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Margenau’s reduction of the wave packet1
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Abstract Margenau wanted to see reduction of the wave packet in terms of5

the Schrödinger equation. Here we will look at it in the context of nonlocality.6
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1 Introduction8

Margenau [1] was opposed to the additional projection theorem in the re-9

duction of the wave packet. If we only allow the Schrödinger equation Hψ =10

iℏ(∂ψ/∂t), the the time progression of ψ is after ∆t seconds is: ψ+(∂ψ/∂t)∆t.11

In this sense we can define a Margenau operator as12

M = 1− i

ℏ
∆tH (1)13

The question in this paper is as follows. Is theM operator capable of obtaining14

the same reduced form of the wave function as in reduction of the wave packet.15

And if so, is the claimed equivalence of a Greenberger wave function [2] giving16

the same result under a Margenau operator as in (1). Let us define the following17

Hamiltonian H = H0 +HM and apply that to entangled spin states. This is18

done in the next sections.19

2 Application to entangled spin20

The topic here is an equivalent of the entagled wave function: i.e. |ψ⟩12 =21

ψ(AB) in the sense of Einstein. With

(
1
0

)
j

the up spin state is denoted and22
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equivalently with

(
0
1

)
j

the down spin state. Furthermore, with j = 1 we1

denote the spin travelling towards Alice and with j = 2 the spin travelling2

towards Bob. Of course, it is a particle, e.g. an electron, with a spin that is3

doing the travelling. For abbreviation we call it spin moving towards Alice or4

towards Bob.5

The e−if equivalent form of an entangled wave packet |ψ⟩12 is defined by6

|ψ⟩12 =
e−if

√
2

{ (
1
0

)
1

⊗
(
0
1

)
2

−
(
0
1

)
1

⊗
(
1
0

)
2

}
(2)7

Here the phase factor e−if is different from the usual description where 1/
√
2 is8

employed as normalization factor instead of e−f/
√
2. But because eife−if = 19

we are allowed to introduce the phase with a phase variable f and obtain10

12 ⟨ψ |ψ⟩12 = 1. Do also note that either

(
1
0

)
1

at Alice and

(
0
1

)
at Bob; or11 (

0
1

)
1

at Alice and

(
1
0

)
2

at Bob is found. This is in accordance with the12

quantum theoretically required discreteness of the spin so that no linear com-13

bination of the basic spin states exist in either separate wing of the experiment.14

It is assumed that this agrees with Einstein (10) below.15

In addition let us here define the Hamiltonian H that plays a crucial part16

in (1). We can have17

H0 =
ℏ
∆t

∂

∂ϕ
(3)18

HM =
ℏ
∆t

(
0 0
0 ∂

∂f

)
=

ℏ
∆t

(
0 0
0 1

)
∂

∂f
19

Note that the Hamiltonian H = H0 +HM is Hermitian.20

Given an observer defined frame of reference, the ϕ in the H0 of the Hamil-21

tonian is the azimuthal angle at measurement that the spin makes with the22

orientation vector n̂ of the measurement instrument of the observer.The angle23

ϕ exists because of observation. Because M1 is an expression of observational24

operation, an operation with ϕ can be present in the M1.25

In the wave function (2) we don’t have a ϕ dependence. The differentiation26

to f , in the HM part of the Hamiltonian, refers to the f in the equivalent wave27

function (2). The ϕ belongs to the measurement instrument. The f belongs to28

the description of the entangled particle spins.29

The next step is to restrict the activity of H to the Alice side. Let us30

assume an experiment where Bob waits a time unit before measuring the spin31

that is heading towards him. The first reduction is at the side of Alice. This32

reduction of the wave packet at the side of Alice is replaced by a Margenau33

operator M1.34

Let us therefore look at M1 |ψ⟩12. The M1 contains H1 = H01+HM1. The35

second index in H01 is j = 1 and therefore refers to Alice. Because |ψ⟩12 does36

not contain ϕ information, we immediately can conclude: H01 |ψ⟩12 = 0.37
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Let us then turn our attention to HM1. Hence1

HM1 |ψ⟩12 =
ℏ
∆t

(
0 0
0 ∂

∂f

)
1

e−if

√
2

(
1
0

)
1

⊗
(
0
1

)
2

(4)2

− ℏ
∆t

(
0 0
0 ∂

∂f

)
1

e−if

√
2

(
0
1

)
1

⊗
(
1
0

)
2

3

Because of the matrix form of HM1 onlly the second term is non vanishing.4

And, aknowledging that5

ℏ
∆t

(
0 0
0 ∂

∂f

)
1

e−if = −ie−if ℏ
∆t

(
0 0
0 1

)
1

(5)6

and because7

ℏ
∆t

(
0 0
0 1

)
1

(
1
0

)
1

=
ℏ
∆t

(
0
0

)
1

(6)8

ℏ
∆t

(
0 0
0 1

)
1

(
0
1

)
1

=
ℏ
∆t

(
0
1

)
1

9

it follows that10

− i∆t
ℏ
HM1 |ψ⟩12 =

e−if

√
2

(
0
1

)
1

⊗
(
1
0

)
2

(7)11

Therefore, the Margenau form Mφ = ψ, viz. [1] is here equal to12

M1 |ψ⟩12 =
e−if

√
2

(
1
0

)
1

⊗
(
0
1

)
2

(8)13

This implies that an M1 operator is possible where a similar form arises as14

with reduction of the wave packet when Alice measures

(
1
0

)
1

. Measurement15

here is entirely Hamiltonian / Schrödinger equation based without reduction16

of the wave packet.17

3 Greenberger wave function18

In [2] use is made of linear combinations of basic up and down states viz. their19

appendix A.20

| n̂,+⟩ = (cos θ/2)e−iϕ/2

(
1
0

)
+ (sin θ/2)eiϕ/2

(
0
1

)
, (9)21

| n̂,−⟩ = (− sin θ/2)e−iϕ/2

(
1
0

)
+ (cos θ/2)eiϕ/2

(
0
1

)
22

The n̂ represents a unit normal vector in a frame of reference. The ϕ is the23

azimuthal angle and θ is the polar angle. The length of n̂ is unity. The states24



4 Han Geurdes

| n̂,−⟩ and | n̂,+⟩ are indeed orthonormal like the two basis vectors of a spin1

configuration space,

(
1
0

)
and

(
0
1

)
. But because the Greenbreger functions2

contain linear combinations of

(
1
0

)
and

(
0
1

)
they cannot in an Einsteinian3

sense, represent the spin state of a single particle. The spin state of a single par-4

ticle is represented by either

(
1
0

)
exclusive or

(
0
1

)
and is essentially without5

any angular measurement instrument related direction before measurement.6

In quantum mechanics spin is a discrete variable. In a letter to Schrödinger of7

19 june 1935 [4, page 179] Einstein writes (cite from Howard:)8

In the quantum theory, one describes a real state of a
system through a normalized function, ψ . . .
Now one would like to say the following:
ψ is correlated 1-1 with the real state of the system.

(10)9

If (10) is possible, then Einstein calls the theory complete. If (10) is not possible10

Einstein would call that theory incomplete. Therefore, employing the functions11

in (9) to represent a spin of a particle, e.g. | n̂,+⟩ for ”up” and noticing that12

the quantum theory requires discrete spins either

(
1
0

)
or

(
0
1

)
, gives rise to13

an incomplete theory in the sense of Einstein.14

Based on the | n̂,−⟩ and | n̂,+⟩ from (9) the entangled state |ψ( n̂)⟩ of15

(9) below, is equvalent to (2).16

|ψ( n̂)⟩12 =
e−if

√
2

{| n̂,+⟩1 | n̂,−⟩2 − | n̂,−⟩1 | n̂,+⟩2} (11)17

Regarding (10),the present author would call (11) overcomplete because of (9).18

However, because |ψ( n̂)⟩12 given in (11) is demonstrated by Greenberger et al19

[2, their appendix A] equal to |ψ⟩12, in (2) one can try to argue that Einstein’s20

completeness restriction does not apply here.21

But in order to render Einstein’s completeness criterion (10) irrelevant in22

this case, it seems likely that one must also demonstrate |ψ( n̂)⟩12 is equivalent23

in all respects to |ψ⟩12 in (2).We check this equivalence to the direct application24

of our particular Margenau operator, with Hamiltonians given in (3), that gives25

the M1 |ψ⟩12 in (8).26

Therefore, we may ask if the M1 in M1 |ψ( n̂)⟩12 = M1 |ψ⟩12 via a direct27

computation of M1 |ψ( n̂)⟩12 first. The latter can explicitly be written down28

as29

M1 |ψ( n̂)⟩12 = (12)30

1√
2

{(
M1e

−if | n̂,+⟩1
)
| n̂,−⟩2 −

(
M1e

−if | n̂,−⟩1
)
| n̂,+⟩2

}
31

We will deal with each M1 containing term on the right hand side of (12)32

separately.33
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3.1 The term M1e
−if | n̂,+⟩11

Looking at the definition of M1 in (1) and the Hamiltonian in (3) we can2

obtain3

M1e
−if | n̂,+⟩1 = e−if | n̂,+⟩1 −

i∆t

ℏ
H1e

−if | n̂,+⟩1 (13)4

And so, because H1 = H01 +HM1 from equation (3) and (9) it follows5

H01e
−if | n̂,+⟩1 = (14)6

ℏe−if

∆t

{
− i

2
(cos θ/2)e−iϕ/2

(
1
0

)
1

+
i

2
(sin θ/2)eiϕ/2

(
0
1

)
1

}
7

Concerning the HM1 in (3) and the equations (5) and (6)8

HM1e
−if | n̂,+⟩1 = −ie−if ℏ

∆t

(
0 0
0 1

)
1

| n̂,+⟩1 = (15)9

−ie−if ℏ
∆t

(sin θ/2)eiϕ/2
(
0
1

)
1

10

Combining the previous two equations, i.e. (14) and (15), gives11

M1e
−if | n̂,+⟩1 = e−if | n̂,+⟩1 −

1

2
e−if | n̂,+⟩1 =

1

2
e−if | n̂,+⟩1 (16)12

3.2 The term M1e
−if | n̂,−⟩113

In this case we have14

M1e
−if | n̂,−⟩1 = e−if | n̂,−⟩1 −

i∆t

ℏ
H1e

−if | n̂,−⟩1 (17)15

And so similarly to the exercise in the previous paragraph16

H01e
−if | n̂,−⟩1 = (18)17

ℏe−if

∆t

{
−i
2
(− sin θ/2)e−iϕ/2

(
1
0

)
1

+
i

2
(cos θ/2)eiϕ/2

(
0
1

)
1

}
18

For HM1 we find19

HM1e
−if | n̂,−⟩1 = −ie−if ℏ

∆t

(
0 0
0 1

)
1

| n̂,−⟩1 = (19)20

−ie−if ℏ
∆t

(cos θ/2)eiϕ/2
(
0
1

)
1

21

And so, via H1 = H01 +HM122

H1e
−if | n̂,−⟩1 = (20)23

i

2

ℏe−if

∆t

{
(sin θ/2)e−iϕ/2

(
1
0

)
1

− (cos θ/2)eiϕ/2
(
0
1

)
1

}
24
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Therefore, we may conclude that1

M1e
−if | n̂,−⟩1 = e−if | n̂,−⟩1 −

1

2
e−if | n̂,−⟩1 =

1

2
e−if | n̂,−⟩1 (21)2

4 Result3

If this result (21) and the one of the previous subsection in (16) is inserted in4

(12) it then quite easily follows that5

M1 |ψ( n̂)⟩12 =
1

2
|ψ⟩12 (22)6

and, for completeness, the |ψ⟩12 on the right hand side of (22) is as defined in7

equation (2).8

This demonstrates that direct computation, as in (12), ofM1 |ψ( n̂)⟩12 with9

|ψ( n̂)⟩12 based on the Greenberger functions as in (11), does not give the same10

result asM1 representing a direct measurement of an ”up” state at Alice’s as in11

(8). This shows that the Greenberger |ψ( n̂)⟩12 of (11) is not mathematically12

equivalent in all the relevant aspects, to the basic entanglement function in13

equation (2).14

5 Extension15

It is noted that in this approach where only the Schrödinger equation is there16

in measurement, the complete or extended HM−+ Hamiltonian is17

HM−+ =
ℏ
∆t

(
0 0
0 1

)
1

⊗
(
1 0
0 0

)
2

∂

∂f
(23)18

The other operator, HM+− is19

HM+− =
ℏ
∆t

(
1 0
0 0

)
1

⊗
(
0 0
0 1

)
2

∂

∂f
(24)20

It can be verified that the Margenau operator with HM+− from (24) gives21 (
1− i∆t

ℏ
HM+−

)
|ψ⟩12 = −e

−if

√
2

(
0
1

)
1

⊗
(
1
0

)
2

(25)22

With the use of a coin toss (e.g. s = 1 when Heads, s = 0 when Tails), the23

entangled pair is then selected with24

HM = sHM−+ + (1− s)HM+− (26)25

The s = 1 means: up is flying towards Alice and down towards Bob. Therefore,26

the downAlice-upBob combination in the entangled form is erased. The s = 027

means: down is flying towards Alice and up towards Bob and the upAlice-28

downBob combination is erased. For mathematical convenience only the Alice29

side of the measurement was inspected in this paper.30
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6 Conclusion & discussion1

In this paper we looked at the early criticism of Margenau on the EPR paradox2

[3]. Margenau sought to save quantum theory by rejecting the projection or3

reduction of the wave packet, postulate. The reduction of the wave packet [3, in4

equation (7)] plays a crucial role in the EPR paradox. Einstein disagreed with5

Margenau [4, page 185] because, in my own words, irrespective of reduction of6

the wave packet, a joint state ψ(AB) still would exist. Denying the reduction7

or projection postulate doesn’t help much in denying the paradox. The ψ(AB)8

existence would still give the inseparability of entangled particles. Nevertheless,9

the Margenau operator can serve to show a disparaty between a Greenberger10

entangled state |ψ( n̂)⟩12 and an entangled state based on basic spin states11

|ψ⟩12.12

Suppose we are allowed to select a certain form of the Margenau operator13

M = 1− i∆t
ℏ H. The H is Hermitian. In particular if the Schrödinger equation14

in the Margenau operator is construed so that one can derive a similar result15

as is obtained for reduction of the wave packet, then, it is possible to observe16

a difference between the basic entanglement of the two spins and the angu-17

lar data containing Greenberger [2] spin wave functions. Margenau already18

discussed the point [1] that M is not unique. However, one can not off-hand19

discard the Margenau operator presented here. This is true because whether20

physical or not, with M1 |ψ⟩12 the reduced form is obtained representing an21

Alice measurement.22

It was found that M1 |ψ( n̂)⟩12 = 1
2 |ψ⟩12 and this is not the wave packet23

that arose because of the measurement of Alice:24

e−if

√
2

(
1
0

)
1

⊗
(
0
1

)
2

.25

Please do note that the f in e−if is not necessarily equal to the azimuthal angle26

ϕ. The essential point is that entanglement is described, contrary to Green-27

berger, in a 1-1 relation to the basic spine wave functions; here represented by28

the states

(
1
0

)
and

(
0
1

)
. Therefore the description is Einstein complete (10).29

The Greenberger wave functions resulting in |ψ( n̂)⟩12 are employed to30

derive the quantum violation of the Bell inequality [2]. It is claimed by Green-31

berger [2, their appendix A] that |ψ( n̂)⟩12 is equal to the entanglement of32

the basic spins, |ψ⟩12. If we however first employ the M1 before employ-33

ing mathematical equivalence between |ψ( n̂)⟩12 and |ψ⟩12, then M1 |ψ⟩12 ̸=34

M1 |ψ( n̂)⟩12.35

This leads us to: the operation36

E = ”There is a, =, between |ψ( n̂)⟩12 and |ψ⟩12 ”,37

which does not commute with M1. Or: [E ,M1] |ψ( n̂)⟩12 ̸= 0. Note that there38

is no reason to claim that E is tighter binding than M1. If a reader objects to39

the ∂/∂ϕ of H01 in (3), proper reasons must be given. The question is why a40
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Hermitian Hamiltonian referring to a measurement process may not contain1

operators that work on the angular position of the instrument in space. A2

similar question goes for the e−if phase factor in (2) and (11). Considering3

12 ⟨ψ |ψ⟩12 = 1 the phase factor in e−if/
√
2 doesn’t make any difference from4

the usual 1/
√
2. Then the question is: on what grounds is it forbidden to see5

a Hermitian Hamiltonian in a Margenau operator containing ∂/∂f .6

The present paper shows that there exists a difference between the entan-7

gled basic states |ψ⟩12 vs the angle information containing variant of Green-8

berger |ψ( n̂)⟩12 viz. [2]. This is in terms of Margenau equivalence to reduction9

of the basic entangled spins wave packet. It is the s = 1 in terms of the exten-10

sion of section - 5. As can be observed from (9) the |ψ( n̂)⟩12 contains angular11

information.12

Or, to wrap it up. Given an attempt to give Margenau due credit and13

accept that only Schrödinger equation dynamics occurs in measurement, the14

Greenberger entangled wave packet is not ”≡” to the basic entangled wave15

packet (2) in all relevant aspects. Wave packet reduction is hypothetical and16

following Einstein [4], irrelevant to the entanglement problem. One can argue17

Eintein incompleteness for theories based on |ψ( n̂)⟩12. But that can be ignored18

by Greenberger because of claimed equivalence. It was demonstrated in this19

paper: there is no equivalence. This was done with direct application of our20

version of M1. There arise non-commuting operations due to azimuthal angle21

information in |ψ( n̂)⟩12. The difference is first and foremost mathematically22

because, with direct M1, it follows, EM1 |ψ⟩12 ̸= EM1 |ψ( n̂)⟩12.23
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