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Abstract 

 

Quantum Field Theory, or QFT, is a well-accepted set of theories used in particle physics that involves 

Lagrangian mechanics.  An individual can generate a rich variety of Hamiltonian equation systems from 

the Lagrangian associated QFT to describe simultaneous or cofounding processes which occur in particle 

physics.  Unfortunately, the equation systems associated with QFT are relatively hard to solve.  This 

paper will show that the generating function technique (GFT) can be used to directly solve these equation 

systems while also producing renormalization results.  The usage of the latter is necessary to display the 

consistency of the solutions and equation systems.  Ultimately, an astute scientist in QFT can claim GFT 

is a valuable tool to be utilized in the field of particle physics. 

 

1.  Introduction 

 

QFT is a combination of quantum mechanics, classical field theory, and special relativity [1].  It is commonly 

applied to particle physics, thus essential and in the formation of models within the realm of subatomic and 

condensed matter physics [1].  It heavily utilizes Lagrangian mechanics to display the interaction of particles, 

which are defined as quantum fields [2].  Since its advent in the 1920s and rebirth in the 1970s, QFT has had a 

prominent role in describing contemporary physics [3]. 

 

QFT was divided into at least three branches: quantum electrodynamics (QED), quantum flavordynamics 

(QFD), and quantum chromodynamics (QCD).  QED was primarily developed by Dirac in 1927 which built 

upon the concept of canonical quantization [4].  It dealt with the interaction of fermionic and electromagnetic 

fields [5].  QFD was the study of electroweak nuclear force, such as bosons Z0 and W+ activities, while QCD 

involved strong nuclear interactions, generally mediated gluon fields [6,7].  It is not uncommon to find 

situations where certain branches, like QED and QCD, crossed over or encroached on each other. 

 

The generating function technique (GFT) is a novel method for solving [nonlinear] PDEs [8].  It assumes 

there is a general solution to the PDE of interest already exists; thus, solving the PDE requires one to 

determine the appropriate degree[s] of the solution, then (s)he computes the necessary constants to obtain 
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the solution.  Even though the processes of GFT are simple to comprehend, it requires a computer to carry 

out the steps. 

 

This paper utilizes GFT in the derivation of sets of exact solutions to a set of new QFT models.  The 

study is reduced into three more sections.  Section two deals with the ascertainment of critical 

Hamiltonian equations from the Lagrangian of more extensive QFT models.  Section two also provides a 

brief description of GFT that is used to derive sets of exact solutions for the Hamiltonian equations and an 

easier way to generate renormalization results using the solutions derived from GFT.  Section three 

describes several QFT scenarios in which GFT and the new renormalization method are implemented to 

produce solutions and mass-energies for particle fields.  Finally, section five gives a synopsis of the QFT 

models and the implications of the efficiency of GFT to generate solutions and renormalization results. 

 

2. Models and Methodology 

 

2.1.   A variation of the Yukawa interaction 

 

A Yukawa interaction is a type of QCD model which involves the relationship between a gauge boson 

and fermion fields [9].  The former field can be [partially] self-interacting; in other words, the constant  

in the equation is not null.  The principle of least action for a gauge boson i which either decays into or 

generates from a fermion 𝜓𝑗  and its antiparticle 𝜓j
†
is expressed as follows: 

𝒮[𝜙𝑖, 𝜓𝑗
˙
] = ∫ 𝑑𝑥4 ∑ (−𝜙𝑖𝛿𝑗𝜓𝑗𝜓𝑗

† +
𝜆𝜙𝑖

3

3
+

1

2
𝜙𝑖

2(𝑚𝜙𝑖

2 + ∂𝜇 ∂𝛼) + 𝛿𝑗𝜓𝑗𝜓𝑗
†(𝑚𝜑

2 + ∂𝜇 ∂𝜇)) ,

𝑗

 

where mi and mj are the invariant masses of the gauge boson i and fermion j, respectively, j is not a 

Kronecker product and equals +1 depending upon whether the field occurs before or after the gauge 

boson i, and  is a coupling constant.  The above equation can be converted to a Hamiltonian: 

ℋ[𝜙𝑖, 𝜓𝑗] = ∫ 𝑑𝑥4 ∑ (𝜙
˙

𝑖
2 + 𝑖𝛿𝑗𝜓𝑗𝜓

˙

𝑗 −
1

3
𝜆𝜙𝑖

3 −
1

2
𝜙𝑖

2(𝑚𝜙𝑖

2 + ∂𝜇 ∂𝜇) − 𝛿𝑗𝜓𝑗𝜓𝑗
†(𝑚𝜓

2 + ∂𝜇 ∂𝜇)

𝑗

+ 𝜙𝛿𝑗𝜓𝑗𝜓𝑗
†). 

With Poisson brackets [10], an individual can derive time evolution equations for the gauge boson i: 



𝜙
¨

𝑖 = {𝜙
˙

𝑖 , ∫ 𝑑x4 ∑ (𝜙
˙

𝑖
2 + 𝑖𝜓

˙

𝑗𝜓𝑗
† + 𝜙𝑖𝛿𝑗𝜓𝑗𝜓𝑗

† −
1

3
𝜆𝜙𝑖

3 −
1

2
𝜙𝑖

2(𝑚𝜙𝑖

2 + ∂𝜇 ∂𝜇)

𝑗

− 𝜓𝛿𝑗𝜓𝑗
† (𝑚𝜓𝑗

2 + ∂𝜇 ∂𝜇))}, 

or 

𝜙
¨

𝑖 = −𝜆𝜙𝑖
2 − 𝜙𝑖 (𝑚𝜙

2 − Δ) + ∑ 𝛿𝑗𝜓𝑗𝜓𝑗
†

𝑗
. 

By placing all terms on the left side of the equation, the individual yields: 

𝜙
¨

𝑖 − Δ𝜙𝑖 + 𝜆𝜙𝑖
2 + 𝜙𝑖𝑚𝜙𝑖

2 − ∑ 𝛿𝑗𝜓𝑗𝜓𝑗
†

𝑗

= 0. 

To obtain a comparable equation for fermion field j, the same individual again must use Poisson 

brackets: 

𝛿𝑙𝜓
¨

𝑙 = {𝛿𝑙𝜓
˙

𝑙
†, ∫ 𝑑x4 (𝜙

˙

𝑖
2 + 𝑖𝛿𝑗𝜓

˙

𝑗𝜓𝑗
† − 𝜙𝑖𝛿𝑗𝜓𝑗 𝜓𝑗

† −
1

3
𝜆𝜙𝑖

3 −
1

2
𝜙𝑖

2(𝑚𝜙𝑖

2 + ∂𝜇 ∂𝜇)

− 𝛿𝑗𝜓𝑗𝜓𝑗
† (𝑚𝜓𝑗

2 + ∂𝜇 ∂𝜇))}, 

 

or 

𝜓
¨

𝑙 = 𝑖𝜓
˙

𝑙 − 𝜙𝑖𝜓𝑙 − 𝜓𝑙(𝑚𝜓𝑙

2 − Δ), 

where l is an element of the j-th fermion field pair.  Note:  fermion fields in a j-th pair do not have to be 

the same entity.  By placing all terms on the right side of the equation, the individual obtains: 

𝑖𝜓
˙

𝑙 − 𝜓
¨

𝑙 − 𝜙𝑖𝜓𝑙 + Δ𝜓𝑙 − 𝜓𝑙𝑚𝜓𝑙

2 = 0. 

The above equation is a variation of the Schrodinger equation.  It is highly like the equation derived by 

Arbab and Yassein (et al., 2011).  In future analysis, 𝑚𝜙𝑖

2  is set to m while 𝑚𝜓𝑙

2  is set to null or 0.0. 

 

2.2.   GFT 

 

GFT is a method for solving [non]linear PDEs via the utilization of a general solution ug that comprises 

Laurent series sets of combinatorial number or trigonometric-based generating functions [8].  An 

individual determines the maximal and minimal power degree, or ps, through which the Laurent series is 

eventually truncated.  Then, one solves a linear auxiliary/characteristic ordinary differential equation to 

yield a function f is plugged into the transformed general solution Ug, or: 



𝑈(𝜉) = ∑ ∑(𝑎𝑖𝑗(∑ 2𝑓(𝜉)𝑘𝑆𝑘(0)𝑖

∞

𝑘=0

)𝑗 + 𝑏𝑖𝑗(∑ 2𝐶𝑘(0)𝑖𝑓(𝜉)𝑘

∞

𝑘=0

)𝑗)

𝑝𝑠

𝑗=−𝑝𝑠

,

2

𝑖=1

 

or 

𝑈(𝜉) = ∑ ∑(dlij(∑ 2C𝑘(0)𝑖𝑓(𝜉)𝑘

∞

𝑘=0

)𝑗 + clij(∑ 2𝑓(𝜉)𝑘𝑆𝑘(0)𝑖

∞

𝑘=0

)𝑗)

𝑝𝑠

𝑗=−𝑝𝑠

,

2

𝑖=1

 

where the expression Sk(0) is the square root of the k-th Fibonacci number at/about zero, or 

𝑆𝑘(0) = sin (
𝜋𝑘

2
), 

the expression Ck(0) is the k-th Chebyshev U number at/about zero, or 

𝐶𝑘(0) = cos (
𝜋𝑘

2
), 

and the transformed variable  for a (3+1) system is defined as: 

𝜉 = 𝛼𝑡 + 𝛽𝑙𝑥 + 𝛽2𝑦 + 𝛽3𝑧. 

For this article, the arbitrary constants aij and bij are used for the primary gauge boson field while the 

arbitrary constants clij and dlij are used for secondary gauge boson and or fermion fields where l = 1, 2, 

…, n and n is the total number of secondary items.  

 

2.3.  The generation of renormalization results 

 

The basic formula for renormalization is defined as: 

𝑚𝑝 =
1

2
∫ 𝑑V𝑝(𝑥)𝑝∗(𝑥), 

where mp is the mass-energy of particle field p, p* is the conjugate of particle field p, and V is the volume 

that contains the particle field p.  If the spherical volume for particle field f is equivalent to the following 

expression, assuming one is working with Manhattan/taxicab distance [11]: 

𝑉 =
𝜋𝑥3

6
, 

then the formula for renormalization becomes: 

𝑚𝑝 = ∫
1

4
𝜋𝑥2𝑝(𝑥)𝑝∗(𝑥)𝑑𝑥

∞

0

. 

The above expression can be simply redefined as: 



𝑚𝑝 =
1

2
∫

1

4
𝜋𝑥2𝑝(𝑥)𝑝∗(𝑥)𝑑𝑥 

∞

−∞

. 

In terms of the inner product, the mass-energy of particle field p can also be expressed as: 

𝑚𝑝 =
1

8
𝜋⟨𝑥𝑝(𝑥), 𝑥𝑝(𝑥)⟩. 

 

3. Examples 

 

The supplementary materials contain Mathematica (R) spreadsheets that pertain to the QFT models 

described in this paper. 

 

3.1. Mesonic decay and photoproduction 

 

Assume one is dealing with a simple Feynman diagram where a meson decays and gives rise to an 

electron and position pair: 

. 

The principle of least action for this system is given by the following equation: 

. 

𝒮[𝜙, 𝜓] = ∫ 𝑑x4 (
𝜆𝜙3

3
+ 𝜓𝜓†(𝑚𝜓

2 + ∂𝜇 ∂𝜇) +
1

2
𝜙2(𝑚𝜙

2 + ∂𝜇 ∂𝜇) + 𝜓𝜙𝜓†). 

The above expression can be used to derive the Hamiltonians for all particles of interest: 

𝜙
¨

− Δ𝜙 + 𝜆𝜙2 + 𝜙𝑚𝜙
2 + 𝜓𝜓† = 0, 

and 

𝑖𝜓
˙

− 𝜓
¨

+ Δ𝜓 − 𝜓𝑚𝜓
2 − 𝜓𝜙 = 0. 

Next, GFT and renormalization are to generate solutions and mass-energies of particles.  GFT is used to 

generate the solutions to the Hamiltonians: 



𝜙(𝑡, 𝑥, 𝑦, 𝑧) = −

12𝑚2exp (
2𝑖𝑚2𝑡

3𝜆+1
+

𝑧√−4(𝛽12+𝛽22)(3𝑐𝜆+𝑐)2−4𝑚4+2𝑐2(3𝜆+1)𝑚2

√(3𝑐𝜆+𝑐)2
+2𝛽1𝑥+2𝛽2𝑦)

(3𝜆+1)(1+exp (
2𝑖𝑚2𝑡

3𝜆+1
+

𝑧√−4(𝛽12+𝛽22)(3𝑐𝜆+𝑐)2−4𝑛𝑡4+2𝑐2(3𝜆+1)𝑚2

√(3𝑐𝜆+𝑐)2
+2𝛽1𝑥+2𝛽2𝑦))2

, 

and 

𝜓𝑒(𝑡, 𝑥, 𝑦, 𝑧) =

−((6√(𝜆 + 1)𝑚4exp (
2𝑖𝑚2𝑡

3𝜆 + 1
+

𝑧√−4(𝛽12 + 𝛽22)(3𝑐𝜆 + 𝑐)2 − 4𝑚4 + 2𝑐2(3𝜆 + 1)𝑚2

√(3𝑐𝜆 + 𝑐)2
+ 2𝛽1𝑥 + 2𝛽2𝑦)

(−1 + exp (
2𝑖𝑚2𝑡

3𝜆 + 1
+

𝑧√−4(𝛽12 + 𝛽22)(3𝑐𝜆 + 𝑐)2 − 4𝑚4 + 2𝑐2(3𝜆 + 1)𝑚2

√(3𝑐𝜆 + 𝑐)2
+ 2𝛽1𝑥 + 2𝛽2𝑦)))/

(√(3𝜆 + 1)2

(1 + exp (
2𝑖𝑚2𝑡

3𝜆 + 1
+

𝑧√−4(𝛽12 + 𝛽22)(3𝑐𝜆 + 𝑐)2 − 4𝑚4 + 2𝑐2(3𝜆 + 1)𝑚2

√(3𝑐𝜆 + 𝑐)2
+ 2𝛽1𝑥 + 2𝛽2𝑦))2)),

 

while the results of renormalization of the same particles can be expressed as the following if one sets the 

constant  to null and the speed of light c to unity: 

𝑚𝜙 = 0.0949744|𝑚|4, 

and 

𝑚𝜓𝑒
= 0.536761|𝑚|4. 

 

Using the above results, one can calculate the needed center-of-mass, or√𝑠, for electron-positron collision 

to produce a particular meson.  For instance, (s)he first must set m to well-known mass-energy and solve 

for m, then (s)he can calculate the √𝑠 for the particle by plugging m into me.  The following table shows 

the predicted √𝑠 for various mesons: 

 

 meson 

mass-energy 

(eV) 

center-of-mass 

(eV)  

 neutral pion 1.34*10^8 7.57*10^8  

 neutral kaon 4.98*10^8 2.81*10^9  

 
neutral D 

meson 1.86*10^9 1.05*10^10   

 neutral B meson 5.28*10^9 2.98*10^10 . 

     
 

3.2. Lepton pair decay and production 

 



Assume one is dealing with a simple Feynman diagram where [anti]muon pair decay into a photon and 

the photon gives rise to an electron and position pair: 

. 

The principle of least action for this system is given by the following equation: 

𝒮[𝜙, 𝜓] = ∫ 𝑑x4 (
𝜆𝜙3

3
− 𝜓1𝜓1

†(𝑚𝜓1

2 + ∂𝜇 ∂𝜇) + 𝜓2𝜓2
†(𝑚𝜓2

2 + ∂𝜇 ∂𝛼) +
1

2
𝜙2(𝑚𝜙

2 + ∂𝜇 ∂𝜇) − 𝜓1𝜙𝜓1
†

+ 𝜓2𝜙𝜓2
†). 

The above expression can be used to derive the Hamiltonians for all particles of interest: 

𝜙
¨

− Δ𝜙 + 𝜆𝜙2 + 𝜙𝑚𝜙
2 − 𝜓1𝜓1

† + 𝜓2𝜓2
† = 0, 

𝑖𝜓
˙

1 − 𝜓
¨

1 + Δ𝜓1 − 𝜓1𝑚𝜓1

2 − 𝜓1𝜙 = 0, 

and 

𝑖𝜓
˙

2 − 𝜓
¨

2 + Δ𝜓2 − 𝜓2𝑚𝜓2

2 − 𝜓2𝜙 = 0, 

where the gauge boson  is equal to photon .   

 

Next, GFT and renormalization are to generate solutions and mass-energies of particles.  GFT is used to 

generate the solutions to the Hamiltonians: 

𝛾(𝑡, 𝑥, 𝑦, 𝑧) = −
3

2
𝑐2𝑚2 sec2 (𝑐2𝑚2𝑡 +

1

2
𝑖 (𝑧√−4(𝛽12 + 𝛽22) − 4𝑐2𝑚4 − 𝑐2𝑚2 + 2𝛽1𝑥 + 2𝛽2𝑦)), 

𝜓1(𝑡, 𝑥, 𝑦, 𝑧) = −d1(1,4) (tan (𝑐2𝑚2𝑡 +
1

2
𝑖𝑧√𝑐2(−𝑚2)(4𝑚2 + 1) − 4(𝛽12 + 𝛽22) + 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦)

+ 𝑖)
2

, 

and 

𝜓2(𝑡, 𝑥, 𝑦, 𝑧) =
1

2
√4d1(1,4)2 − 9𝑐4(𝜆 − 1)𝑚4(tan (𝑐2𝑚2𝑡 +

1

2
𝑖𝑧√𝑐2(−𝑚2)(4𝑚2 + 1) − 4(𝛽12 + 𝛽22) + 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦) + 𝑖)2,

 



while the results of renormalization of the same particles can be defined as the following if one sets the 

constant  to null and the speed of light c to unity: 

𝑚𝛾 = 0.379898|𝑚|4, 

𝑚𝑒 = 0.168843|d1(1,4)|2, 

and 

𝑚𝜇 = 0.0422108|9𝑚4 − 4. d1(1,4)2|. 

Finally, an individual would use the results from renormalization to obtain the value of constants m and 

d114 and prove the consistency of the results.  By setting m and me to 1.05*108 and 5.11*105 eV, 

respectively, (s)he produces an m and d114 equal to –128.781 and 24937.5, also respectively.  The mass-

energy m equals 104.489 MeV, which is consistent with the difference between m and me. 

 

3.3. Glueball prediction 

 

Assume the following principle of least action is true: 

𝒮[𝜙i, 𝜙j] =  ∫ 𝑑x4∑𝑗  (𝜙𝑖𝛿𝑗𝜓𝑗,1𝜒𝐻  𝑗 + 𝛿𝑗𝜓𝑗,1𝜒𝐻  𝑗 (𝑀
𝜓𝑗,1

2 −𝜒𝑗

2 + ∂𝜇 ∂𝜇) +

𝜙𝑖𝛿𝑗𝜒𝑗𝜓j,2 +
𝜆𝜙𝑖

3

3
+

1

2
𝜙𝑖

2(𝑚𝜙𝑖

2 + ∂𝜇 ∂𝜇) + 𝛿𝑗𝜒𝑗𝜓j,2 † (𝑀
𝜓𝑗,2

2 −𝜒𝑗

2 + ∂𝜇 ∂𝜇))
, 

Where  is Majorana dark matter (DM) fermion and  is the harmonic mean of the fermion  and  

invariant masses.  Like typical Dirac fermions, some Majorana particles are spin-½.  The Hamiltonian 

equations for the above equation are defined as: 

 

𝜙̀𝑖 + 𝛿𝑗𝜓𝑗,1𝜒𝑗
𝐻 − Δ𝜙𝑖 + 𝜆𝜙𝑖

2 + 𝜙𝑖𝑚𝜙𝑖

2 + 𝛿𝑗𝜒𝑗𝜓𝑗,2 = 0, 

−𝜓̀𝑗,{1,2} + 𝜓̀𝑗,{1,2} − 𝜙𝑖𝜓𝑗,{1,2} + 𝜓𝑗,{1,2}M𝜓𝑗,{1,2}−𝜒𝑗

2 − Δ𝜓𝑗,{1,2} = 0, 

and 

−𝜒̀𝑗 + 𝜒̀𝑗 − 𝜙𝑖𝜒𝑗 − Δ𝜒𝑗 + 𝜒𝑗M𝜓𝑗,{1,2}−𝜒𝑗

2 = 0, 

 

where j,{1,2} is either the fermion particle j,1 or j,2 while H is a Majorana particle Hermitian, which is 

equal to itself.  Via GFT, the solutions for the particles are the following: 

𝜙(𝑡, 𝑥, 𝑦, 𝑧) = −
3

2
𝑐2𝑚2sec2 (𝑐2𝑚2𝑡 +

1

2
𝑖(𝑧√−4(𝛽12 + 𝛽22) − 4𝑐2𝑚4 − 𝑐2𝑚2 + 2𝛽1𝑥 + 2𝛽2𝑦)), 



𝜓1(𝑡, 𝑥, 𝑦, 𝑧) = −d1(1,4) (tan (𝑐2𝑚2𝑡 +
1

2
𝑖𝑧√𝑐2(−𝑚2)(4𝑚2 + 1) − 4(𝛽12 + 𝛽22) + 𝑖𝛽1𝑥 +

𝑖𝛽2𝑦) + 𝑖)
2

, 

𝜓1(𝑡, 𝑥, 𝑦, 𝑧) = −d1(1,4) (tan (𝑐2𝑚2𝑡 +
1

2
𝑖𝑧√𝑐2(−𝑚2)(4𝑚2 + 1) − 4(𝛽12 + 𝛽22) + 𝑖𝛽1𝑥 +

𝑖𝛽2𝑦) + 𝑖)
2

, 

and 

𝜒(𝑡, 𝑥, 𝑦, 𝑧) = −d3(1,4) (tan (𝑐2𝑚2𝑡 +
1

2
𝑖𝑧√𝑐2(−𝑚2)(4𝑚2 + 1) − 4(𝛽12 + 𝛽22) + 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦) +

𝑖)
2

. 

Using the mass-energy equation, one can derive the following solutions: 

𝑚𝜙 = 1.5|𝑚|4, 

𝑚𝜓1
= 0.667| d1(1. ,4. )|2, 

𝑚𝜓2
= 0.0417 |

(9.𝑚4+4.d1(1.,4.)d3(1.,4.))
2

 d3(1.,4.)2
|, 

and 

𝑚𝜒 = 0.667| d3(1. ,4. )|2. 

One may also assume that the interaction between two Majorana fermions could form a glueball.  Some 

scientists claim the interaction of spin-½ Majorana fermions can generate spin-1 liquid, thus the following 

diagram may be correct: 



. 

The Feynman aspect of the picture is the gluon interaction formed between the purposed Majorana DM 

fermions.  In other words, the mass of a glueball would constitute the mass-energy of Majorana DM spin-

½ fermion.  A table of predicted glueball masses derived from various meson decays is featured below: 

 

meson m(eV) m1(eV) m2(eV) m/glueball(eV) 

charged pion 1.40*10^8 2.20*10^6 4.70*10^6 1.47*10^9 

neutral kaon 4.98*10^8 4.70*10^6 9.60*10^7 1.73*10^9 

charmed  2.98*10^9 1.28*10^9 1.28*10^9 1.73*10^9 

bottom  9.30*10^9 4.18*10^9 4.18*10^9 5.17*10^9 

 

3.4.) New Physics analysis 

 

Assume one is dealing with the following Feynman diagram: 



, 

The principle of least action for this system is given by the following equation: 

𝒮[𝜙i, 𝜙j] = ∫𝑑x
4
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, 

The above expression can be used to derive the Hamiltonians for all particles of interest: 

𝜙̀𝑖 + 𝛿1𝜓1,1𝜒1
𝐻 + 𝛿2𝜓2,1𝜒2

𝐻 − Δ𝜙𝑖 + 𝜆𝜙𝑖
2 + 𝜙𝑖𝑚𝜙𝑖

2 + 𝛿1𝜒1𝜓1,2 + 𝛿2𝜒2𝜓2,2 = 0, 

−𝜓̀𝑗,{1,2} + 𝜓̀𝑗,{1,2} − 𝜙𝑖𝜓𝑗,{1,2} + 𝜓𝑗,{1,2}M𝜓𝑗,{1,2}−𝜒𝑗

2 − Δ𝜓𝑗,{1,2} = 0, 

and 

−𝜒̀𝑗 + 𝜒̀𝑗 − 𝜙𝑖𝜒𝑗 − Δ𝜒𝑗 + 𝜒𝑗M𝜓𝑗,{1,2}−𝜒𝑗

2 = 0, 

Next, GFT and renormalization are to generate solutions and mass-energies of particles.  GFT is used to 

generate the solutions to the Hamiltonians: 

𝜙(𝑡, 𝑥, 𝑦, 𝑧) = −
3

2
𝑚2sec2 (𝑚2𝑡 −

𝑖𝑧√−4𝑐2(𝛽12+𝛽22)−4𝑚4−𝑐2𝑚2

2𝑐
+ 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦), 

𝜓1,1(𝑡, 𝑥, 𝑦, 𝑧) = −d1(1,4) (tan (𝑚2𝑡 −
𝑖𝑧√−4𝑐2(𝛽12+𝛽22)−4𝑚4−𝑐2𝑚2

2𝑐
+ 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦) + 𝑖)

2

, 

𝜓1,2(𝑡, 𝑥, 𝑦, 𝑧) = −d2(1,4) (tan (𝑚2𝑡 −
𝑖𝑧√−4𝑐2(𝛽12+𝛽22)−4𝑚4−𝑐2𝑚2

2𝑐
+ 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦) + 𝑖)

2

, 

𝜓2,1(𝑡, 𝑥, 𝑦, 𝑧) = −d4(1,4) (tan (𝑚2𝑡 −
𝑖𝑧√−4𝑐2(𝛽12+𝛽22)−4𝑚4−𝑐2𝑚2

2𝑐
+ 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦) + 𝑖)

2

, 

 



𝜓2,2(𝑡, 𝑥, 𝑦, 𝑧) = −
1

4 d6(1,4)
(4 d3(1,4)(d1(1,4) + d2(1,4)) − 4( d4(1,4)d6(1,4) + d7(1,4)2) − 9(𝜆

− 1)𝑚4) 

tan (𝑚2𝑡 −
𝑖𝑧√−4𝑐2(𝛽12+𝛽22)−4𝑚4−𝑐2𝑚2

2𝑐
+ 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦) + 𝑖, 

 

𝜓3(𝑡, 𝑥, 𝑦, 𝑧) = −d7(1,4) (tan (𝑚2𝑡 −
𝑖𝑧√−4𝑐2(𝛽12+𝛽22)−4𝑚4−𝑐2𝑚2

2𝑐
+ 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦) + 𝑖)

2

, 

𝜒1(𝑡, 𝑥, 𝑦, 𝑧) = −d3(1,4) (tan (𝑚2𝑡 −
𝑖𝑧√−4𝑐2(𝛽12+𝛽22)−4𝑚4−𝑐2𝑚2

2𝑐
+ 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦)

2

+ 𝑖), 

and 

𝜒2(𝑡, 𝑥, 𝑦, 𝑧) = −d6(1,4) (tan (𝑚2𝑡 −
𝑖𝑧√−4𝑐2(𝛽12+𝛽22)−4𝑚4−𝑐2𝑚2

2𝑐
+ 𝑖𝛽1𝑥 + 𝑖𝛽2𝑦) + 𝑖)

2

. 

 

while the results of renormalization of the same particles can be expressed as the following if one sets the 

constant  to unity and the speed of light c to unity: 

𝑚𝜙 = 0.38|𝑚|4, 

𝑚𝜓1,1
= 0.169| d1(1. ,4. )|2, 

𝑚𝜓1,2
= 0.169| d2(1. ,4. )|2, 

𝑚𝜓2,1
= 0.169| d4(1. ,4. )|2, 

𝑚𝜓2,2
= 0.0422 |

(9.𝑚4−2.d7(1.,4.)2+2.d1(1.,4.)d3(1.,4.)+2.d2(1.,4.)d3(1.,4.)−2.d4(1.,4.)d6(1.,4.))
2

 d6(1.,4.)2
|, 

𝑚𝜓7
= 0.169| d7(1. ,4. )|2, 

𝑚𝜒1
= 0.169| d3(1. ,4. )|2, 

and 

𝑚𝜒2
= 0.169| d6(1. ,4. )|2. 

If m1,1, m 1,2, and the sum of the geometric means of m 1,1-m1 and m 1,2-m1 are equal to 4.18*10^9, 

4.70*10^6, and 5.28*10^9 eV, respectively, then the mass-energy of Majorana particle 1 is 6.24*10^9 

eV.  On the other hand, if m 2,1, m 2,2, and the sum of the geometric means of m 2,1-m2 and m 2,2-m2 are 

equal to 9.60*10^7, 4.70*10^6, and 4.98*10^8 eV, respectively, then the mass-energy of Majorana 

particle 2 is 1.73*10^9 eV.  Next, one would find the mass-energy of particle  is 2.34*10^9 eV.  Note:  



this is the value produced if an individual takes the geometric mean of the mass-energies of the 

prospective Nambu partner to the Higgs boson (3.25*10^11 eV) and particle X17 (1.68*10^7 eV) [12,13]. 

 

4. Conclusion 

 

4.1. QFT can be used to generate a large variety of equation systems describing particle 

physics. 

 

Section three provides several examples which implemented some variation of the QFT models provided 

by section two.  The equation systems produced by the Lagrangian for the examples are novel, wide-

ranging, and highly descriptive.  In other words, there is practically no limit to the Lagrangian or equation 

systems one can contemplate in QFT. 

 

4.2. GFT can easily derive solutions and renormalization results to many equation systems in 

QFT. 

 

Section three and supplementary material also showed relative ease of solving particle fields and 

generating renormalization results from the solution via GFT.  In other words, only a few steps are needed 

to produce solutions to both fermion and gauge boson fields involved in each QFT model.  Ultimately, 

GFT is an ideal tool for solving QFT models. 
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