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In the present work we study the dynamics of a supersonic missile canopy, separated in-flight. We 

distinguish between three separation phases: rotation about a fixed hinge, canopy-missile reciprocity, and free-

canopy flight regime. The complementary numerical investigation conducted is two-fold. First, a segregated scheme 

is considered where an aerodynamic model, embodying the different flight phases, is constructed and introduced 

into a tailored three degrees-of-freedom (3DOF) rigid-body simulation. The aerodynamic model, obtained by quasi-

steady RANS computations, consists of various canopy positions and orientations at specified flight conditions, to 

facilitate high fidelity trajectories based on a lean and efficient dataset. Then, a coupled unsteady-flow and multi-

body dynamics framework is considered, and the realized canopy trajectories are compared with those obtained by 

the segregated approach to a satisfying agreement. The suggested scheme is shown to be beneficial to the robust 

design of canopy separated configurations.  
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Nomenclature 

M  = Mach number 

𝛼  = angle of attack, deg 

𝛽  = side-slip angle, deg 

𝜃  = opening angle, deg 

𝜌  = density, kg/m3 

u, v, w = velocity components, m/s 

𝜔  = angular velocity, rad/s 

𝑚  = mass, kg 

ℎ  = angular momentum,  

 

p  = static pressure, Pa ; order of convergence 

E  = energy, J 

R  = residual 

Rey = Reynolds number 

DOF = degrees of freedom 

y+  = yplus 

Cl  = lift coefficient 

Cd  = drag coefficient 

Cm = pitch moment coefficient 

Cn  = normal force coefficient 

Cy  = side force coefficient 
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Cx  = axial force coefficient 

D  = missile's body diameter, m 

GCI = grid convergence index 

N  = mesh size 

S  = area, m2 

L  = grid level 

Subscripts 

 

baseline = initial configuration 

ref  = reference value 

 

 

I. INTRODUCTION 

The increased missiles performance parameters (compared to airplanes) may introduce aerodynamic problems 

which are aerodynamic heating, higher dynamic pressures, higher maneuvering accelerations, etc. Since different missions 

are involved, missiles are designed to compensate these arising aerodynamic related problems. Especially air-to-air missiles 

are designed to operate at high Mach numbers, and at these extreme flow regimes the missile’s nose is exposed to significant 

aerodynamic heating which can damage the electronics inside the body and the seeker. In addition, a typical seeker is 

constructed by a blunt nose which results in an increased wave drag levels. Therefore, using an additional front cover to 

protect the missile's nose and its clear separation from the missile's body are an important issue mainly for air-to-air and 

surface-to-air types missiles.  

Accurate predictions of missile's canopy separation trajectory is very important for the canopy's design since an 

unsuccessful separation may damage the missile and lead to a catastrophic failure. An air-to air missile operates in various 

angle of attack, side slip angles and high Mach numbers. Ejecting the missile's canopy in these hostile conditions could 

endanger the missile. Originally, these trajectory predictions are obtained by using wind tunnel experiments. However, 

since high cost and complexity are involved in this approach, it leads missile researchers to find faster and reliable methods. 

For this aim, and because of the increasing computer technology, researchers have been concentrated on numerical methods 

of multi-body dynamic simulations were the motivation of this paper comes from. 

Rigid body and flow dynamics problem have already been handled by Wang and Kannan [1] and recently by Shau 

et. al [2]. The later developed  a method for complete aerodynamic canopy's ejection by using time accurate simulations. 

Time accurate CFD has been performed  to compute the unsteady aerodynamics of spinning projectiles, coupled  with rigid 

body dynamic to compute the projectile free flight at supersonic speeds.   

The body dynamics and fluid mechanics coupling is a very challenging task for the time accurate simulation. Dash 

and Cavalo [3] studied experimentally and computationally the dynamic of canopy's separation at supersonic flight 

conditions, and they reported a very good agreements between experiments and CFD calculations, mainly in the initial 

stage, where the canopy is very close to the missile body. They used overset chimera methods with unstructured mesh 

approach for simulating the canopy's movement. In this way they could use the advantage of adaptive mesh refinement 

during the separation process. Whalley [4] developed a canopy that its two halves are affected perpendicular to the flight 

path in order to increase the STAR II launch vehicle capability. The canopy's surface was coated with an ablative shield to 

withstand high temperatures. The separation system development included full scale  separation tests. Valuable tests results 

were incorporated into the flight shroud and flown successfully.  

Panetta et. Al [5] designed devices to remove the canopy halves at the end-game activities by applying forces that 

causes the canopy to eject away from the missile. They demonstrated pyrotechnic and hydraulic methods that can be 

implemented depending on the canopy-missile physical constraints. A protective shroud for an endoatmospheric ground –

based interceptor has been designed and tested by Sumb [6]. The separation process shown to consist of fill, venting and 

high pressure periods. Steady and unsteady aerodynamic time scaling parameters calculated, and good comparisons to 

experiments are presented. 



Recently, Dagan and Arad [7] handled the problem of coupled rigid-body and flow dynamics. The configuration 

of the ejected shroud was designed using a novel approach, which included only a small amount of wind-tunnel 

experiments, coupled with aerodynamic model produced by computational fluid dynamics. A simulation of flow dynamics, 

coupled with rigid-body motion, was developed and tested. They also produced a large aerodynamic database using quasi-

steady computations, for hinged and free flight canopy at supersonic flight conditions. This database was used by a six-

degree-of-freedom simulation for predicting the canopy's trajectories in various flow conditions.  

The aim of this paper is to present an infrastructure construction for canopy-missile separation simulation, in order 

to accurately predict the safe separation of canopy from a generic missile under various flow conditions: various angles of 

attack, high dynamic pressure (low altitudes), side-slip angles and high Mach number.  This is accomplished by two 

approaches. The first includes a large quasi-steady CFD database for aerodynamic forces and moments which is coupled 

to a 3DOF rigid body simulations in order to predict the canopy's trajectories. The second approach includes a multi-body 

dynamic (6DOF) CFD simulation of the canopy's movement in various flow conditions. The two approaches are compared 

and evaluated.  It is important to emphasize here that the solution approach we took here is more interesting than the 

specific application. Instead of highly complex aerodynamic CFD simulations, we undertook a simple quasi-steady 

assumption. The aerodynamic damping coefficient is unknown and we made an assumption that it's behavior is related to 

the angle of attack value. Then we calibrated this model using the complicated CFD runs, and made comparisons to our 

approach and realized that results compared well.   

Conventional canopy ejection systems typically rely on pyrotechnic devices to release the canopy halves. The 

canopy is configured to remain coupled to the missile during most of the flight, and to separate at the end-game phase. The 

canopy hinges are designed to break at specific opening angle.    

II. PROBLEM FORMULATION 

The purpose of this paper is to construct a coupled CFD-3DOF simulation tool to investigate the safe missile-

canopy separation process in a given flow conditions. The simulation process is composed of two separated unconditioned 

phases which are finally complement each other: 

1. A Monte-Carlo 3Dof simulation code in order to calculate the rotational and translational displacements of the 

body. Forces and moments which are acting on the body are used in the general equations of motion. This 

3DOF code is coupled to an aerodynamic model that incorporates the aerodynamic coefficients of the moving 

body during its trajectory. For this purpose a large aerodynamic data base is constructed in various angles of 

attack, side sleep angles, and canopy-missile relative locations. The main advantage of this approach is that the 

at the moment you have an aerodynamic detailed model, a large 3Dof Monte-Carlo simulations can be 

performed with much lower computational cost compared to a detailed CFD analysis.  The canopy-missile 

separation process includes three stages: 

A. Hinged model- In the first stage the canopy is fixed to the hinge at an opening  angle of 𝜃 = 20° with 

respect to the symmetry plane (see Figure ). This is the starting condition.  

B. Proximity model - The canopy separation starts in a very fast movement mainly in the  Z direction. In 

this stage the canopy flow field is computed in different locations (x and z directions) with regard to the 

missile's body. 

C. Free-body model - The third stage actually starts when the canopy center of mass is located 2-3R away 

from the missile where R is the missile's radius. In this stage the aerodynamic coefficients are evaluated 

in different side-slip angles and angles of attack. 

2. In the second phase an unsteady and dynamic (6DOF) CFD simulation of the canopy's movement in various 

flow conditions is performed. In order to solve the multi-body dynamic problem the commercial software 

Fluent is used. Finally, results of both phases are compared and evaluated.  



 

Figure 1: Missile diagram with nose panels 

 

  

 

 

 

 

 

 

 

Figure 2: (a) Coordinate system and definition of the openning angle (𝜽) and side slip angle (𝜷)  (b) A top 

view of the missile-canopy and the high pressure obtained before separation 

III. COMPUTATIONAL MODEL DESCRIPTION 

A. Geometry 

The computational model consists of three main components: hinged canopy, missile nose and missile body, as is 

shown in Figure . The canopy has ogive-type cross-section at the front body and flat type cross section at the aft body. The 

canopy is rotated in a 𝜃 = 20° with respect to the x-axis in x-z plane. This configuration is the initial position for all the 

simulations. The missile fins eliminated from the computational model, and the coordinate system is located at the tip of 

the closed canopy (if it was rotated at 𝜃 = 20° backward around y-axis, see Figure ). The far-field is located 25D, where 

D the missile's body diameter.  

The first stage, where the canopy is hinged, a full configuration is used in order to evaluate the effects of side slip 

angle and angle of attack, and also to solve the right effect of the other canopy on the moving one. The second and third 

stages, were zero side slip angle was involved, a symmetry surface was used. 

B. Boundary conditions and flow solver 

The steady state flow field computations were performed using SUmb flow solver, which is a finite volume, cell-

centered multiblock solver for the compressible Euler, laminar Navier-Stokes, and RANS equations (steady and unsteady). 

SUmb provides options for a variety of turbulence models with one, two and four equations and options for adaptive wall 

functions. SUmb has been used extensively for subsonic, transonic, supersonic and hypersonic flow configurations. The 

discretization of the governing equations is done by a finite volume approach with a central formulation over structured 

meshes. The convective terms are computed by Roe flux splitting upwind scheme with Van-Albeda limiter. Viscous fluxes 

                                        (a)                                             (b) 



are computed to second order accuracy using a central difference approach. The residual smoothing is made by employing 

an explicit 5th order Runge-Kutta algorithm. The computational coordinates is x, y and z axes, while x in in the stream-

wise direction, y vertical, and z span-wise. The origin is located at the canopy tip stagnation point (in a closed position, see 

Figure ). In order to accelerate convergence, a geometric multigrid and residual averaging were used. The turbulence model 

and the viscous fluxes are calculated on the finest mesh level and consequently transferred to the coarse grid. The solution 

was done in parallel using Message Passing Interface (MPI) library on a cluster of X86 processors.   

The boundary conditions are represented in Figure . All side-boundaries except the right side were set as far-field, 

with a standard atmosphere model for sea level altitude, temperature and pressure free stream conditions. The first and 

third stages (hinged canopy and free-body models) were simulated by a full configuration, therefore the right-side boundary 

was set as far-field, while the second stage (proximity model) was simulated with half configuration and the right-side 

boundary was defined as symmetry plane. The canopy, nose and missile's body were modeled as solid wall boundary with 

non-slip velocity. 

 

Figure 3: Dimensions and coordinate system of the computational model 

 

C. Computational Mesh  

Since the simulation process is decomposed to three stages that differ one from the other in the missile-body 

orientation, three different grid topologies were conducted in order to get an appropriate grid for the specific stage. The 

rotated canopy with respect to the missile's axis and the canopy's complicated geometry, gives rise to complicated flow 

features. Since the canopy's movement is mainly effected by the pressure forces (which can be classified as an Eulerian 

mechanism) and not dissipation forces, the influence of the mesh clustering near the wall boundaries is modest and has 

negligible effect on the forces developed on the canopy. The dissipation forces become dominant while the canopy's angle 

of attack is increased which leads to flow perturbation and boundary flow separation. In this case the drag generated by the 

canopy is increased and the trajectory may well be effected. For this reason it is extremely important to use a sufficiently 

refined computational mesh, where the boundary layer is well captured. 

Both the first and third stages characterized by full configuration structured grids. For each configuration the same 

grid is used while the side slip angle and the angle of attack were varied by an appropriate velocity vector definition. The 

second stage, the proximity model, were the canopy location is varied in a different stream-wise (x-direction) and lateral 

(coordinate z) directions, is solved by overset mesh approach. In this way five lateral canopy locations (relative to the 

missile) were analyzed.  Nearly 25 cells are created to resolve boundary layer flow, and first point of the surface is chosen 

Farfield 

Missile 

Canopy 



to give y+ value of about 10. In the volume the mesh growth rate is preserved below 1.16. The second stage is computed 

by an overset mesh approach.  An example of the computational grids for the first stage is presented in Figure . 

 

  

Figure 4: Volume grid of the farfield (a) and surface grid on the canopy and missile (b) 

Grid convergence study has been made for the three stages, based on the Grid Convergence Index (GCI) method, 

for examining the spatial convergence of CFD simulations presented in the book by Roache [8]. Roache suggests a GCI to 

provide a consistent manner in reporting  the results of grid  convergence studies and also an error band on the grid 

convergence  of the solution. This approach is also based upon a grid refinement estimator derived from the theory of 

Richardson Extrapolation [9]. The GCI on the fine grid is defined as: 𝐺𝐶𝐼𝑓𝑖𝑛𝑒 =
𝐹𝑠

𝑟𝑝−1
 where  𝐹𝑠  is a factor of safety 

(recommended to be 𝐹𝑠 = 1.25 for comparisons over three or more grids). The GCI for coarser grid is defined as: 𝐺𝐶𝐼𝑓𝑖𝑛𝑒 =
𝐹𝑠𝑟𝑝

𝑟𝑝−1
, while each grid level yield solutions that are in the asymptotic range of convergence for the computed solution. The 

parameter p is the order of convergence (here a second order accuracy is involved, so theoretically the maximum value is 

p=2), and r is the effective grid ratio: 𝑟 = (
𝑁1

𝑁2
)

1
3⁄

where N is the total number of grid points in executive grid levels. The 

asymptotic range of convergence can be checked by observing the two GCI values as computed over three grids, 𝐺𝐶𝐼23 =

𝑟𝑝𝐺𝐶𝐼12, while values approximately unity indicates that the solutions are within the asymptotic range of convergence.  

For this purpose several levels of grid refinement have been checked to assess the effect on the numerical accuracy, 

while the total grid cells number: N2=200704, N1=438656 and N0=1044480 cells. The grids generated with clustering 

cells near the walls which results in a maximum of  y+=1 in all the computed angles of attack.  The grid convergence study 

was conducted on the free-body canopy as well as the hinged model (first stage).   

A polar graph of the normal force and the pitch moment coefficients are presented in Figure ,Figure . The GCI 

values including the asymptotic range of convergence and an estimation of the aerodynamic coefficient values at zero grid 

spacing are detailed in Table 1, computed at the demanding flow condition of 𝛼 = 15°. Based on this study we can say, for 

example, that 𝐶𝑦 is estimated to be 𝐶𝑦 = 0.3548 with an error band of  0.0514%.  The grid resolution studies confirmed 

that the computed aerodynamic coefficients values are grid converged.    

Table 1: Aerodynamic coefficient evaluations for Grid convergence study computed in 𝜶 = 𝟏𝟓°. 

 Grid level Grid ratio, r GCI [%] Richardson 

extrapolation 

Asymptotic 

convergence 

 N0 1 -   

(a) (b) 



𝑪𝒎 N1 1.297 0.003659 -0.4728 1.384 

N2 1.732 0.040820 

 

𝑪𝒚 

N0 1 -  

0.3548 

 

1.220 N1 1.297 0.051476 

N2 1.732 0.160433 

 

𝑪𝒙 

N0 1 -  

0.2036 

 

1.149 N1 1.297 2.408 

N2 1.732 3.116 

 

 

Figure 5: Axial force coefficient with respect to the angle of attack for free-body canopy computation 

(third stage) 



 

Figure 6: Normal force and pitch moment coefficients with respect to the angle of attack for free-body 

canopy computation (third stage) 

 

D. Aerodynamic coefficients data base generated for the aerodynamic model  

The data base for the canopy's separation process was generated for a steady, compressible and turbulent flow 

using SUmb flow solver with structured body fitted grid methodology. The CFD analysis are performed in 𝑀 = 2 at sea 

level for the three stages. The detailed flow conditions are presented in Table 2. A total of 35 simulations were conducted 

for various angles of attack, side sleep angles and canopy-missile relative locations, and the simulated configurations are 

detailed in Table 2. At the first stage, canopy's-hinged model, before the canopy is released a very high pressure values are 

obtained at the area between the canopy and missile's front, and it is clearly seen in  

 

 



Figure . These pressure gradients are mainly a result of complex shockwaves interactions on the canopy and the 

missile's nose. A hinged-model steady state pressure coefficient is presented in Figure (a) for both 𝜃 = 20°  and 𝜃 = 40° 

canopy's location. At the bottom figures the free-body model is presented for comparison. It is clearly seen that the 

numerical solution of the flow fields is highly sensitive to the grid refinement, the ability to predict f the local normal 

shock, and the correct shock layer are the most critical aspects of the present simulations. 

Table 2: A list of the simulated configurations 

Configuration Angle of attack 

(deg] 

Side slip angle 

 (deg) 

Opening angle 

(deg) 

Canopy's dz 

location 

Missile body+canopy -15:15 0, 1, 5  2.5, 5, 10, 15, 

20, 40, 60 

- 

Proximity model 0, 5, 10 20 - 3R, 4R, 6R, 10R 

Canopy as a free body -50:5:50 -75:10:75 - - 

 

  

 

 

 

Figure 7: Pressure coefficient values computed at 𝜽 = 𝟒𝟎° (a) and 𝜽 = 𝟐𝟎° (b). The top figures represents 

the proximity model and bottom figures represents the free-body model. 

 

Table 3: Canopy's physical characteristics and flow conditions 

Free stream Mach number 2.0  

Missile angle of attack, [deg] 0, 10  

Static pressure, [Pa] 101325.0  

Initial radial velocity, 𝒘𝟎𝒚, [rad/s] 100  

Initial linear velocity, 𝑽𝟎𝒛, [m/s] 15  

(a) 

(b) 



 

 

 

IV. 6-DOF MODELING AND MONTE-CARLO SIMULATIONS 

The 3Dof model is constructed based on the following assumptions: 

1. The canopy's trajectory is planar and as a result three degrees of freedom are involved: the X and Z force 

coefficients (𝐶𝑓𝑥, 𝐶𝑓𝑧) and the moment in Y direction (𝐶𝑚𝑦). 

2. The canopy aerodynamic characteristics are obtained by quasi-steady CFD analysis. 

 

 

The canopy trajectory calculation is based on numerical integration of 3DOF equations of motion. Two 

translational axes (longitudinal and lateral) and one angular dynamic equation. The main assumption is that the canopy's 

motion out of plane, during the initial phase of the motion, is negligible. 

 

The equations of motions are the conventional 3DOF differential equations for a rigid body with constant mass 

and moments of inertia were solved in order to obtain the linear and angular velocities, including the body's displacements 

in a delta time step size. The equations of motion are 𝐹⃗ = 𝑚
𝜕𝑣⃗⃗

𝜕𝑡
,  𝑀⃗⃗⃗ = 𝑚

𝜕ℎ⃗⃗⃗

𝜕𝑡
+ 𝜔 × ℎ⃗⃗,  where 𝑚 is the body mass, 𝑣⃗ is center 

of gravity linear velocity, ℎ⃗⃗ is angular momentum, 𝜔⃗⃗⃗ is angular velocity about the body's center of gravity. The key aspect 

of the canopy dynamics is a proper modelling of the aerodynamic forces and moments acting on the canopy. The fact that 

the canopy is characterized by low inertia (mass and moments of inertia) emphasizes the need for proper aerodynamic 

model, since high translation and angular accelerations are involved. 

 

The aerodynamic model is based on flow simulations (RANS) that were undertaken for a free-body canopy and a 

canopy that is in the near vicinity of the afterbody. The flow simulations show that most of the region of influence of the 

afterbody is when the canopy is less than one reference radius from the afterbody. Thereafter, most of the aerodynamic 

characteristics are of a free-body canopy. The physical explanation for that is the high pressure that is developed at the 

inner surface of the canopy in the initial stage of the canopy's opening. These high pressure values apply thrust-like 

phenomenon (instead of typical drag) and an aerodynamic moment that induces the canopy's closing. The later phenomenon 

highlights the opposite aerodynamic  mechanisms during the canopy's motion; the first apply canopy closing while later 

on the aerodynamic moments changes and promote canopy opening. This also highlights the importance of proper initial 

conditions after the pyrotechnic opening of the canopy. Lastly, the canopy trajectory is influenced by two additional factors: 

the aerodynamic damping mechanism, since the increased angular velocities, and the trim angle, which is largely influenced 

by the location of the center of gravity. 

 

In order to validate the proposed aerodynamic model and to properly choose the decay model coefficients that 

interpolate the aerodynamic coefficients between the perturbed and unperturbed regions, a full dynamic and flow 

simulation was undertaken. Once the aerodynamic decay model was formulated, the ODE45 (Matlab based) integration 

scheme was used to integrate the equations of motion. 

 

 

 

A. Aerodynamic model characteristics 

1. Comparison between first stage (free-body motion) and third stage (hinged-model) 

The aerodynamic model which is based on the quasi-steady CFD simulation is presented in the following figures. 

The axial force (𝐶𝑥) with respect to the side slip angle (𝛽) is presented in Figure  for right and left canopy's, calculated at 

𝛼 = 0°  and  𝛼 = 10° . These figures expose the complicated flow that acts on the missile-canopy configuration and 

especially in the first stage where the canopy is still mounted to the hinge. Let us analyze the left free-body canopy. For 



𝛽 < 30° generate a positive axial force which tends to close the angle, for higher side slip angles the axial force is negative 

due to flow separation which generates high pressure values on the curved side. The hinged-model, on the other hand, 

exhibits negative axial force coefficient in all the side-slip angles. In addition, for  𝛽 > 20° the axial force stays nearly 

constant because of the high pressure values and shock waves created by the missile's nose, which are more dominant than 

the side-slip flow effects.  

The y-moment coefficient  (𝐶𝑚𝑦) with respect to the side-slip angle (𝛽) is presented in Figure  for right and left 

canopy's, calculated at 𝛼 = 0°  and  𝛼 = 10°. For the hinged-model, the mutual influence of the missile nose-canopy is 

clearly seen with a high moment coefficient values compared to the free-body model. The influence of the angle of attack 

is neglected. It is interesting to see that the moment coefficient changes sign at  𝛽 > 0°, unfortunately this feature exists 

for all the hinged-model aerodynamic coefficients. 

The side force coefficient (𝐶𝑧) with respect to the side slip angle (𝛽) is presented in Figure  for right 

and left canopy's, calculated at 𝛼 = 0°  and  𝛼 = 10°. As expected the additional pressure values obtained in the 

missile nose-canopy configuration results in higher side force values compared the free-body model. The side 

slip angle effect is clearly demonstrated in  

 

 

 

 

 

 

 

 

 

Figure  for 𝛽 = 2°. From the illustration of the canopy's position we can see that right canopy, in a positive side-

slip angle, experiences higher axial force values and therefore drifted further downstream.   



 

Figure 8: Axial force for free-body and hinged-model, for two angles of attack 

 

 

Figure 9: The Y-moment coefficient for free-body and hinged-model, for two angles of attack 



 

Figure 10: Force coefficient Cz for free-body and hinged-model, for two angles of attack 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Side slip angle effect on the right and left canopys, simulated at 𝜷 = 𝟐° 

2. Free-body model charateristics in different angles of attack 

The following figures presents the aerodynamic coefficient (forces and moments) of the free-body model for three 

angles of attack 𝛼 = 0°, 10°, 20° with respect to the side slip angle. The main interesting feature in this model is that the 

𝐶𝑦 values are nearly order of magnitude lower than the side force coefficient (𝐶𝑧) values. This emphasize the fact that the 

canopy's movement is mainly planar, and the 3Dof model is a good choice for this flow configuration.   



 

 

 

 

 

 

Figure 12: Moment coefficients Versus side slip angle for three angles of attack 

  

 

 

 

 

 

 

 

Figure 13: The Y-moment coefficient (left) and force coefficient (Right) versus side slip angle 

(a) 
(b)  

                         (a)                                   (b) 



 

Figure 14: Axial force coeffcient (left) and z-force (right) coefficient versus side slip angle 

 

B. Canopy trajectory calculations by a moving mesh approach  

1. Computational grid generation and flow solver 

The related numerical simulation of the canopy's trajectory is performed for the same configuration but with three 

approaches. The first trajectory obtained by solving the compressible Euler equations. These results were compared to a 

second solution obtained by solving RANS. Since those simulations obtained with a 0 angle of attack, from a 

simplifications reasons, we had to check whether the canopy's plenary movement assumption  is still valid in high angles 

of attack. For this purpose a third simulation was conducted with 𝛼 = 10°.  

Computational grid generation for the 3D trajectory simulation phase is carried out in Centaur commercial 

software. A dynamic hybrid unstructured tetrahedral mesh approach is accomplished by using three grid sizes (coarse 

medium and fine) to numerically solving and comparing the results of the three dimensional, inviscid and compressible 

Euler equations and RANS equations with the first phase (3DOF-CFD aerodynamic based model). The mesh quality was 

iteratively improved by varying the grading type, ratio and interval count for the edge meshing with the aim of having 

enough grid cells to describe the canopy's movement and also have low skewness values. The hybrid level includes 10 

hexahedral cells while the nearest wall cell is located about 1 𝑚𝑚 of the wall.  In  

 

 

 

Figure  a surface meshing of the canopy and missile's body configuration is presented. The computational domain 

is large enough to minimize flow effects between model and boundaries. The far-field boundaries are located 25D from 

the center of missile body. Downstream, upstream and all side boundaries except right side (pilot view) were set as pressure 

far-field, using standard atmosphere model at sea level. Right side boundary was defined as symmetric. Solid surfaces 

(canopy and missile) were modeled as no-slip (except in Euler case), adiabatic wall boundary condition.  

The unstructured dynamic mesh is updated by combining spring smoothing and local re-meshing and adaptation. 

With the dynamic mesh technique, the mesh elements are deformed due to the motion of the canopy during the release 



process. In areas where the mesh deformation is small, spring-based smoothing algorithm is employed, and when the 

deformation becomes large, the mesh elements cannot be stretched or compressed anymore. In this situation, the adaptation 

algorithm is employed and new grid elements are generated. The static adaptation is done manually, every 1000 time step 

iterations, based on the static pressure gradient, inside a sphere with a diameter of 1 𝑚 with its center located at the canopy's 

center of gravity. The canopy moves as a rigid body and the edges between any two mesh nodes are idealized as a network 

of interconnected springs. The initial mesh size is approximately 1250000 cells and the final adapted mesh contains 3 ×

106 cells approximately.  

   

 

 

 

 

Figure  15 : A magnified view of the canopy-body mesh (left), and the volume tetrahedral mesh (right) 

 

C. Results and discussion 

CFD analysis were performed for three canopy-missile configurations at Mach number 2 and at sea level 

height. The three cases are: inviscid compressible Euler equations at 𝛼 = 0°,  𝛼 = 10°, and NS equations with 𝛼 =

0°. First, a steady simulation was conducted in order to obtain the correct aerodynamic forces and moments 

values and compare them with the results of the quasi-steady approach (first phase). Then the solver was coupled 

with dynamic mesh approach, within Fluent, for the complete canopy trajectory computation. The canopy inertial 

specification are integrated within Fluent as a user-defined function (UDF). At the starting point the canopy is 

located in an opening angle (the angle between the canopy main axis and the symmetry plane) of 𝜃 = 20°. The 

initial conditions for the simulation, which were verified in experiment, are radial velocity of 106 rad/s (around 

the hinge) and linear velocity of 15 m/s in the z direction (see  

Table 3). It is important to mention here that at these flow conditions, lower initialization values were checked 

but the developed ejection moment was not enough for the initialization of the separation. The time step defined is  

1𝑒−5 𝑠𝑒𝑐  and 20 sub iterations were made for transient analysis. Approximately overall clock time to reach convergence 

and canopy's separation of nearly 3m in z-direction is about 100 hours, using parallel computer clusters, using 32 CPU's.  

Time dependent position and angle orientations are obtained and results are compared with the 3DOF-Monte-

Carlo computations (see Figure ). These trajectories reflect position change of the canopy's center of gravity. As it is clearly 

shown the canopy separation is performed safely for Euler and Navier-Stokes simulations cases. The two cases compares 

very well mainly in the first 0.003 seconds from release, and both trajectories are approximately the same. As the canopy's 

angle of attack is increased successive parasite drag is induced because of stall and flow separation, a viscous based 

phenomena, which are clearly not well captured with the Euler inviscid equations. This is the reason why the canopy's with 

the Navier-Stokes equations is 

drifted backwards, in x direction, 

more than the trajectory obtained 

with Euler equations. These results 

approved that the inviscid flow 

approximation is sufficient for the 

trajectory calculations.  
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Figure 16: Top views of Mach number contours for canopy separation (𝜶 = 𝟎°). The simulation time: (a) 

2.5ms, (b) 10ms, (c) 20ms 

  

Figure 17: A comparison between Euler and RANS simulation of the Canopy's trajectory with 𝜶 = 𝟎°  

(c) 



 

Figure 18: Comparison between the 3Dof-Monte-Carlo simulation model and unsteady CFD simulation. 

(a) Openning angle 𝜽 with respect to time. (b) Openning angle 𝜽 derivative Vs. simulation time. 

 

 

2. Trajectory results at 𝜶 = 𝟏𝟎°  

The main 3DOF-Monte-Carlo model assumption is that at the second stage, when the canopy is released from the 

hinge and can move freely in space, its movement stays approximately in the same x-z plane. This assumption is well 

obtained in the first simulation, while the canopy release is in 𝛼 = 0°. However, in order to verify this assumption, another 

simulation was conducted, with 𝛼 = 10°. Both simulations results are presented in Figure . 

 

 

 

Figure 19: Top views of the Mach number contours for canopy separation (𝜶 = 𝟏𝟎°). The simulation 

time: (a) 2.5ms, (b) 20ms, (c) 37.5ms 

(a) (b) 

(a) (b) (c) 

(b) 



  

Figure 20: Canopy's trajectory with 𝜶 = 𝟎° and 𝜶 = 𝟏𝟎° in x-z (left) and x-y (right) planes 

V. CONCLUSIONS 

A computational infrastructure of canopy-missile separation was constructed in order to investigate the 

safe separation in various angles of attack, side sleep angles and high Mach number. A large quasi-steady CFD 

database of aerodynamic forces and moments was produced for  aerodynamic model formulation, which is coupled 

to a 3DOF code that incorporates the aerodynamic coefficients of the moving body during its trajectory. The main 

advantage of this approach is that the at the moment you have an aerodynamic detailed model, a large 3DOF Monte-

Carlo simulations can be performed with much lower computational cost compared to a detailed dynamic CFD 

analysis.  The solution approach we took here is more interesting than the specific application. Instead of highly 

complex aerodynamic CFD simulations, we undertook a simple quasi-steady assumption. The aerodynamic 

damping coefficient is unknown and we made an assumption that it's behavior is related to the angle of attack value. 

Then we calibrated this model using the complicated CFD runs, and made comparisons to our approach and realized 

that results compared well. 

The canopy-missile separation process includes three stages: hinged model, proximity model and free body 

flow. In addition an unsteady and multi-body dynamic (6DOF) CFD simulation of the canopy's movement in various 

flow conditions is performed. Results of both phases are compared and evaluated.  Although the simulations include 

a very demanding conditions, under various flow assumptions,  the calculated trajectories were in a very good 

agreement with the 3DOF model. Such a computational infrastructure of this kind is a valuable tool since 

experiments in these hostile conditions are complex and very expensive. This analysis forms the basis for ensuring 

the canopy's safe separation and creates a lot of confidence to designers to go ahead for further flight trials at 

different flow conditions.   
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