCLUSION

In one and two dimensional space, the curvatures are
given by 1/R and 1/R2 respectively. Georg Friedrich
Bernhard Riemann, a student of Johann Carl Friedrich
Gauss, generalize the Gauss curvature of space for more
than two dimensions. The result is the Riemann-
Christoffel curvature tensor where the Christoffel symbol
is used in the formulation of the generalized curvature.

Because the refractive index is related to the curvature
of space for one and two dimensions, and this curvature
of space can be generalized to more than two dimen-
sions, then the refractive index should be able to be for-
mulated in more than two dimensional curved space. It
gives the refractive index as the second rank tensor as the
consequence of the fourth rank tensor of the Riemann-
Christoffel curvature tensor.

The second rank tensor of the refractive index de-
scribes the linear optics. It implies that the Riemann-
Christoffel curvature tensor is related naturally to the
linear medium or the linear optics. Because the non-
linear refractive index can be expressed as a function of
the linear refractive index and the third order of the sus-
ceptibility, where the linear refractive index is the sec-
ond rank tensor and the susceptibility is the fourth rank
tensor then the non-linear refractive index should be the
sixth rank tensor. It means that the Riemann-Christoffel
curvature tensor can be related to the non-linear optics.

The relation between the refractive index and the
mass, especially for the linear and non-linear optics are
formulated. We found ”the Einstein field equations” for
the linear and non-linear optics. The mass of the kink
(anti-kink) in the sine-Gordon models is shown, where
the mass of the kink (anti-kink) is associated with its
topological charge. We found the relation between the
linear and non-linear refractive index of the kink (anti-
kink) and the topological charge in the sine-Gordon mod-
el. In this model, the linear and non-linear refractive
indices are also a function of the winding number.

Why is space curved? Refer to the general relativity,
geometry of space-time is related to the energy-mass of
the object. The massive mass of the object bends the

surrounding space-time to form curvature of space-time
near the object. Because the curvature of space is related
to the mass of the object and the mass of the object can
be related to the refractive index, then the curvature of
space is related to the refractive index. Because the mass
of the object, i.e. the mass of the kink (anti-kink), is
related to its topological charge and the mass of the kink
(anti-kink) is also related to the refractive index then the
refractive index is related to the topological charge of the
kink (anti-kink).

Why do we use the kink (anti-kink) as the object with
mass? Because, the kink (anti-kink) lives in (1+1) di-
mensional space-time, i.e. one dimensional space and one
dimensional time, so the formulation of the kink (anti-
kink) is suitable if the mass of the kink (anti-kink) is re-
lated to the curvature of one dimensional space. Another
topological objects which have mass, e.g. vortex, which
lives in two dimensional space, domain walls (as the ex-
tension of the kink (anti-kink)) and Skyrmion which live
in three dimensional space, can be formulated in relations
with the curvature of two and three dimensional space,
respectively. Because the Riemann-Christoffel curvature
tensor can accommodate the topological object in higher
dimensional space, so how are the topological objects in
the higher dimensional space looked like?

If light passes through the space near the object with
mass, i.e. the kink (anti-kink), then the light path will be
deflected. The angle of deflection is proportional to the
mass. In the sine-Gordon model, we formulate the angle
of deflection related to the topological charge of the kink
(anti-kink). In this model, the angle of deflection is also
a function of the winding number. What is happened if
light passes through the space near the massive collapsing
kink (anti-kink) to black hole?
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