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Kepler's laws as properties of the kinematic equations of motion of a point 

along curves of the second order 

Abstract. Differential equations of motion on curves of the second order are inferred. Solutions 

to equations are made by computer programs. The results of the calculation are compared with 

Kepler's laws. 

keywords: kinematic equations, Kepler's laws, ellipse. 

If simple equations of speed and acceleration are sufficient to describe rectilinear motion: V = 

S/t, a = S/t2, " then differential equations of motion are needed to solve problems on the 

curvilinear motion of material points and their systems. «The way we derive these equations 

doesn’t matter»": [1,§11,п.3]. 

1. Differential equation of motion of a point along an ellipse relative to the left focus 

To compose differential equations of motion, we represent the generalized force acting on a 

point in a fixed Cartesian coordinate system, Fig. 1. 

 

M - material point, Q – the force acting on the point, F1- left focus, F2 - right focus, 

φ(t) - angle between X axis and the line connecting left focus and the point, A - aphelion, P - perihelion 

   Figure 1. 

𝑚𝑥̈ = −𝑄𝑐𝑜𝑠(𝜑(𝑡))           (1) 

𝑚𝑦̈ = −𝑄𝑠𝑖𝑛(𝜑(𝑡))           (2) 

 

From equation (1) we can get 

𝑄 =
−𝑚𝑥̈

𝑐𝑜𝑠(𝜑(𝑡))
             (3) 

 

Let us substitute equation (3) into equation (2) 
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𝑦̈ =
𝑥̈

𝑐𝑜𝑠(𝜑(𝑡))
𝑠𝑖𝑛(𝜑(𝑡))          (4) 

 

The point coordinates can be represented as the function of angle of deflection φ(t) and radius 

r(t). 

𝑥 = 𝑟(𝜑(𝑡))·𝑐𝑜𝑠(𝜑(𝑡))          (5) 𝑦 =

𝑟(𝜑(𝑡))·𝑠𝑖𝑛(𝜑(𝑡))          (6) 

𝑟(𝜑(𝑡)) =
𝑝

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
         (7) 

Let us calculate the first and second time derivative From equations (5), (6), (7).  

𝑥̇ =
𝑑

𝑑𝑡
(

𝑝

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
𝑐𝑜𝑠(𝜑(𝑡))) = −

𝑝∗𝑐𝑜𝑠(𝜑(𝑡))∗𝑒∗𝑠𝑖𝑛(𝜑(𝑡))∗
𝑑

𝑑𝑡
𝜑(𝑡)

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
2 −

𝑝∗𝑠𝑖𝑛(𝜑(𝑡))∗
𝑑

𝑑𝑡
𝜑(𝑡)

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
=

−
𝑏2∗𝑠𝑖𝑛(𝜑(𝑡))∗

𝑑

𝑑𝑡
𝜑(𝑡)

𝑎∗(1−2∗𝑒∗𝑐𝑜𝑠(𝜑(𝑡))+𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))
2

)
          (8) 

𝑦̇ =
𝑑

𝑑𝑡
(

𝑝

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
𝑠𝑖𝑛(𝜑(𝑡))) = −

𝑝∗𝑒∗𝑠𝑖𝑛(𝜑(𝑡))
2

∗ 
𝑑

𝑑𝑡
𝜑(𝑡)

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
2 +

𝑝∗𝑐𝑜𝑠(𝜑(𝑡))∗
𝑑

𝑑𝑡
𝜑(𝑡)

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
=

𝑏2∗
𝑑

𝑑𝑡
𝜑(𝑡)∗(−𝑒+𝑐𝑜𝑠(𝜑(𝑡)))

𝑎∗(1−2∗𝑒∗𝑐𝑜𝑠(𝜑(𝑡))+𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))
2

)
          (9) 

𝑥̈ =
2∗𝑝∗𝑒2∗𝑐𝑜𝑠(𝜑(𝑡))∗𝑠𝑖𝑛(𝜑(𝑡))

2
∗(

𝑑

𝑑𝑡
𝜑(𝑡))

2

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
3 +

2∗𝑝∗𝑒∗𝑠𝑖𝑛(𝜑(𝑡))
2

∗(
𝑑

𝑑𝑡
𝜑(𝑡))

2

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
2 −

𝑝∗𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
2

∗(
𝑑

𝑑𝑡
𝜑(𝑡))

2

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
2 −

𝑝∗𝑒∗𝑐𝑜𝑠(𝜑(𝑡))∗𝑠𝑖𝑛(𝜑(𝑡))∗
𝑑2

𝑑𝑡2𝜑(𝑡)

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))
2 −

𝑝∗𝑐𝑜𝑠(𝜑(𝑡))∗
𝑑2

𝑑𝑡2𝜑(𝑡)

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
−

𝑝∗𝑠𝑖𝑛(𝜑(𝑡))∗
𝑑2

𝑑𝑡2𝜑(𝑡)

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
     (10) 

𝑦̈ =
2∗𝑝∗𝑒2∗𝑠𝑖𝑛(𝜑(𝑡))

3
∗(

𝑑

𝑑𝑡
𝜑(𝑡))

2

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))3 −
3∗𝑝∗𝑒∗𝑠𝑖𝑛(𝜑(𝑡))∗𝑐𝑜𝑠(𝜑(𝑡))∗(

𝑑

𝑑𝑡
𝜑(𝑡))

2

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))2 −
𝑝∗𝑒∗𝑠𝑖𝑛(𝜑(𝑡))

2
∗

𝑑2

𝑑𝑡2𝜑(𝑡)

(1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡)))2 −

𝑝∗𝑠𝑖𝑛(𝜑(𝑡))∗(
𝑑

𝑑𝑡
𝜑(𝑡))

2

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
+

𝑝∗𝑐𝑜𝑠(𝜑(𝑡))∗
𝑑2

𝑑𝑡2𝜑(𝑡)

1−𝑒∗𝑐𝑜𝑠(𝜑(𝑡))
       (11) 

Let the second time derivative be put in the equation (4) and move everything to the left side. A 

differential equation of second order curves with respect to left focus was obtained. Since (12) 

describes the motion of a point without considering the causes of motion, it is kinematic. 

 

𝜑̈ =
2∗𝑒∗sin(𝜑)∗𝜑̇2

1−𝑒∗cos (𝜑)
            (12) 

Different values of the eccentricity will lead into a different shape of the curve. 

Equation (12) allows you to calculate the parameters of motion at the given points of the curve: 

angular and linear velocities and accelerations, sector velocity, directions of vectors of linear 

velocity and acceleration [2]. 

 

Let's set the semiaxes of the ellipse: a - semi-major axis, b - semi-minor axis. 
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Period T = 1. We split T into N time intervals (moments). At each moment, we will calculate the 

parameters of the movement. Let's use a suite of numerical analysis programs [3]. The subroutine 

for solving the differential equation calculates the first and second derivatives at a given point ni, 

i = 1, 2, ... N. 

Kepler's Second law 

The subroutine for calculating a certain integral computes the sector area in a given time interval. 

The program TygeBraheKepler2_focal.exe [4] calculates the point motion parameters 

according to equation (12) and shows the equality of sector areas at equal time intervals, Fig. 2, 

3, 4. 

Figure 2 shows the program test. The area of the ellipse is 𝝅ab. 3.14159*9*7 = 197.92017. 

 

 

    Figure 2. 

Figure 3 shows equal time intervals at different points in the period. 
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    Figure 3. 

In Figure 4, precession (dpi = 0.1) is added to the parameters of Figure 3.   

 

 

    Figure 4. 
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Kepler's Third Law 

 

Note that in perihelion and aphelion sin (φ) = 0, therefore the acceleration at these points is zero, 

and the speed difference modulo is a constant: 

𝑣1 − 𝑣2 = 𝛿            (13) 

v1 is the linear velocity in perihelion, v2 is the linear velocity in aphelion. 

The sector speed according to the law of saving the amount of movement is a constant value: 

𝒗𝒔 = 1 2⁄ 𝒗𝐫            (14) 

Let's express the sector velocity modulo linear velocity. 

Since sin(v1
/\r1) = sin(v2

/\r2) = 1, then 

𝑣𝑠 = 1 2⁄ 𝑣1𝑟1 = 1 2⁄ 𝑟1(𝑣2 + 𝛿)        (15) 

𝑣𝑠 = 1 2⁄ 𝑣2𝑟2           (16) 

1 2⁄ 𝑟1(𝑣2 + 𝛿) = 1 2⁄ 𝑟2𝑣2         (17) 

𝑣2 =
𝑟1𝛿

𝑟2−𝑟1
           (18) 

on the one hand 𝑆𝑒𝑙𝑙𝑖𝑝𝑠𝑒 = 𝜋𝑎𝑏         (20) 

on the other 𝑆𝑒𝑙𝑙𝑖𝑝𝑠𝑒 = 𝑣𝑠𝑇 = 𝑇
𝛿𝑟1𝑟2

2(𝑟2−𝑟1)
       (21) 

Therefore 

𝑇
𝛿𝑟1𝑟2

2(𝑟2−𝑟1)
= 𝜋𝑎𝑏          (22)  

For further transformations, use the geometric properties of the ellipse. We have the following 

ratios: 

𝑟2 − 𝑟1 = 2𝑐, 𝑐 = 𝑎𝑒, 𝑟1𝑟2 = 𝑎2 − 𝑐2 = 𝑏2 

Substitute in (22): 

𝑇
𝛿𝑏2

4𝑎𝑒
= 𝜋𝑎𝑏           (23) 

𝑇
𝛿𝑏

𝑎2𝑒
= 4𝜋 ;  где 𝑇 = 1;         (24) 

𝛿𝑏

4𝜋𝑎2𝑒
= 1            (25) 



6 
 

Kepler's Third Law 
𝑇2

𝑎3 = 1         (26) 

𝛿𝑏

4𝜋𝑎2𝑒
=

𝑇2

𝑎3; 
𝛿𝑏

4𝜋𝑒
=

𝑇2

𝑎
; 𝑇 =

1

2
√

𝛿𝑏𝑎

𝜋𝑒
=

1

2
√

(𝑣1−𝑣2)𝑏𝑎

𝜋𝑒
            (27) 

Program Movement of a mat point along an ellipse.exe [4] calculates periods using formulas (26) 

and (27).  δ = v1 – v2 [AU/(year of the planet)] 

 

 

    Figure 5 
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    Figure 6 

2. Differential equation of motion of a point along an ellipse relative to the center 

Move the origin to the center of the ellipse, Fig. 7. The radius function (19) changes. 

 

M - material point, Q – the force acting on the point, F1- left focus, F2 - right focus, 

φ(t) - angle between X axis and the line connecting left focus and the point, A - aphelion, P - perihelion 

   Figure 7 

Repeat the reasoning of option 1. 

𝑚𝑥̈ = −𝑄𝑐𝑜𝑠(𝜑(𝑡))           (28) 

𝑚𝑦̈ = −𝑄𝑠𝑖𝑛(𝜑(𝑡))           (29) 

 

From equation (27) we can get 
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𝑄 =
−𝑚𝑥̈

𝑐𝑜𝑠(𝜑(𝑡))
             (30) 

Let us substitute equation (29) into equation (30) 

𝑦̈ =
𝑥̈

𝑐𝑜𝑠(𝜑(𝑡))
𝑠𝑖𝑛(𝜑(𝑡))          (31) 

 

The coordinates of the point can be represented as a function of the angle 𝜑(t) and a function of 

the radius r(t). 

𝑥 = 𝑟(𝜑(𝑡))·𝑐𝑜𝑠(𝜑(𝑡))          (32) 

𝑦 = 𝑟(𝜑(𝑡))·𝑠𝑖𝑛(𝜑(𝑡))          (33) 

𝑟(𝜑(𝑡)) =
𝑏

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
          (34) 

Let us calculate the first and second time derivative From equations (32), (33), (34). Let's put the 

second derivatives into equation (31), transfer everything to the left and solve it.  

𝜑̈ =
2∗𝑒2∗𝑐𝑜𝑠(𝜑)∗𝑠𝑖𝑛(𝜑)∗𝜑̇2

1−𝑒2∗𝑐𝑜𝑠(𝜑)2           (35) 

 

We obtained a kinematic equation of the movement of a point along second-order curves relative 

to the center. 

 

Kepler's Second Law 

The subroutine for calculating a certain integral computes the sector area in a given time interval. 

The program TygeBraheKepler2_ center.exe [4] calculates the point motion parameters 

according to equation (12) and shows the equality of sector areas at equal time intervals, Fig. 8, 

9, 10. 

Figure 8 shows the program test. The area of the ellipse is 𝝅ab. 3.14159*9*7 = 197.92017. 
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     Figure 8 

 

     Figure 9 

In Figure 10, precession (dpi = 0.1) is added to the parameters of Figure 9.    
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     Figure 10 

Kepler's Third Law 

Program Movement of a mat point along an ellipse center.exe [4] calculates periods using 

formulas (26) and (27).  δ = v1 – v2 [AU/(year of the planet)]. 

Figures 11, 12, 13 show that the period difference increases as eccentricity increases. 
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     Figure 11 

 

     Figure 12 
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     Figure 13 

 

 

Conclusion 

Kinematic equation (12) accurately describes the motion along ideal second-order curves. Real 

orbits of cosmic bodies have deviations from the ideal curve: precession, periodic asymmetry of 

radius lengths [5] and other types of deviation. 

If we use Kepler's third law refined by Newton, the law of conservation of angular momentum 

and equation (12), we can simulate the motion of three or more bodies along second-order 

curves. Example [7]. 

Kinematic equation (35) is applicable for modeling current lines of liquid and gas particles [6]. 
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