Calculating Quantum Impedance Networks
of Octonion String Wavefunction Interactions

Peter Cameron

Abstract: A QED model of minimally complete eight-component Dirac wavefunction interactions is introduced, followed by calculation
details of quantized interaction impedance networks. This is important. Impedance matching governs amplitude and phase of energy/
information transmission, opening a new window on the Standard Model. Application of the model to the Hydrogen atom, unstable

particle lifetimes, matching to the Planck length and boundary of the observable universe, and branching ratio calculations are
presented. Video to follow.
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The Theoretical Minimum

Three assumptions — geometry, fields, and ‘mass gap’

geometry ; geometric
point, line, plane, volume quantization
Y
space
3D Pauli algebra <<— https://www.youtube.com/watch?v=60z_hpEAtD8
1 scalar, 3 vectors, 3 bivectors, 1 trivector Clifford algebra in geometric representation
vacuum wavefunction
v
fields <——— electromagnetic quantization
five fundamental constants
e, g0,C, h,mg =< ] metric = mass gap = m,
1 €2
G = — e ~ 0.0073
l 1/a ~ 137
geometric

spacetime Clifford product
4D Dirac algebra
S-matrix of observables

no free parameters
10/31/2021 6D phase space - emergence



how to: Calculating Quantum Impedance Networks of QED String Wavefunction Interactions

Model presented here emerges from three assumptions. First, vacuum wavefunction in the intuitive geometric representation of Clifford algebra
(math language of quantum mechanics), as opposed to the less easily visualized matrix representations of Pauli and Dirac. Second, introduction
of the electromagnetic coupling constant a ~ 1/137 to permit physical manifestation of the geometry, to assign electromagnetic field quanta to
the eight vacuum wavefunction components. And third, mass of the lightest charged particle, the 'mass gap', to define the electron Compton
wavelength, setting the scale of space.

1. Vacuum wavefunction is comprised of eight fundamental geometric objects - one scalar point, three vector line elements (orientational
degrees of freedom), three bivector area elements, and one trivector volume. These define a minimally complete basis of space, a 3D Pauli
algebra, the same at all scales. Wavefunction interactions are modeled by the geometric Clifford product, generating a 6D phase space - three
space and three relative phases of the three orthogonal field orientations. Time is the integral of phase, the same for all three, reducing
dimensionality to 4D Dirac algebra of flat Minkowski spacetime. Geometric products lower and raise dimensionality, such that time emerges

from interactions. Pauli matrices are basis vectors of space in geometric representation, Dirac matrices those of spacetime | 1

¢
¥R —
2. Combinations of the four fundamental constants that define a dneg hbar-c
(electric charge quantum, electric permittivity of space, angular momentum quantum, and speed of light) permit assigning geometrically and
topologically appropriate electric and magnetic field quanta to the eight vacuum wavefunction components - one electric charge (scalar), three
1D dipole moments (vector), three 2D axial vectors (bivector pseudovector), and one 3D magnetic charge (trivector/pseudoscalar). Appearance
of different physics at different confinement scales arises from scale-dependent energies of the field quanta. Smaller means more energy.

3. QED requires a 'mass gap', a lightest rest mass charged particle to couple to the photon, setting the scale of space.
Natural choice is Compton wavelength of the electron rest mass. A=h/mc¢

Given these three assumptions, one can calculate quantized impedance networks of wavefunction interactions.

This is important. Impedance matching governs amplitude and phase of energy flow, of information transmission. Understanding structure and
meaning of wavefunction interaction impedance networks opens a new window on quantum dynamics at all scales.

In what follows we show the method to calculate mechanical and electromagnetic impedances of scale-dependent geometric and scale-invariant
topological wavefunction component interactions (the S-matrix).

Outline
I. Five Fundamental Constants
II. Assigning quantized fields to wavefunction components
III. S-matrix generated by geometric products of minimally complete eight-component wavefunctions
IV. Quantized S-matrix mode impedance calculation examples 3
V. Electromagnetic impedance network at the mass gap, the electron Compton wavelength



I. Fundamental Constants 19

particleDataBase2020 electric charge quantum e =1.602176634x 10 — coul
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The four fundamental physical constants that define angular momentum quantum hbar = 1034571817 10

o permit assigning geometrically and topologically h ‘= 2 mhbar
appropriate E and B flux quanta to the eight
fundamental geometric objects that comprise
vacuum wavefunctions, as shown in the following
section.
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II. Assigning quantized fields to wavefunction components

Of the eight field quanta needed to physically manifest the eight vacuum wavefunction components,
Scalar electric charge is one of the four fundamental constants that define .

First of the three 1D vector dipoles is the topological magnetic flux quantum, whose trivector magnetic charge 'pseudopoles’
are at 'Infinity". h
@B I

=— dp = 2.068 x 10 15 testa -m?

2e
Topological inversion has gone unnoticed in particle physics, yet when examined becomes obvious.
Units of mechanical impedance, of that which governs flow of energy of all rest mass particle interactions, are [kg/s]. One
might reasonably expect that more [kg/s] would mean more flow, and consequently less impedance. However in the physical
world more [kg/s] means less flow. This implies that the origin of mass is, at least in part, topological. Among others, this 4
stymied both Bjorken and Feynman, and is discussed in greater detail elsewhere. naturalness link here




Second of the vector dipoles is comprised of two magnetic charges (topological dual of electric charge), separated by the
reduced Compton wavelength, Magnetic charge is defined by the Dirac quantization condition eg=l/2.
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Interaction of electric and magnetic charge is the 'dyon’, generates angular momentum of rotation gauge fields,
which are topological. One topological consequence is symbolic and numerical identity of geometrically different
1D vector magnetic flux quantum and 3D trivector magnetic charge.

Last of the three 1D vector dipoles is comprised of two electric charges, again separated by the
reduced Compton wavelength
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The two electric dipoles are related by 4a =1x10

dgp

The effect of topological inversion of magnetic charge is evident here. Magnetic flux quantum is vector rather than
bivector, as required by the observed axial bivector property of the Boliwr magneton.

2D Bivector magnetic moment is the Boluw magneton, an axial pseudovector rather that a true dipole moment.

If dipole moment is defined as the product of charges and their separation. then one would expect the Bohr magneton (a
fundamental constant) to be the product of magnetic charge and some fundamental length. likely the Compton
wavelength. However the Bohr magneton is defined in terms of electric charge:
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Like the two electric vector dipoles, two electric bivectors can be defined:
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Summarizing, the eight field quanta assigned to the vacuum wavefunction are shown in terms of various
combinations of the five fundamental constants of the model at the electron Compton wavelength:

1 scalar

electric charge

e = 1.602 x lﬂ_lpcmﬂ

32 vectors £0 hl 0
T dpqg=—- dpqy =212x10 ~ m-coul
electric dipole 1 El = 4o em, El
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S-matrix of Dirac’s QED, extended to the full eight-component vacuum wavefunction in the geometric
representation of Clifford algebra. Symbols (triangle, diamond,...) correspond to following slides.



IV. Quantized impedances of S-matrix modes as a function of scale

a. The photon - unique in that it has both scale dependent far-field and invariant near-field impedances
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b. Inverse square potentials - centrifugal and three vector Lorentz impedances are scale-invariant, topological. Three
of the four are equal to quantum Hall, with the fourth a factor of 1/2a=68.5 times larger.
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¢. 1/r potentials - scale-dependent capacitive geometric impedances, evaluated at the electron Compton wavelength.
Two Coulomb impedances, one each electric and magnetic
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Three scalar Lorentz impedances, one magnetic and two electric
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d. 1/r"3 potentials - scale-dependent inductive geometric impedances. evaluated at the electron Compton wavelength.
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V. Electromagnetic impedance network at the electron Compton wavelength (next page)
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Beyond Standard Model correlation of network nodes with particle lifetimes/coherence lengths
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BSM 2 — origin of gravitational mass, inflation, chirality, baryon asymmeitry,...
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mass gap

BSM 3 mismatch-attenuated Hawking photon on the cosmological scale
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BSM 4 — precise pizero, eta, and eta’ branching ratios in powers of o

An Impedance Approach to the Chiral Anomaly
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