Evaluating the Alignment of the Polarized Radio Waves from 13 QSOs in Ursa Major
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Abstract

A sample of 13 quasi-stellar objects, QSOs, with polarized radio emissions and located in the Southern part of Ursa Major is shown
by the Hub Test to have significantly aligned polarization directions. The QSOs are taken from the JVAS1450 subset of the JVAS/-
CLASS 8.4-GHz surveys. The Hub Test evaluates alignment indirectly by extending the sources’ polarization directions around the
Celestial Sphere and quantifying the degree of convergence of these geodesics, i.e. great circles, at points on the Celestial Sphere. The
hub of best convergence is found to be close to the sources. About one in 50,000 randomly directed samples would be better aligned
than the polarization directions of these 13 QSOs. Some underlying calculations are presented in a Mathematica-coded Appendix.

Access to a ready-to-run version is provided.
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0. Preface

The pdf version of this notebook is available online from the viXra archive.
To find the ready-to-run notebook follow the link in Ref. 1. The notebooks in this series were created using Wolfram Mathematica,
Version Number: 12.1, Ref. 2.

Note(s):
(1) Random numbers should be reliable. Thus, numerical quantities in the pdf version should differ from the live ready-to-run
version in Ref. 1. Different sets of random runs, for a sufficiently large number of runs, should provide numerical values that differ

only slightly.
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1. Introduction to Part 1

Quasi-Stellar Objects, QSOs or quasars, can be polarized, making them candidates for studying correlations of polarization
alignment. Large scale alignments are found for both optical and radio quasi stellar objects (QSOs), Refs. 3,4,5. In some studies, the
tests that determine significant alignment compare the polarization direction of the electromagnetic radiation from one of the QSOs
with one or more of its neighbors. An example of the potential value of such research is the finding of correlations between polariza-
tion directions and the local large scale structure, Refs. 6,7.

The Hub Test does not compare polarizations directly with each other, but indirectly, by finding points of convergence of the
great circle geodesics obtained by extending polarization directions around the Celestial Sphere. Places where the geodesics are most
dense are called “hubs” much as International Travel Hubs are places where the paths of passenger jets converge. Some other studies,
Refs. 8,9, employ the Hub Test that is used here.

All tests, direct or indirect, serve to add to the information defining the behavior of QSOs. The tests inform Large Scale
Structure, as noted above, as well as possibly intergalactic magnetic fields, Ref. 10, the properties of these objects, and other topics of

interest.
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2. Sample selection and the Hub Test

The sample of 13 QSOs in this report are taken from the JVAS1450, Ref. 11,12, a catalog of 1450 QSOs that was kindly
communicated to me by one of the authors of Ref. 11. Details of the dataset can be found in Ref. 11. As explained in Ref. 11, the
JVAS1450 catalog builds on data from the earlier large JVAS/CLASS 8.4-GHz catalog, Ref. 13.

To find candidate samples in the JVAS1450 to study, a survey was conducted. The QSO sources were binned, assigned to 5°
radius circular regions centered on the grid points of a 2° mesh. A minimum of seven sources was enforced. The regions were sorted
by the significance of their alignments according to the Hub Test. A previous report, Ref. 8, evaluated a clump of 27 QSOs, Clump 1
in Fig. 1, found in the overlap of eight of the 5° regions.

In this report we investigate a second clump, ‘Clump 2’, of QSOs inhabiting the overlap of three significantly aligned regions
somewhat North of Clump1. The 13 QSOs are all the sources in the JVAS1450 catalog that have RA and dec in the ranges 161.86° <
RA <179.62° and 44.34° < dec < 53.60° and are located within 6.494° from the sample center at (RA,dec) = (171.445°, 48.678°) .
The alignment of these 13 QSOs is evaluated with the Hub Test.

3.0

25

2.0

Equatorial Coordinate System

Figure 1. Survey of some polarized radio QSOs. (Equatorial Coordinates, centered at (a,0) = (180°,0°), East to the right.) The 1450
QSOs were grouped into 5° radius regions centered on grid points. Those regions having at least 7 QSOs are plotted as gray dots. Just
35 regions showed very significant alignment, i.e. S < 0.01 = 1072, or, equivalently, —Log;o S = 2.0, and these are shaded in
color. Clump 1 has 14 regions containing 27 QSOs and is analyzed elsewhere, Ref. 8. Clump 2 has 3 regions containing 13 QSOs and

is selected for analysis here. Clump 3 remains unidentified.

The Hub Test is discussed more fully in Ref. 14. The basic idea is analogous to a well-known prescription for finding Polaris, the
North Star. Assume one can find the stars Merak and Dubhe which are two stars in the constellation Ursa Major. Then the direction
from Merak to Dubhe aligns with the direction from Merak to Polaris. In analogy with Fig. 2, let the source S be the star Merak, take
the direction from Merak to Dubhe to be the direction of polarization ¥, and let Polaris be the point /. Then the alignment of the
Merak-to-Dubhe direction ¥, with the direction toward Polaris, the point /, illustrates the concept of alignment in the Hub Test. The

alignment angle 7 would be about 7 = 3.47° and the blue great circle would almost coincide with the purple great circle .
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Figure 2: The Celestial sphere is pictured on the left and on the right is the plane tangent to the sphere at the source S. The linear
polarization direction 9 lies in the tangent plane and determines the purple great circle on the sphere. A point / on the sphere
together with the point S determine a second great circle, the blue circle drawn on the sphere. Clearly, A and S must be distinct in

order to determine a great circle. The angle 7 measures the alignment of the polarization direction  with the point H.

In Fig. 2, the “alignment angle” n is the acute angle 7 between two great circles at S, 0° < n < 90°. The alignment angle n
measures how well the polarization direction , matches the direction v toward the point /. Perfect alignment occurs whenn = 0°
and the two great circles overlap. Perpendicular great circles, . = 90°, indicates maximum “avoidance” of the polarization direction
¥, with the point /7 on the sphere. The halfway value, n = 45°, favors neither alignment nor avoidance.

With N sources S;, i = 1, ..., N, there are N alignment angles n;y at each point / . One can calculate an average alignment angle
natH,

AH) = + 5N 7 s 0]
where
cos( iy ) =| RV | . 2
Each angle n;y is taken to be the acute angle solving (2). Then the average alignment angle 77(H) at the point H must also be acute.

The alignment angle 7(H) is a function of position A on the sphere. It is symmetric across diameters, 7(H) = 7(-H), because
great circles are symmetric across diameters. The function 7(H) measures convergence and divergence of the great circles deter-
mined by the polarization directions. For random polarization directions, the average 77(H) should be near 45°, since each alignment
angle n;y is acute, 0° < ;5 < 90°, and random polarization directions should not favor any one value. Points 4 where the alignment
angle 7(H) is smaller than 45°, the great circles tend to converge, where 7(H) is larger than 45°, the great circles can be said to
diverge.

In this article and notebook, we often use “min” to label the smallest alignment angle 77,,;, and the associated points on the
sphere, the “hubs” H,,,;, and —H,;,. Thus “min” is associated with convergence of the polarization directions. For divergence, the
hubs Hmax and —Hmax locate places where the polarization directions avoid, as indicated by the largest alignment angle 77y,ax. Thus,

we very often label an avoidance related quantity with “max”.
3. The alignment of the polarization directions for the 13 QSOs

For the 13 sources considered in this report, the alignment angle function 77(H) makes the following contour map. The global and

local maps are computed in the Mathematica program below in Part II, Secs. 5b,c.
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Figure 3: The alignment angle function 77(H) mapped on the Celestial Sphere (Aitoff plot, centered on (a,0) = (180°,0), East to the
right). The QSOs are shaded green [ To guide the eye, two Great Circles are plotted in gray, one through the sources’ center point
and the avoidance hubs Hmax and —Hmax While the other Great Circle runs through the sources’ enter and the alignment hubs H
and —H ;. The circles cross at an angle of 105°. The smallest alignment angle, 77,;, = 10.86°, is located at the hubs H,,;, and —H;,,

where the polarization directions converge best. One alignment hub H i, is located very close to the QSOs.
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Figure 4: The region near the QSOs. The QSOs are located at the green dots. The short black lines through the QSOs indicate the
polarization directions. Two of the QSOs are so close to the hub H,;, that it is difficult to distinguish the “X” at the hub from the
polarization direction markers. Measuring polarization directions ¢ clockwise from North, one sees that the angles ¢ range from
above y = 90° for the northern-most QSOs to 45° or so for the more southerly QSOs. The QSOs display parallax: all are in the

general direction of the alignment hub H,,;,,, but their directions depend on where they are located.

4. Experimental uncertainty

All experimental results include uncertainty. The maps above were drawn based on the values reported in the JVAS1450 catalog.
The catalog also reports uncertainties in the polarization directions. In Part II Sec. 6, below, the uncertainties are carried through the
calculations yielding the uncertainties in the results.

The uncertainties reported with the observed polarization directions are assumed to make normal distributions, i.e. Gaussians that
integrate to unity. For example, one of the QSOs, the sixth one, has a measured polarization position angle of Yg,s + 0 = 115.1° +

7.6°. We take this to mean that the probability that the actual value of ¢ was not Y, = 115.1°, but some other value ¥, is given by

the Gaussian

P(w1)=w1ﬁ exp| - (s )2] 3)
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The Mathematica software has a special command, “RandomVariate”, that produces random values of | with respect to the
probability distribution in Eq. (3). Thus, an “uncertainty run” begins by selecting a set of polarization directions for the 13 QSOs
conforming to the uncertainty distributions like the one in Eq. (3). The alignment angle function 77(H) in Eq. (1) is evaluated to find
the smallest alignment angle 77,,,;,. As expected, the small changes to the observed polarization directions make small changes to the

resulting angle 7,i,. By repeating the process many times, one obtains a distribution of values for the smallest alignment angle 7.

The many uncertainty run values for the smallest alignment angle 7,,;, produce a distribution of the smallest alignment angle
Tmin»> s Well as the locations of alignment hubs These distributions have corresponding mean values and distribution widths. See Fig.
5. The distribution of the uncertainty run values for the smallest alignment angle 7,,;, in Fig. 5 can be summarized by 7, = 11.39°
+ 1.07°. As noted previously, the recorded polarization directions ¥, the “best” values of ¢, give the observed value, T, =

10.86°, and that value is in the range, T, = 11.39° £ 1.07°, determined by experimental uncertainty.
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Figure 5: Histogram of the smallest alignment angle 7,,,;, for R = 10,000 uncertainty runs. The height AR is the number of uncer-
tainty runs with a value of 7, in the ‘bin’, the range covered by each bar. This Gaussian distribution peaks at a mean value of i,
of 0.1988 radians = 11.39° and has a half-width of o = 0.0187055 = 1.07° where the distribution is down from the peak by a
fraction e~12 = 0.607 = 60.7% . One writes the result as J,;, = 0.1988 + 0.0187 radians = 11.39° £ 1.07°.

Besides the uncertainty in the smallest alignment angle 7,,;,, the uncertainty runs yield uncertainty ranges for other quantities
such as the largest avoidance angle 7,.x. Each uncertainty run has its own set of alignment and avoidance hubs, H,,;, and Hpax,
respectively. A plot of the polarization directions with their uncertainties and the locations of the uncertainty run hubs is displayed in
Fig. 6.
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Figure 6: The QSOs as green dots plotted with the experimental uncertainties in polarization directions and hub locations from 10,000
uncertainty runs. Not all avoidance hubs Hmax, red dots, are displayed since many are outside the region plotted. The uncertainty in
the location of avoidance hubs, represented by the partial orange oval, is huge compared to the little orange dot representing the
uncertainty in the location of the alignment hubs. All 10,000 alignment hubs H,,;,,, blue dots, are displayed. In the following section,
we find that the avoidance of the hubs Hmax is much like what random directions would produce, while the alignment of the polariza-

tion directions with the hubs H ,;, is very significant.

5. Significance

Finally, we need to determine the significance of the alignment found for the polarization directions of these 13 QSOs. ‘Signif-
icance’ means how likely it is that randomly directed polarization vectors would give the same or better alignments than the observed
polarization directions give.

To determine significance, we repeatedly find the smallest alignment angle function 77(H) many times, but with random  for the
13 QSOs. The process is similar to the process that determines uncertainties in the previous section. Instead of experimental values of
Wobs» One substitutes random ¢ for the 13 QSOs. The only experimental data used in this process is the location of the 13 QSO
sources. The goal is to see what fraction of random runs yield a value with a lower 7,,;, than the value 7,;, = 10.86° obtained with
the observed data.

Below, we deal with 10,000 random runs. By sorting those 10,000 runs by the value of 7, smaller 77, before larger Fin,
one can find how many of those 10,000 runs gives a smaller alignment angle 7,,;, than the observed value of T, i.€. Tin =
10.86° using the recorded polarization directions ¥, from the catalog. One and only one of the 10,000 runs is better. So the
significance of 7, = 10.86° is about one in 10,000 or 0.0001, more or less. Clearly, we would need many more sets of 10,000
random runs for such considerations to produce a value of significance that we could assign a plus/minus, an uncertainty.

Rather than expending a large amount of computer time generating more random runs, we follow conventional practice and
make do with the 10,000 random runs. We start by finding a function that fits the distribution of the 10,000 77,;,, one smallest

alignment angle 77,,,;, per random run. Having found a function that fits the distribution, we make the assumption that the function
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accurately describes the distribution far down on the “tail” of the function where our well-aligned QSOs have their 7, -

A histogram of the resulting smallest alignment angles 7,,,;, from 10,000 runs is displayed in Fig. 7. Look closely at the distribu-
tion in Fig. 7. The right side, the side toward 77,;, = 7/4 ~ 0.79 , has a steeper slope than the left side, the side toward 7, — 0.
Thus, the low 77, side is favored; probability is pushed from the right side to the left side. A simple, symmetrical Gaussian would
not fit the data well. The fitting curve shown combines a Gaussian with a unit step-function, that is unity to the left, and zero to the
right, of the peak. Since the 13 QSOs have an alignment angle 7,,;, that is about 0.2 radians, it occurs far down the tail of the curve on
the side where the step-function is unity and the curve is a Gaussian.

It is important for the application here to notice that the step-function is unity along the tail of the distribution on the left, 77, =
0, side. The well-aligned sample of 13 QSOs has a smallest alignment angle around 7,;, = 0.2 radians, which is far down the tail,
see the blue arrow in Fig. 7. The net effect of the steep right side of the distribution is to raise the probability of the observed 7, =
0.2 radians result by about 20%. Since random runs are thereby more likely in the region of the observed result, that makes the

observed result somewhat less significant than if the distribution were symmetric.
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Figure 7. The distribution of the smallest alignment angle 77,;, for R = 10,000 random runs. Each run assigns a random polariza-
tion direction to each of the 13 QSOs. The height AR is the number of runs with 7, in the designated range of each bin. The

fraction AR/R represents the likelihood that a random run result 7,,;, is in the bin. Thus the histogram approximates the shape of the
probability distribution, aside from a normalizing scale factor. The observed polarization directions determine a value of 7, at the

blue arrow far down the tail.

To find the significance of the observed smallest alignment angle 7,,;,, = 10.86°, we integrate the probability distribution to find
the likelihood that a random run would produce a smaller value. The significance is found to be 1.99 (30) x10=5or about one in fifty
thousand random runs would be better aligned than is experimentally observed for these QSOs. The alignment of the polarization

directions with the hub H,y, is, therefore, very significant.

6. Conclusions

The polarization directions of these 13 QSOs are well-aligned with a point on the Celestial Sphere, the hub H;,, that is very
close to the sample. Finding a correlation among polarization directions that display parallax is a property that distinguishes the Hub
Test from other tests. Thus, the 13 QSOs offer a satisfying illustration of the Hub Test.

It is unlikely that the alignment is a consequence of selection bias. These 13 QSOs, Clump 2 in Fig. 1, are not alone; a sample of

27 QSOs, Clump 1, has been evaluated by the Hub Test. Clump 1 is better aligned than one in 80,000 random runs, while Clump 2 is
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better aligned than one in 50,000 random runs. Since the survey of 5°-radius regions, Fig. 1, involves 1863 regions, it seems that the
alignments are not due to selection bias. And the survey finds other locations with significant alignment, so there may be a Clump 3
waiting to be investigated.

While the article, Ref. 15, relating alignments to Large Scale Structure constrains the QSOs to have like-redshifts, one might
argue that the alignment found in this article is due to a subset of the 13 QSOs with more-or-less equal redshifts. Then the alignment
would speak to Large Scale Structures, as in Ref. 15.

Astronomical data is being acquired at fantastic rates, so there may be new catalogs of many more QSOs with linear polarization
directions to analyze. Such an investigation would be intriguing.

The main motivation for this study is to illustrate an application of the Hub Test. Interpreting the results is deemed beyond the
scope of this study, which is intended to be a simple application of a test of alignment. One hopes the results are of interest and

potentially useful.
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PartII  Computer Program

1. Introduction to Part 11

Print["The computer time expended so far is ", TimeUsed[], " seconds."]

The computer time expended so far is 1.078 seconds.

The following computer program, a Mathematica notebook, performs the calculations made to evaluate the alignment of the
sources in the sample under consideration.
Since Mathematica encodes the instructions, it is inconvenient to try to run the computer program from the pdf version of this

work. A viable .nb version that runs on Mathematica is available by following the link in Ref. 1.

2. Coordinates, utility functions, derivation of basic formula

2a. Coordinates, utility functions

Consider the “Celestial Sphere”, a sphere with unit radius in 3 dimensional Euclidean space. See Figs. 1, 2, 3 in the article, Part 1
above. The sphere is also called the “sphere” or sometimes “the sky”. Picture the dome of a planetarium viewed from the outside.
The center of the sphere is the origin of a 3D Cartesian coordinate system with coordinates (x, y, z). The direction of the positive z

-axis is due “North”. Equatorial longitude is the Right Ascension a and latitude is the declination 9.

Definitions:

homeDirectory directory containing the notebook and data files
Utilities:

er, eN, eE unit vectors in a 3D Cartesian coordinate system
(@,0) equatorial coordinates longitude and latitude
er(a,0) radial unit vectors from Origin

eN(a,9) local North at a point on the Celestial Sphere
eE(a,0) local East at a point on the Celestial Sphere
aFROMr(er) a determined by a radial unit vector er

0FROMr(er) ¢ determined by a radial unit vector er

Aitoff Plot Functions:

aHA(a,0) , xH(a,0), yH(a,0), where xH is centered on @ = 0 and « increases from left-to-right, with @ =-180° on the left and
+180° on the right

xH180(a,0) , yH180(,0), where xH is centered on @ = 180° and « increases from left-to-right, with @ = 0° on the left and 360° on
the right

. . 1
mean the arithmetic average of a set of numbers, 3 Z'l?':l n;
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stanDev the standard deviation. Given a set of N numbers 7; with mean value m, the standard deviation is

( ﬁ S (ng-m) 2) 2 the square root of the average of the squares of the differences of the numbers with the mean. Note that we

divide by N to get the average of the deviations squared.

Derivation of n;y:

denoSquared1 magnitude of ry — (ry.rs) rg part of the formula for vy, see Fig. 2

vHperpS the part of vH that contributes to the dot product cosp = vy.vH, Eq. 2

i the unit vector in the 2D tangent plane at S pointing in the direction of the polarization position angle
niHO the alignment angle 7;5 between v and v, for the ith source

niHwithIndeterminate -  same as piHO, but simplified. It includes the indeterminacy where H = S,

niH same as niHwithIndeterminate, but with niH = 7/4 when H and S are closer than 10~3 radians.

in3:= homeDirectory =
"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-OMRE50J\\SendXXX_CJP_CEJPetc\\SendViXra\\
20200715A1ignmentMethod\\20210505A1ignmentMethodv4\\20210916
Clump2QSOsNearRA175Dec50" ;
(*The notebook file and data files for this notebook are put in this directory. )

in4:= (* For a Source at (a,8) = (a,86): er, eN,

eE are unit vectors from Origin to Source, local North, local East, resp. =)

er[a_, 6_] :=er[a, 6] = {Cos[a] Cos[&], Sin[a] Cos[5], Sin[&]}

eN[a_, 6_] :=eN[a, 6] = {-Cos[a] Sin[6], -Sin[a] Sin[&], Cos[5]}

eE[a_, 6_] :=eE[a, 6] = {-Sin[a], Cos[a], O}

{"Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN

= 1, eN.eE = 9,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: ",
{0} = Union[Flatten[Simplify[{er[a, &].er[a, 6] -1, er[a, &].eN[a, 5], er[a, &].eE[a, 5],
eN[a, 6].eN[a, 6] -1, eN[a, &6].eE[a, 6], eE[a, 6].eE[a, 6] -1, Cross[er[a, 6], eE[a, &]] -
eN[a, 6], Cross[eE[a, 6], eN[a, 5]] - er[a, 6], Cross[eN[a, 6], er[a, 8]] - eE[a, 61}1]]}

ouf7= {Check er.er = 1, er.eN = 0, er.eE = 9, eN.eN = 1,
eN.eE = O,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: , True}

Get (@,0) in radians from a radial vector r:

ingl= aFROMP[r_] :=N[ArcTan[Abs[r[[2]]/r[[1]1]11]1 /5 (r[[2]] 20&&r[[1]] >0)
aFROMr[r_] :=N[x-ArcTan[Abs[r[[2]]/r[[1]1]11]1 /5 (r[[2]] 20@&&r[[1]] <O)
aFROMr[r_] :=N[sx+ArcTan[Abs[r[[2]]1/r[[1]1]111]1 /5 (r[[2]] <@&&r[[1]] <O)
aFROMr[r_] :=N[2. 7w -ArcTan[Abs[r[[2]]/r[[1]]11] /5 (r[[2]] <O&&r[[1]] >0O)
aFROMr[r_] :=m/2./; (r[[2]] 20&&r[[1]] ==9)
aFROMr[r_] :=3m/2./; (r[[2]] <O&&r[[1]] =0)

= SFROMr[r_] :=N[ArcTan[r[[3]]1/ (v (P[[11172+r[[21172))]] /5 (V (r[[11172+r[[2]]1"2) >0)
SFROMr[r_] :=Sign[r[[3]1] (x/2.) /; (\/ (P[[1]11~2+r[[2]]"2) ==0)

The following Aitoff Plot formulas can be found in Wikipedia, Ref. 16.

For these formulas the angles a and 6 should be in degrees.

They give an Aitoff Plot that is centered on (0°,0°)

The quantity “aH” is the RA coordinate of a point H on the Celestial Sphere. Thus, we use “aHA” for Aitoff function.
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In[16]:=

In[19]:=

In[21]:=

In[23]:=

In[24]:=

Out[24]=

aHA[a_, 6_] :=aHA[a, 6] =ArcCos[Cos[( (2. 7x) /360.) 6] Cos[((2.7) /360.) a/2.]]
XH[a_, 6_] :=xH[a, 6] = (2. Cos[((2. ) /360.) 6] Sin[ ((2. ) /360.) a/z.])/sinc[aHA[a, 511
yH[a_, 6_] :=yH[a, 6] = Sin[((2. 7) /360.) 6]/Sinc[aHA[a, 611

Using the following functions produces an Aitoff Plot that is centered on (180°,0°)

xH180[a_, &6_] :=
xH180[a, 8] = (2. Cos[((2. ) /36@.) 6] Sin[((2. ) /360.) (a-180.) /2.]) /Sinc[oHA[ (a - 180.), &]]
yH180[a_, 6_] :=yH18@[a, &] = Sin[((2. ) /360.) 6] /Sinc[aHA[ (a - 180.), 5]]

mean[data_] := (1/Length[data]) Sum[data[[i4]], {i4, Length[data]}];
(* arithmetic average =x)
stanDev[data_] :=

((1/Length[data]) Sum[ (data[[i5]] - mean[data])z, {i5, Length[data] }])1/2

(»standard deviationx)

2b. Derivation of a formula for the alignment angle n;; given the position rg of the ith source , the location r of point H , and the

polarization direction  for the ith source

From Fig 2b, we see that cosp = viy.vH, Eq. 2.

vH = rH — (tH.rS) rS
[tH = (tH.rS)S).(rtH — (rH.rS) 1S)]!/2

unit vector in the 2D tangent plane at S, in the direction of H from S, vH.rS = 0, where

erfeH,0H].er[@S,0S] =  rH.rS is the inner product of the radial unit vectors rH and rS to point H and source S

rH
[@H — H.rS)1S).(tH — (rH.rS) rS)]!/2

Since vi is also perpendicular to rS, it follows that viy.rS = 0, and we have as the part of vH that

contributes to the dot product cosnp = vi.vH . Therefore, define

rH
[H — (tH.rS)rS).(tH — (rH.rS) rS)]!/2

vHperpS =

Simplify the denominator,

denoSquaredl = FullSimplify|[ (er[aH, 8H] - (er[aH, &H].er[aS, &65]) er[aS, &S]).
(er[aH, &H] - (er[aH, &H].er[aS, 8S]) er[aS, &51)];

( denoSquared = [PrH - (rH.rS) rS].[rH - (rH.rs) rS] =

rH.rH - 2(r‘H.r‘S)2 + (r‘H.r‘S)er.rS =

1 - 2(rH.rs)? + (PH.rs)? = 1 - (rH.rs)?s)
FullSimplify[denoSquared1 - (1— (er[aH, &H].er[as, 6S])2)] (*check thatx)
0

Write the formula for the vector vHperpS, with a denominator of ( 1 - (rH.rS) 2) vz,
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2\ 1/2
w251~ vHperpS[aS_, 8S_, aH_, 6H_] := er[oH, 6H]/ (1- (er[aH, &H].er[as, &5]) )

6= Simplify [vHperpS[aH, 6H, aH, 6H] ]; (* BANG,
BOOM!! when H = S . See Fig. 2 for why this happens. )

o ) Cos[aH] Cos[6H] o .
Simplify: Expression simplified to ComplexInfinity.

/1 - (Power[«2>>] Power[«2>>] + Power[«2>>] Power[«2>>] + Sin[«1 >>]2)2

o ) Cos[6H] Sin[aH] o .
Simplify: Expression simplified to ComplexInfinity.

/1 - (Power[«2>>] Power[«2>>] + Power[«2>>] Power[«2>>] + Sin[«1 >>]2)2

Sin[6H]
Simplify: Expression simplified to Indeterminate.

/1 - (Power[«2>>] Power[«2>>] + Power[«2>>] Power[«2>>] + Sin[«1 >>]2)2

. General: Further output of will be suppressed during this calculation.

The other vector we need is v/, the unit vector in the 2D tangent plane at S pointing in the direction of the polarization position angle

. By Fig. 2b, one sees that

vy = cos(y) N + sin() E,

where N and E are local north and east unit vectors in the 2D tangent plane at S.

ner- Vib[aS_, 8S_, aH_, 8H_, ¥_] := Cos[4] eN[aS, 5S] + Sin[¢] eE[aS, &S]
(*+vi[aS,8S,aH, 8H, ] *)

The alignment angle 7 is the acute angle between vy and vH in the 2D tangent plane at S. By Eq. 2,

nize}= NiHO[aS_, 6S_, aH_, 6H_, ¢_] :=
ArcCos[ Abs[vy[aS, &S, aH, SH, ¥].vHperpS[aS, &S, aH, 6H] 1 ]
(¥niHO [aS,5S,aH, 5H, ¢ *)
FullSimplify[niH@[aS, &S, aH, &H, ¥]]
Out[29]= Ar‘cCos[
Cos[&S] Cos[y] Sin[SH] + Cos[SEH] (7Cos[aH—aS] Cos[¥] Sin[&S] +Sin[aH - aS] Sin[d/])

Abs |

]

\/1— (Cos[aH—aS] Cos[&H] Cos[&S] +Sin[6H] Sin[cSS})2

o= (*The following function is well-
behaved everywhere except where :H coincides with +S.=x)
niHwithIndeterminate[aS_, 8S_, aH_, 6H_, ¥_] := ArcCos[Abs|

(Cos[8S] Cos[¥] Sin[8H] + Cos[&H] (-Cos[aH - aS] Cos[¥] Sin[&S] + Sin[aH - aS] Sin[z//]))/
(+/ (- (cos[a - as] cos [sH] Cos[65] + Sin[6H] Sin[651)?))] ]
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n31= (*Since n is an acute angle, let us take the halfway value,
n = n/4 in the neighborhood where H = S.x)
niH[aS_, 6S_, aH_, 6H_, ¥ ] :=
niHwithIndeterminate[aS, S, aH, &H, ¥] /; ((1— (er[oH, &H].er[as, 65])2) > 0.000001)

niH[aS , 8S_, aH_, 6H_, ¥_] 1= /4. /3 ((1 - (er[aH, 6H].er[as, 55])2) < e.eaeem)

Print [
"Thus nijy = n/4 wherever *H is 'close' to +S, with 'close' meaning within an angle of ",
360.
ArcSin[@.e00001'/2], " radians, or ", ArcSin[@.000001'/?] (—], "ot

Thus niy = 71/4 wherever +H is 'close' to +S, with 'close' meaning within an angle of
0.001 radians, or 0.0572958°.

3. Polarization and Position Data
3a. Source Data
The JVAS1450 catalog incorporates data from the large JVAS/CLASS 8.4 Ghz catalog Jackson 2007, Refs. 11,12,13. The

JVAS1450 catalog sources were filtered from Jackson 2007 sources by identification as QSOs. Filters: for percent polarization, p >

0.6%, for the largest fractional uncertainty in percent polarization, op/p < 0.6%, and for uncertainty in the polarization position angle

oy < 16°
Definitions:
data00 the catalog data, JVAS1450
secondClumpQsosIDinData001450 - record numbers in the catalog of the QSOs in the sample
nSrc number of sources
aSrc right ascension of the sources, longitude (radians )
oSre declination of the sources, latitude (radians)
YSrc PPA, polarization position angle of the sources: clockwise from North with East to the right.
oySrc uncertainty in PPA
percentPol percentage of linear polarization of the sources
redshift redshift, no uncertainty reported
rSrc unit vectors from the Origin to Sources on Celestial Sphere
eNSrc Local North at each Source
eESrc Local East at each Source

nBarAtHwithAnyys alignment angle function 77(H), Eqn. 1, obtained using the location of the sources

sourceCenter unit radial vector to the arithmetic center of the sources
aSourceCenter Right Ascension at the sourceCenter
o6SourceCenter Declination at the sourceCenter

angleSourceToCenter angle from each Source to the sourceCenter
pRgnRadius angle to the furthest QSO from the sourceCenter

PpRMS root-mean-square angular distance to the sources from the sourceCenter



In[35]

In[36]:=

Out[36]=

In[37]:=

In[38]:=
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Alternate names:
A position search of the NASA/IPAC Extragalactic Database (NED)*, Ref. 17, returned the following names of 13 QSOs whose
position is coincident with those reported in the JVAS1450 catalog:
WISEA J104732.27+483531.1
B3 1048+470B (Redshift = 1.4194 JVAS1450, 1.8x10"-4 NED Sloan Digital Sky Survey)
WISE J105840.84+533543.1
B3 1108+454
WISEA J111740.33+525936.4
WISEA J112152.33+493225.5
SDSS J112337.12+504531.8, SDSS J112337.11+504531.8
B3 1124+455
B3 1140+466
. B3 1143+446A
. SBS 1149+499
. SBS 1150+497
. WISEA J115826.77+482516.1

A A o

—_— = =
W o = O

Note the disagreement in the redshift values for object 2. B3 1048+470B. The other redshifts were nearly the same in both NED and
JVAS1450.

These identifications are FYI, for your information. No data from the NED search is used in this notebook.

*The NASA/IPAC Extragalactic Database (NED) is funded by the National Aeronautics and Space Administration and operated by
the California Institute of Technology.

(*right ascension in radiansx)
aSrc = 107% {2825418, 2841679, 2874039, 2928868, 2956905, 2975 226,
2982850, 2997432, 3068298, 3078944, 3109077, 3112830, 3134812};

nSrc = Length[aSrc]
13

(*declination in radiansx)
6Src = 1075 (848089, 815735, 935416, 787604, 924911,
864641, 885908, 790083, 809670, 773869, 866744, 864 271, 845109} ;

(* position angle in radiansx)
¥Src = 107 {1293289, 1328196, 1930334, 925025, 1759292,
2008874, 2021091, 994838, 975639, 945968, 2426008, 1987930, 3082251} ;



16 | 20211009Clump2PaperFirst.nb

In[39]:=

out[39]=

In[41]:=

In[42]:=

In[43]:=

In[44]:=

In[45]:=

In[48]:=

360
Histogram[WSrc (————], {20}, PlotLabel -» "PPA ¢, number AR per bin",
2.7

AxesLabel » {"y", "AR"}, PlotRange -» {{0, 200}, Automatic}]
Print["Figure 8: Distribution of position angles for the 13
polarization directions in the sample. Note the wide distribution
over a hundred degrees or so, ¥ = 40° to § = 150°, in two groupings."]

PPA , number AR per bin

0 50 100 150 200

]

Figure 8: Distribution of position angles for the 13 polarization directions in the sample. Note
the wide distribution over a hundred degrees or so, ¢y = 40° to ¢y = 150°, in two groupings.

(»uncertainty in ¢ in radiansx)
oySrc = 107% {39697, 48409, 72563, 55071,
86756, 131967, 87055, 3977, 21712, 20791, 74085, 24677, 16969} ;

(* % polarizationx)
percentPol = 10°°- {2142363, 575196, 12801608, 4141751, 3722694,
2159228, 3458875, 1323236, 3206987, 2150994, 471406, 904146, 1224728} ;

(* uncertainty in % polarizationx)
opercentPol = 107%- {170077, 55686, 1857703, 456149,
645884, 569853, 602180, 10524, 139250, 89438, 69845, 44620, 41561};

(*Redshiftx)
redshift = 107%- (867000, 1419400, 1535100, 1492000, 1373300,
1875000, 2277500, 1819200, 1321800, 299 800, 1094100, 333700, 2028000} ;

rSrc = Table[er[ aSrc[[i]], 6Src[[i]] 1, {i, nSrc}]; (xcalculated from Input.=x)
eNSrc Table[eN[ aSrc[[i]], &Src[[i]] 1, {i, nSrc}]; (xcalculated from Input.=x)
eESrc = Table[eE[ aSrc[[i]], &Src[[i]] 1, {i, nSrc}]; (xcalculated from Input.=x)

nBarAtHwithAnyy[oH_, 6H_, ¢_] :=

Sum[niH[aSrc[[i]], &Src[[i]], aH, 6H, ¥[[il] ], {i, nSrc}]
nsrc

(*nBarAtHwithAnyy[3.5,0.6,¥Src] ) (* An example with a selected
aH and 6H and with the observed polarization directions for yx)
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In[56]:=

20211009Clump2PaperFirst.nb | 17

1
sourceCentero = sum[rSrc[[i]], {i, nSrc}];
nsrc
sourceCentere
sourceCenter = ;
(sour‘ceCenter‘O.sour‘ceCenter‘O)1/2

(*unit radial vector to the arithmetic average center of the sources.x)
aSourceCenter = aFROMr [sourceCenter];

&SourceCenter = §FROMr [sourceCenter];

angleSourceToCenter = Table[ArcCos[rSrc[[i]].sourceCenter], {i, nSrc}];
pRgnRadius = Sort[angleSourceToCenter] [[-1]]; (xFurthest source from centerx)

1/2
Sum|[angleSourceToCenter[[i]]%, {i, nSrc}] ;

pRMS =
nSrc

3b. Section Summary

We consider Quasi-Stellar Objects, QSOs. From the data in JVAS1450, 5° radius regions are constructed, one centered at each
of the 10518 grid points of a 2°x2° mesh. The 1450 QSOs were assigned to the regions based on location and we calculated the
significance of the alignment of the polarization directions for the sources in each region.

The three such QSO regions selected for this notebook satisfied many requirements: (i) have 7 or more sources in order to use
the significance formulas in Sec. 4 accurately, (if) have longitude RA 160° < « =< 180°, (iii) have latitude dec 40° < & = 55° (iv)
whose QSOs are very significantly aligned, S < 10-2. There are 3 regions satisfying (i) - (iv) containing a total of 13 sources. See Fig.
1 and the discussion there.

Print["There are ", nSrc, " sources in the sample."]
Print["Check that the Sample obeys the data cuts:"]
Print[
"Check that the smallest % polarization p in the sample is ©.5% or more. Smallest: ",
Sort[percentPol] [[1]], "% ."]
Print["check that the largest fractional uncertainty in % polarization, op/p,
is less than @.6 . Largest: ", Sort[opercentPol /percentPol] [[-1]], " ."]
Print["check that the largest PPA y uncertainty oy is less than 16°. Largest: ",

360.
Sort[oySrc] [[-1]] ( ), "o ]
2.7
There are 13 sources in the sample.
Check that the Sample obeys the data cuts:
Check that the smallest % polarization p in the sample is ©.5% or more. Smallest: 0.471406% .

Check that the largest fractional uncertainty
in & polarization, op/p, is less than 0.6 . Largest: 0.263915 .

Check that the largest PPA y uncertainty oy is less than 16°. Largest: 7.56115°
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In[61]:=

Out[61]=

. . . 360 .
LlstPlot[Table[{aSPc[[J]], 8Src[[j11} (————), i, nSrc}],
o« JT

PlotRange -» { {0, 360}, {-90, 90}},

Ticks » {Table[{i, i}, {i, @, 360, 60}], Table[{]j, j}, {j, -99, 90, 30}1},

PlotLabel - "Sources", AxesLabel -» {"a, degrees", "6, degrees"}, PlotStyle » Green]
Print["Figure 9: The locations of the ", nSrc,

" QSOs in the sample. The center of the sample has (RA,Dec) = ",
24. 360. .
{chourceCenter (—), &SourceCenter ( J}, ", in {hours, degrees}.
2.7 2.7
The angular separation of the furthest QSO from the sample center is ",
360. L. 360.
Sort[angleSourceToCenter] [[-1]] (—], "°, The RMS radius is ", pRMS (—J, "°.“]
2.7 2.7
Sources
6, degrees
20 -
60 -
30+
0 L L L L L I a, degrees
60 120 180 240 300 360
=30}
_60,
_90,

Figure 9: The locations of the 13

QSOs in the sample. The center of the sample has (RA,Dec) = {11.4297, 48.6782}

, in {hours, degrees}. The angular separation of the furthest QSO from the sample center is
6.49406°. The RMS radius is 4.72813°.

4, Grid

While we have a formula 7j(H) for the alignment angle at a point H on the Celestial Sphere, there are occasions when it is
better not to use it and, instead, construct a discrete table of values. To locate the values 7j(H) at a finite number of points H on
the sphere, we create a grid, or mesh, of grid points.

When building the grid, we avoid bunching at the poles by taking into account the diminishing radii of constant latitude
circles as the latitude approaches the poles. Successive grid points along any latitude or along any longitude make an arc that
subtends the same central angle d6.

We grid one hemisphere. Symmetry across diameters gives the other hemisphere. The grid is conveniently developed
centered at the North pole and then rotated to be centered on the sample of sources. For detailed work near the sources a 30°
finely spaced grid cap is produced to supplement the more coarsely spaced grid. The fine and coarse grids are offset so that no
grid points are common to the two grids.

4a. Construct the grid

Definitions:
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gridSpacing, coarseGridSpacing - fine, coarse grid separation in degrees between grid points on and between constant latitude circles

fineCapRadius radius of the fine grid cap in radians

do1, do2 fine, coarse grid spacing in radians

idN, ai, ji, 9j dummy indices

apointH,épointH a and 6 of the grid points H

fineGrid, coarseGrid, gridN, grid - tables of data associated with grid points, record descriptions below
rotzToSample rotation matrix from North pole to sourceCenter

Ipgrid plot of the radial unit vectors to the grid points

nGrid number of grid points

aGrid longitudes at the grid points (-7 < @ <+71)

0Grid latitudes at the grid points (-71/2 < @ =n/2)

rGrid radial unit vectors from origin to grid points, in 3D Cartesian coordinates

3= gridSpacing = 0.6 (xdegreesx) ;
fineCapRadius = 0.5;

5= (*KEEP this cell - DO NOT DELETEx)
(*The Northern Grid "gridN". =)

del = gridSpacing (xConvert gridSpacing to radiansx); fineGrid = {}; idN=1;
. . fineCapRadius X . 7 . del
For[63=0., 6j< —, 6j++, 6pointH= — - 6jde1 - H
del 2. 2,172

(xPrint["{5]j,6pointH} = ",{5j,5pointH}]; )
2.7
For[ ai=0., ai< Ceiling[: (Cos[spointH] +@.01) ] » ai++, apointH = ai de1/ (Cos [6pointH] + @.01) ;
5]

(«Print["{ai,apointH} = ",{ai,apointH}];«)

AppendTo [ fineGrid, {idN, ai, &3, apointH, &pointH, er[apointH, SpointH]}];

idN=idN+1
Length[fineGrid];
1pFine = ListPointPlot3D[Table[fineGrid[[i, 6]], {i, 1, Length[fineGrid], 10}], PlotRange -»

{{-1.2, 1.2}, {-1.2, 1.2}, {-1.2, 1.2}}, AxesLabel » {"x", "y", "z"}, BoxRatios - {1, 1, 1}];

Coarse Grid band runs from latitude ( % — fineGridMAX) to latitude ( % — southOfEquator)

neoi= coarseStart = fineCapRadius; coarseEnd = 1.65 ; (xradiansx)
coarseGridSpacing = 2.0 (xdegreesx) ;
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in711= (*KEEP this cell - DO NOT DELETE=*)
(*The coarse grid band. %)
360
coarseGrid = {};
idB =1 + Length[fineGrid]; (» ID for the coarse band grid pointsx)

de2 = coarseGridSpacing (xConvert grid spacing to radiansx);

(coarseEnd - coarseStart)

de2
(+xPrint["{8j,6pointH} = ",{5],6pointH}]|;«)

For'[ ai=0., ai< Ceiling[z'—7r (Cos[6pointH] +@.01) ] » ai++, apointH = ai de2/ (Cos [6pointH] + @.01) ;
02

. . 7T . de2
, 6j++, 6pointH = — - coarseStart - 6j de2 - H
2.

For‘[63=0., 6j < 3.2

(+Print["{ai,apointH} = ",{ai,apointH}];«)
AppendTo [ coarseGrid, {idB, ai, &j, apointH, SpointH, er[apointH, SpointH]}];
idB=1idB +1

/]

n73;= lpCoarsel = ListPointPlot3D[Table[coarseGrid[[i, 6]], {i, 1, Length[coarseGrid], 10}],
PlotRange » {{-1.2, 1.2}, {-1.2, 1.2}, {-1.2, 1.2}},
AxesLabel » {"x", "y", "z"}, BoxRatios » {1, 1, 1}];
Length[coarseGrid];
(*Show[ {1pFine,lpCoarse}]*)

Now we need to rotate the combined fine/coarse grid ‘gridN’ so that it is centered on the sample, the sourceCenter .

n7s:= rotzToSample = RotationMatrix[{{0@, @, 1}, sourceCenter }];
%.{0, 0, 1};
sourceCenter ;

n7e:= gridN = Join[fineGrid, coarseGrid];
grid = Table[{gridN[[i, 1]], gridN[[i, 2]], gridN[[i, 3]], gridN[[i, 4]],
gridN[[i, 5]], rotzToSample.gridN[[i, 6]]1}, {i, Length[gridN]}];
lpgrid = ListPointPlot3D[Table[grid[[i, 6]], {i, 1, Length[grid], 10}],
PlotRange » {{-1.2, 1.2}, {-1.2, 1.2}, {-1.2, 1.2}},
AxesLabel -» {"x", "y", "z"}, BoxRatios -» {1, 1, 1}];
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ns1:= lpgrid
Print[

"Figure 10: The grid. The grid is centered on the source sample, with a finely spaced
cap. The grid covers one hemisphere, centered on the sample. The fine and coarse
grids are off-set, so they do not share any grid points. There are ",

nGrid, " grid points on the hemisphere."]

1.0

Out[81]=

1.0

Figure 10: The grid. The grid is centered on the source sample, with a finely spaced cap. The
grid covers one hemisphere, centered on the sample. The fine and coarse grids are off-set,
so they do not share any grid points. There are nGrid grid points on the hemisphere.

ins3= aGrid = Table[aFROMr[grid[[j, 6]]1 1, {j, Length[grid]}];
6Grid = Table[SFROMr[grid[[j, 611 1, {j, Length[grid]}];
rGrid = Table[grid[[j, 6]1] , {j, Length[grid]}];
nGrid = Length[grid];

4b. Section Summary

ns7i= Print["The fine grid on the 'cap' has ", Length[fineGrid], " grid points."]
Print["The grid points on the cap are separated by gridSpacing = ",
gridSpacing, "° in latitude and longitude."]
Print["On the entire hemisphere, there is a second set of grid
points that are separated by gridSpacing = ", coarseGridSpacing,

"° in latitude and longitude. The two sets do not share any grid points."]
Print["The second set has ", Length[coarseGrid], " grid points."]
Print["The total grid, 'grid', has ", Length[fineGrid],

" + ", Length[coarseGrid], " = ", Length[grid], " grid points."]
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The fine grid on the 'cap' has 7459 grid points.
The grid points on the cap are separated by gridSpacing = ©.6° in latitude and longitude.

On the entire hemisphere, there is a
second set of grid points that are separated by gridSpacing =
2.° in latitude and longitude. The two sets do not share any grid points.

The second set has 5026 grid points.

The total grid, 'grid', has 7459 + 5026 = 12485 grid points.

5. The alignment function 77(H) for the sample of sources

“Best” means we use the y/Src that were listed in the catalog. We calculate the alignment function 77(H) at the grid points H .
Given the alignment function 7(H), one can find the smallest alignment angle 7,,,;, and the largest avoidance angle yax and

determine the significances for the alignment and avoidance of the polarization directions.

Sa. Determine the alignment angle 7{H)

First find 77(Hj) on the grid and find the smallest and largest values of the alignment function on the grid. Then use the function

“nBarAtHwithAnyy” derived in Secs. 2 and 3 to go between grid points and locate the smallest and largest angles, 77, and Tax,

and their locations, the hubs H,;, and Hmax - These are the extremes for convergence and divergence of the polarization directions.

Definitions:

viSrc unit vectors along the polarization directions i in the tangent planes of the sources

eN local unit vectors along local North

cE local unit vectors along local East

gridjnBarHj {j, M(Hj) }, where j is the index for grid point H; and 7(H) is the average alignment angle at /. See Eq. (1).
sortgridjnBarHj {j, m(Hj) }, with smallest angles 77(H) first.

gridjnBarMin {j,;m(H)}, the j and 77 for the smallest value of 7(H) , best alignment

gridjnBarMin index j for the grid point A with the smallest value of 77(H)

gridnBarMin smallest 7(H) on grid

gridjnBarMax {j,m(H)}, the j and 7 for the largest value of 77(H) , best alignment

gridjnBarMax index j for the grid point A with the largest value of 77(H)

gridnBarMax largest 7(H) on grid

nminadHObs smallest 7(H) and H, local min near gridjnBarMin (use “nBarAtHwithAnyy” off-grid)
nmaxadHObs largest 7(H) and H, local max near gridjyBarMax

funcDataObs off-grid data for extreme alignment angles 77 and their hubs H

nBarMinfunDataObs  Tin

nBarMaxfunDataObs  Tmax

HminafunDataObs H,,;, location RA « in radians
HmindofunDataObs H,,;, location dec ¢ in radians
HminadfunDataObs  H,;, location (RA,dec) = (@, 0) in radians
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HmaxafunDataObs Hmax location RA « in radians
HmaxdfunDataObs Hnax location dec ¢ in radians
HmaxadfunDataObs ~ Hmax location (RA,dec) = (e, 0) in radians

In[92]:=
(* vy, ey, e unit vectors in the tangent plane of each source S;,
pointing along the polarization direction, local North,
and local East, respectively. See Fig. 2.x)
vySrc = Table[Cos[ ySrc[[i]] ] eN[ aSrc[[i]], &Src[[i]] ] +
Sin[ ySrc[[i]] ] eE[ aSrc[[i]], &Src[[i]] ], {i, nSrc}];

no3= (* Analysis using Eq (5) in Ref. 14 to get n(Hj). First niu, cos(nin) = |VWu.Vy |,

where "VUy" was called "vHperpS" in a previous discussion. Thus,

we can get 77(H;), by Eq. (2): *)

gridjnBarHj =

Table[{]j, (1/nSrc) Sum[ArcCos| Abs[ rGrid[[j]1].vySrc[[i]] / ((rGrid[[j]] - (rGrid[[j]].
rSrc[[i]]) rSrc[[i]]).(rGrid[[j]1] - (rGrid[[j]1].rSrc[[i]])

rsrc[[i]]))*?] - @.@@0e01 | , {i, nsrc}]}, {J, nGrid}];

sortgridjnBarHj = Sort[gridjnBarHj, #1[[2]] < #2[[2]] &];

gridjnBarMin = sortgridjnBarHj[[1]1; (*+ {J,7(H;)} for smallest 7(H;) =*)

gridnBarMin = gridjnBarMin[[2]];

gridjnBarMax = sortgridjnBarHj[[-1]]1; (*» {3,7(Hj)} for largest 7(Hj) =*)

gridnBarMax = gridjnBarMax[[2]] ;

The results just found on the grid should be close to the results. Use FindMinimum and FindMaximum to go off-grid and get closer.

in9g)= nmMinaéHObs = FindMinimum[nBarAtHwithAnyy[aH, 6H, ¥Src],
{{aH, aGrid[[ gridjnBarMin[[1]] ]1}, {6H, 6Grid[[ gridjnBarMin[[1]] 113}}1;
nmaxasHObs =
FindMaximum[nBarAtHwithAnyy [aH, &6H, ¥Src],
{{aH, aGrid[[ gridjnBarMax[[1]] ]1}, {6H, 6Grid[[ gridjnBarMax[[1]] 113}}1;
funcDataObs = {1, { mminaéHObs[[1]], {aH, 6H} /. nminaéHObs[[2]]},
{ nmaxaéHObs[[1]], {aH, 6H} /. nmaxasHObs[[2]]}}

FindMinimum: The line search decreased the step size to within the tolerance specified by AccuracyGoal and PrecisionGoal but
was unable to find a sufficient decrease in the function. You may need more than MachinePrecision digits of working

precision to meet these tolerances.

FindMaximum: The line search decreased the step size to within the tolerance specified by AccuracyGoal and PrecisionGoal
but was unable to find a sufficient increase in the function. You may need more than MachinePrecision digits of working

precision to meet these tolerances.

oupion- {1, {0.189626, {3.13394, ©.854791}}, {1.09371, {2.93195, 0.485158} }}
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In[102]:=

nBarMinfunDataObs = funcDataObs[[2, 1]];

nBarMaxfunDataObs = funcDataObs[[3, 1]];

HminafunDataObs = funcDataObs[[2, 2, 1]];

HminéfunDataObs = funcDataObs[[2, 2, 2]];

HminaéfunDataObs = funcDataObs[[2, 2, 1]];

HmaxafunDataObs = funcDataObs[[3, 2, 1]];

Hmaxé&funDataObs = funcDataObs|[[3, 2, 2]];

HmaxaéfunDataObs = {funcDataObs[[3, 2, 1]], funcDataObs[[3, 2, 2]]1};

nf10p= Print ["When moving off-grid, check that the
hubs Hmin and Hmax did not move more than a grid spacing:"]
Print["When we found a local minimum, the hub H,;, moved off-grid by ",
ArcCos [er [HminafunDataObs, HminéfunDataObs] .
360.
er[aGrid[[ gridjnBarMin[[1]] ]], &6Grid[[ gridjnBarMin[[1]] 1]1] 1 (————], "°.“]
« T
Print["When we found a local maximum, the hub H,.x moved off-grid by ",

ArcCos [er [HmaxafunDataObs, HmaxéfunDataObs] .

er[aGrid[[ gridjnBarMax[[1]] 11, 6Grid[[ gridjnBarMax[[1]] 111 1 (360,]

. 7T

Print["The alignment hub Hp;, is ",
360.
ArcCos [er [HminafunDataObs, HminéfunDataObs] .sourceCenter ] (————),

2.7
"° from the source center.“]

Print["The alignment hub Hy, is ",

360.
ArcCos [er [HmaxafunDataObs, Hmax&funDataObs] .sourceCenter ] ( ),

2.7
"° from the source center.“]

Print["Now compare that with the grid: The fine grid spacing close to the sources is ",

360.
gridSpacing, "°. If the hub is more than ", fineCapRadius ( ),
2.7

"° from the sample center, then the grid spacing is ", coarseGridSpacing, "°."]

When moving off-grid, check that the hubs Hmin and Hmax did not move more than a grid spacing:
When we found a local minimum, the hub H,i, moved off-grid by ©.133122°.

When we found a local maximum, the hub H,,x moved off-grid by ©.378856°.

The alignment hub H,i, is 5.34907° from the source center.

The alignment hub H,i, is 21.0509° from the source center.

Now compare that with the grid: The fine grid spacing close to the sources is 0.6
°. If the hub is more than 28.6479° from the sample center, then the grid spacing is 2.°.

5b. Plot the Alignment Angle Function 7(H)

Definitions

aHminDegrees H i, location RA « in degrees

aHminHours H.;, location RA « in hours
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0HminDegrees H in location Dec ¢ in degrees

aHmaxDegrees Hmax location RA « in degrees

aHmaxHours Hmax location RA « in hours

0HmaxDegrees Hmax location Dec ¢ in degrees

rHmin, rHmax radial unit vectors to the alignment and avoidance hubs H,,;, and Hmax

rPerpHmin (max) a unit vector in the plane of the great circle combining rCenterSrc and rHmin (max)
rGreatMinCircle(d) (Max) radial unit vector to a point on the great circle

aGreatMin (Max) longitude at the point for

0GreatMin (Max) latitude at the point for 6

xyAitoffGreatMin (Max)  Aitoff plot coordinates for the great circles

crossMin (Max) unit vector perpendicular, normal to the plane of the great circle

fminMA X greatcircles angle between the vectors normal to the planes of the two great circles
ajojnBarHjTable {aj, 6;, 7(H)} at each grid point H = H;, in degrees

xynBarAitoffTable {X, ¥, (x,y)} , where X,y are Aitoff coordinates and 77(x,y) is the alignment angle on grid
xyAitoffSources {x,y} Aitoff coordinates for the sources’ locations on the sphere

dnContourPlot separation of successive contour lines, in degrees

listCP list contour plot of 77(H) from xynBarAitoffTable

rPlusy unit vector in the polarization directions i

polarLines lines from each source along its polarization direction ¢

mapOfnBar contour plot of the alignment angle 7(H) , adorned with source locations and labels
mapOfnBarLocal magnified, local view of the map

inf116]= (* Equatorial coordinates (a,&) for the hubs H,;, and Hy,x in other units.x)
aHminDegrees = HminafunDataObs (360/ (2 7)) ;
aHminHours = HminafunDataObs (24 / (2 ) ) ; (*Hpin*)
SHminDegrees = HminéfunDataObs (360/ (2 7)) ;

aHmaxDegrees = HmaxafunDataObs (360 / (2 7)) ; (*Hpax*)
aHmaxHours = HmaxafunDataObs (24/ (2 7)) ;
6HmaxDegrees = Hmax&funDataObs (360/ (2 7)) ;

. . 2.7 . 2.7
122 rHmin = er[ aHminDegrees ( ) + 7, - 5HminDegrees ( ) ];

360.
rPerpHmin® = erin-—(erin.sourceCenter) sourceCenter;

rPerpHmin®@

rPerpHmin = ;
(rPerpHmine@.rPerpHmine) /2.

rGreatMinCircle[6_] := Cos[©] sourceCenter + Sin[6] rPerpHmin

aGreatMin[6_] := aFROMr[rGreatMinCircle[O]]

6GreatMin[6_] := 6FROMr[rGreatMinCircle[6]]

xyAitoffGreatMin = Table[{xH180 [ aGreatMin[e] (360 / (2r)), 6GreatMin[e] (360 / (2x)) |,
yH180[ aGreatMin[e] (366 / (2x)), sGreatMin[e] (368 / (2x)) ]}, {6, 1, 360}];
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2.7 2.7
niize)= rHmax = er[ aHmaxDegrees ( )-rﬂ, - 6HmaxDegrees (————) |;

360. 360.
rPerpHmax@ = erax-—(erax.sourceCenter) sourceCenter;
rPerpHmaxo
rPerpHmax = T H

(rPerpHmaxe. rPerpHmax@)
rGreatMaxCircle[6_] := Cos[©] sourceCenter + Sin[6] rPerpHmax
aGreatMax[6_] := aFROMr[rGreatMaxCircle[O]]
6GreatMax[6_] := SFROMr[rGreatMaxCircle[6]]
xyAitoffGreatMax = Table[{xH180 [ aGreatMax[e] (366 / (2r)), sGreatMax[e] (368 / (2x)) |,
yH1808 [ aGreatMax[e] (360 / (2r)), sGreatMax[e] (360 / (2x)) ]}, {e, 1, 360}];

In[136:= C€rossMin® = Cross [rHmin, sourceCenter];
crossMine

crossMin = ;
(crossMin@.crossMin@) /%

crossMax®@ = Cross [rHmax, sourceCenter];
crossMaxe

crossMax = 5
(crossMax@.crossMaxe) */?

3

360.
eminMAXgreatcircles = ArcCos [crossMax.crossMin] (————)

2.7

in141:= (*The following table ajéjnBarHjTable is created to
generate a map of the alignment angle 7(H) over the sphere.x)
(» Table ajéjnBarHjTable
entries: 1. a 2. & 3. alignment angle nBarRgnkj at grid point (all in degrees)«)
ajéjnBarHjTable = ( ajsjnBarHjTable® = {};
For[j =1, j < Length[gridjnBarHj], j++,
AppendTo[ ajéjnBarHjTable®, {aGrid[[j]] (360./ (2. x)), 6Grid[[]]] (360./ (2. 7)),
gridjnBarHj[[], 2]] * (36@./ (2. 7)) }] ; If[36@.2 aGrid[[]j]] (360./ (2. 7)) >180.,
AppendTo[ ajéjnBarHjTable®, {aGrid[[j]] (360./ (2. x)) -180.,
-6Grid[[j]] » (36@./ (2. x)) , gridjnBarHj[ [, 2]] = (360./ (2. 7)) }] ]
If[180. > aGrid[[j]] » (360./ (2. 7)) >@., AppendTo[ ajéjnBarHjTableo,
{aGrid[[j]] » (36@./ (2. 7)) + 180., -5Grid[[j]] * (36@./ (2. 7)),
gridjnBarHj[[J, 2]] = (360./ (2. 7))}] ] ;
If[360. > aGrid[[j]] » (360./ (2. x)) > 354., AppendTo[ ajéjnBarHjTabled, {aGrid[[j]] = (36@./
(2. 7)) -360., 6Grid[[j]] * (360./ (2. 7)), gridjnBarHj[[]j, 2]] = (360./ (2. 7))}] ] ;
If[ +6. > aGrid[[j]] » (36@./ (2. 7)) 2@., AppendTo[ ajsjnBarHjTableo,
{aGrid[[j]] » (36@./ (2. 7)) + 360, 6Grid[[j]] * (360./ (2. 7)),
gridjnBarHj[[J, 2]] = (360./ (2. 7)) }] ] |
ajéjnBarHjTableo) ;
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inp421= (*The grid does not cover the sphere. Check that the
ajéjnBarHjTable table covers the entire Celestial Sphere. x)
ListPlot[Table[{ajéjnBarHjTable[[i, 1]], ajéjnBarHjTable[[i, 2]]},
{i, Length[aj&jnBarHjTable]}]]
Print["Figure 11: Check. Since the grid does not cover the sphere, only half, we
should check that the ajéjnBarHjTable table covers the entire Celestial Sphere. "]

out[142]=

Figure 11: Check. Since the grid does not cover the sphere, only half, we
should check that the aj&jnBarHjTable table covers the entire Celestial Sphere.

inf1441= (*Transcribe the alignment function #7(H), the location of the sources,
and the Celestial Equator onto an Aitoff plot.=x)
xynBarAitoffTable = Table [ {xH180[ajsjnBarHjTable[ [k, 1]], ajsjnBarHjTable[ [k, 2]1],
yH180[ajéjnBarHjTable[ [k, 1]], ajéjnBarHjTable[ [k, 2]1], ajsjnBarHjTable[ [k, 311},
{k, Length[ajsjnBarHjTable]}]; (+ The alignment angle function 7 (H) on the grid,
mapped onto a 2D Aitoff projection of the sphere. x)

xyAitoffSources = Table[{xH180[ aSrc[[n]] (36@/ (2x)), &Src[[n]] (360/ (27)) ],
yH180[ asSrc[[n]] (360/ (2x)), &Src[[n]] (360/ (2x)) 1}, {n, nSrc}];
(*The Aitoff coordinates for the sources' locations.x)

inf1461= (% Contour plot of the alignment angle function 77(H) on the grid. x)
dnContourPlot = 6;
(%, in degrees. )1istCP = ListContourPlot [Union [xynBarAitoffTable (x, { {xH18@ [aHminDegrees,
sHminDegrees | ,yH180[aHminDegrees, sSHminDegrees]|,nBarMinx (360./ (2.x))-1.0}},
{{xH180 [aHmaxDegrees, SHmaxDegrees],yH180 [aHmaxDegrees, SHmaxDegrees] ,nBarMaxx (360./ (2.7) ) +
1.0}}+) ], AspectRatio-»1/2, Contours - Table[n, {n, Floor[gridjnBarMin[[2]]
(360./ (2. 7)) ] +1, Ceiling[gridjnBarMax[[2]] = (36@./ (2. n)) ] - 1, dnContourPlot}],

7.5
ColorFunction - "TemperatureMap", PlotRange -» {{—4.0, 3.5}, — {-3, 3}}, Axes -> False,
11.0

Frame -» False, PlotLegends -» Placed [BarLegend [Automatic, LegendMargins -» { {0, 0}, {10, 5}},
LegendLabel » "7 (H), °", LabelStyle -» {Plain, FontFamily - "Times"}], Right]] 3
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in1471= (*Construct the map of 7 (H) .*)
mapOfnBar =
Show [ {1istCP, Table[ParametricPlot[{xH18@[a, 5], yH18@[a, 5]},
{6, -90, 90}, PlotStyle » {Black, Thickness[0.002]}, (xMesh-{11,5,0}
(%{23,11,0} %) ,MeshStyle-Thick, ») PlotPoints » 60], {a, @, 360, 30} ],
Table[ParametricPlot[{xH18@[a, 5], yH180[a, 61}, {a, @, 360},
PlotStyle » {Black, Thickness [0.002] }, (*Mesh-{11,5,0} (*{23,11,0} ),
MeshStyle-Thick, ») PlotPoints » 60], {5, -60, 60, 38} ], Graphics |
{Pointsize[0.004], Text [StyleForm["N", FontSize -> 14, FontWeight -> "Plain"], {@, 1.85}],
Text [StyleForm["Equatorial Coordinate System", FontSize -> 14, FontWeight -> "Plain"],
{0, -1.85}], (xSources S:x)Green, Point[ xyAitoffSources |, Gray,
PointSize[0.002], Point[ xyAitoffGreatMin |, Point[ xyAitoffGreatMax |, Black,
Text [StyleForm|"Hy.x", FontSize » 12, FontWeight -> "Bold"], {-3.3, +1.0}],
{Arrow[BezierCurve[{{-3.3, +1.2}, {-1.3, +3.0},
{xH180 [aHmaxDegrees, sHmaxDegrees], yH180 [aHmaxDegrees, 5HmaxDegrees]}}]]},
Text [StyleForm|"Hy;,", FontSize » 12, FontWeight -> "Bold"], {3.3, 1.0}],
{Arrow[Beziercurve[{{3.3, 1.2}, {0.3, 3.0},
{xH180 [aHminDegrees, sHminDegrees], yH180 [aHminDegrees, sHminDegrees]}}]]},
Text [StyleForm["Hy;,", FontSize » 12, FontWeight -> "Bold"], {-3.3, -1.0}],
{Arrow[Beziercurve[{{-3.3, -1.2}, {-2.3, -2.5}, {xH180[aHminDegrees - 180, -5HminDegrees],
yH180[aHminDegrees - 180, -sHminDegrees]}}]]}, (*#)
Text [StyleForm["Hy.x", FontSize » 12, FontWeight -> "Bold"], {3.3, -1.0}] ,
{Ar‘r‘ow[Bezier‘Cur‘ve[{{3.3, -1.2}, {2.3, -2.0}, {xH180[aHmaxDegrees + 180, -6HmaxDegrees],
yH180 [aHmaxDegrees + 180, -SHmaxDegrees]}}]]}
}]}, Imagesize »0.9432];

In[148)= (%
SetDirectory[homeDirectory]
Export["20210517QSOnearbyHmin.pdf" ,map0OfnBar]
*)

Sc. Section Summary
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in[149):= mapOfnBar

Print |

"Figure 12: The alignment function 7 (H), Eq. (1). The map is centered on (a,6)=(180°,0°),"]
Print["with a = @° on the left and a = 368° on the right, Equatorial Coordinates."]
Print["The sources are located at the dots, shaded ", Green, " ."]
Pr‘int["The smallest alignment angle is fpin = ",

nBarMinfunDataObs (360./ (2. 7)), "°, located at the"]
Print["alignment hubs Hyi, and -Hpi, in the areas shaded ", Blue, " . "]
Print["The hubs Hp;, and -Hp;, are located at (a,8) = ", Round[{aHminDegrees, sHminDegrees }]|,

and ", Round[{aHminDegrees - 180, -SHminDegrees }|, " , in degrees."]

Print["The angle between the sample's center and the closest alignment hub H,;, is ",

. 360.

ArcCos [ - (rHmin.sourceCenter) | [—), °]
2.7

Pr‘int[“The largest avoidance angle is Ffuax = ",

nBarMaxfunDataObs (360./ (2. 7)), "°, located at the"]
Print["avoidance hubs H,.x and -Hp,x in the areas shaded ", Red, " . ]
Pr‘int[“The hubs H,.x and -H,.x are located at (a,8) =",

Round [ {aHmaxDegrees + 180, -6HmaxDegrees }], " and at ",

Round [ {aHmaxDegrees, SHmaxDegrees }]1, " , in degr‘ees."]

Pr‘int["The angle between the sample's center and the closest avoidance hub H,,, is ",

360.
ArcCos [ (-rHmax.sourceCenter) ] (—) , 'O, ]
2.7

Pr‘int[“To guide the eye, two Great Circles are plotted, one through the sources' center and the
avoidance hubs H,,x and -H,.x. The other connects the center of the sources' locations
with the alignment hubs H,;, and -H,;,. The Great Circles are shaded Gray, ", Gray, " .“]
Print["The angle between the normals to the planes of the two great circles is ",
eminMAXgreatcircles, "°."]
Pr‘int[“Notes: Although somewhat obscured by the distortion needed to plot a
sphere on a flat surface, the function 77(H) is symmetric across diameters:
Diametrically opposite points -H and H have the same alignment angle 7 (H) ]

out[149]=

Equatorial Coordinate System
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Figure 12: The alignment function 77(H), Eq. (1). The map is centered on (a,5)=(180°,0°),
with o = ©° on the left and o = 360° on the right, Equatorial Coordinates.

The sources are located at the dots, shaded @ .

The smallest alignment angle is 7pi, = 10.8648°, located at the

alignment hubs Hp;, and -Hy;, in the areas shaded g .

The hubs Hpi, and -Hpi, are located at (o,5) = {180, 49} and {©, -49} , in degrees.

The angle between the sample's center and the closest alignment hub Hpi, is 5.34907°.
The largest avoidance angle is 7jmx = 62.6651°, located at the

avoidance hubs Hp,x and -Hp.x in the areas shaded g .

The hubs Hp,x and -Hp.x are located at (a,5) = {348, -28} and at {168, 28} , in degrees.
The angle between the sample's center and the closest avoidance hub Hp,x is 21.0509°.

To guide the eye, two Great Circles are plotted, one through the sources' center and the
avoidance hubs Hyax and -Huax. The other connects the center of the sources' locations
with the alignment hubs Hyi, and -Hpi,. The Great Circles are shaded Gray, @ -

The angle between the normals to the planes of the two great circles is 104.78°.

Notes: Although somewhat obscured by the distortion needed to plot a
sphere on a flat surface, the function 77 (H) is symmetric across diameters:
Diametrically opposite points -H and H have the same alignment angle 77 (H).

inii64:= (% Local contour plot of the alignment function nBar(H). =*)
dnContourPlot = 6 ; (*, in degrees. x)
frameticks = {{{ {yH[135, 24.5], 3@ °}, {yH[125, 60], 60 °}}, None},
{{{xH180[150, 25], "16h"}, {xH180[180, 25], "12h"}, {xH180[21@, 25], "14h"}},
{{xH180@[130, 62], StyleForm|"Hy.", FontSize - 12, FontWeight -> "Bold"]},
{xH180[188, 62], StyleForm|"Hp;,", FontSize -» 12, FontWeight -> "Bold"]|}}}};
listCPlocal = ListContourPlot [Union[xynBarAitoffTable («, { {xH180 [aHminDegrees, sSHminDegrees],
yH180[aHminDegrees, SHminDegrees | ,nBarMinx (360./ (2.7))-1.0}},
{{xH180 [aHmaxDegrees, SHmaxDegrees],yH180 [aHmaxDegrees, SHmaxDegrees],
nBarMaxx (360./ (2.7) ) +1.0} } %) ] , AspectRatio-»1/2,
Contours - Table[n, {n, Floor[gridjnBarMin[[2]] * (36@./ (2. 7))] +1,
Ceiling[gridjnBarMax[[2]] = (36@./ (2. x)) | - 1, dnContourPlot}],
ColorFunction -» "TemperatureMap", PlotRange » { {xH180[135, @], xH180[225, O] },
{yH180[180, 25], yH180[180, 62]}}, Axes -> False, Frame - True,
FrameLabel » {"a", "8", "Close-Up View"}, FrameTicks - frameticks,
PlotLegends - Placed [BarLegend [Automatic, LegendMargins -» { {0, @0}, {10, 5}},
LegendLabel » "77(H), °", LabelStyle - {Plain, FontFamily - "Times"}], Right]] ;
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ne7i= (*Plot polarization directionsx)
rPlusy[i_, d_] :=
(rsrc[[i]] +dvysrc[[i]]) / ((rSrcl[i]1] +dvySrc[[i]]).(rSrc[[i]] +dvySrc[[i]]))"?
polarLines[d_] :=

. . 360 . 360.
Table[Line[{{xH180aFROMr[ rPlusy[i, d]] (—), SFROMr [ rPlusy[i, d]] (—)],
2.7 2.7

)1}

. 360 . 360.
{xH18@[aFROMr [ rPlusy[i, -d]] (—), SFROMr [ rPlusy[i, -d]] (—]],
2 2.7

360.
yH180[aFROMr[ rPlusy[i, d]] (—), SFROMr [ rPlusy[i, d]] (
2. 71

360.

2.7

o TT
_ 360. i 360. )
yH180 [aFROMr [ rPlusy[i, -d]] (—), SFROMr [ rPlusy[i, -d]] (—]]}}], {i, nSrc}]
2.7 2.7

in1691= (*Construct the map of 7 (H) .*)
mapOfnBarLocal =
Show [ {listCPlocal, Table [ParametricPlot[{xH180[a, 6], yH18@[a, 5]}, {5, 20, 90},
PlotStyle - {Black, Thickness[0.002]}, PlotPoints -»60], {a, 120, 240, 30}],
Table[ParametricPlot[{xH18@[a, 5], yH180[a, 51}, {a, 90, 270},
PlotStyle - {Black, Thickness[0.002]}, PlotPoints -»60], {5, @, 90, 30} ],
Graphics|[{PointSize[0.009], Black, {Thick, polarLines[0.83]}, (xSources S:«)
Green, PointSize[0.012], Point[ xyAitoffSources |, Gray,
PointSize[0.005], Point[ xyAitoffGreatMin |, Point[ xyAitoffGreatMax |,
Black, Text [StyleForm["X", FontSize - 12, FontWeight -> "Bold"],
{xH18@[aHminDegrees, SHminDegrees], yH180[aHminDegrees, SHminDegrees]}],
Text [StyleForm["X", FontSize - 12, FontWeight -> "Bold"],
{xH180 [aHmaxDegrees, SHmaxDegrees], yH180 [aHmaxDegrees, SHmaxDegrees] }],
{Arrow[BezierCurve[{{-3.3, +1.2}, {-1.3, +3.0}, {xH180[aHmaxDegrees, SHmaxDegrees] - 0.01,
yH180 [aHmaxDegrees, SHmaxDegrees] +0.03}}]1]},
{Arrow[BeziercCurve[{{3.3, 1.2}, {0.3, 3.0}, {xH180[aHminDegrees, SHminDegrees| - ©.005,
yH180[aHminDegrees, SHminDegrees] +@.62}}]]}
}1}; Imagesize » 0.9 432];
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in[170:= mapOfnBarLocal
Pr‘int["Figur‘e 13: Map of the alignment angle function

out[170]=

7T(H) in the neighborhood of the sources. The polarization directions display parallax,
generally pointing toward the alignment hub Hy;, .
Note how close three of the sources are to the hub H,;,. ]

Close-Up View

Hmax Hmin

0

7

10h 12h 14h

Figure 13: Map of the alignment angle function
77(H) in the neighborhood of the sources. The polarization directions display parallax,
generally pointing toward the alignment hub Hy;;, .
Note how close three of the sources are to the hub Hyi, .

6. Uncertainty Runs

6a. Creating and Storing Uncertainty Runs

For each “uncertainty run”, the polarization direction i for each source is allowed to differ from the best value y/Src by an

amount 6y chosen according to a Gaussian distribution with a mean equal to the best value ¢/Src and half-width oy/Src, ¢ = ¥Src +
oy. Both values ¢/Src and oy/Src are taken from the JVAS1450 catalog.

The notebook .nb version generates new uncertainty runs. The pdf version uses old uncertainty runs that are uploaded from

previously saved files that are not publically available. Thus both versions have some cells commented out: (* comments are not

processed by Mathematica*).

Definitions:

rSrexrGrid
nR

nRun
yData
runData
nRunPrint
Y SrcU
rSrexySrc

unit vector S; X H; , the cross product of the radial unit vector to source S; with the radial unit vector to grid point H;
number of uncertainty runs

sequential index labeling the runs

table {nRun, '} of polarization directions ¥ = y¥Src + 6 for each run

collection of data to save from the uncertainty runs, see below for content list

dummy index controlling when current TimeUsed and MemoryInUse are printed

the polarization direction ¢ for the run.

unit vector, S; X, cross product of the radial vector S; to the source with the vector 9, in the direction of the polariza-
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tion
jnBarToGridU {J, MH )}, where j is the index for the grid point H; and 7(#;) is the alignment angle function, (1), at H;
sortjnBarToGridU sort {j, 7(/{;)}, with the smaller angle 7(H) first.

jnBarMinU {j,m(H)} for the smallest value of 77(H) , best alignment

jnBarMaxU {j,m(H)}, for the largest value of 7(H) , most avoided

nminadHU off-grid local min data {7, {@,0} at Hyin}

nmaxadHU off-grid local max data {TJmax, {@,0} at Hmax}

funcDataU off-grid, superior values of {nRun, yminadHU, nmaxadHU} collected results
HminafunDataU values of @ = « for hub H,,;, from uncertainty runs, alignment
HmindéfunDataU values of 6 = ¢ for hub H,;, from uncertainty runs, alignment
HmaxafunDataU values of @ = @ for hub Hmax from uncertainty runs, avoidance
HmaxdfunDataU values of § = ¢ for hub Hpax from uncertainty runs, avoidance

Tables:

yData entries: 1. Run# 2. ySrcU, list of polarization position angles ¢
gridDataUn on-grid, entries: 1. Run# 2. {fmin, {@,0} at Hpin} 3. {Tmax, {@,0} at Himax}
funcDataU off-grid, (better) entries: 1. Run# 2. {fmin, {@,0} at Hpin} 3. {Tmax, {@,0} at Hmax}

To generate your own Uncertainty Runs:

First calculate “rSrcxrGrid” and then evaluate the “For” statement in the following two cells.

One can save the results with the “Put[]” statements.

Once saved, there is no need to repeat the runs. Comment out the “rSrcxrGrid” and “For” statements by enclosing them in (*comment
brackets*).

The data can be retrieved with the “Get” statements.

n721= (*Remove comment marks, " (x" and "x)", below to generate your own tables. x)
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In[173]:=

(» Evaluate this cell for the notebook .nb version x)
(*
nR=500;
t1=TimeUsed[];
rSrcxrGridi=Table[ Cross[ rSrc[[i]],rGrid[[j]] 1] , {i,nSrc}, {j,nGrid}];
(»first step: aw cross product, not unit vectorsx)
rSrcerrid:Table[ rSrcerridl[[i,j]]/
(rSrexrGridi[[i,j]1].rSrcxrGridi[[i,j]]+ 0.000001)1”' , {i,nsrc}, {j,nGrid}];

Clear [rSrcxrGridl];

gridDataUn={};yData={};funcDataU={};nRunPrint=0;
For [nRun=1,nRuns<nR,nRun++,
If [nRun>nRunPrint,Print ["At the start of run ",nRun,", the time is ",
TimeUsed[]," seconds and the memory in use is ",MemoryInUse[]," bytes."];
nRunPrint=nRunPrint+100] ;
ySrcU=Table [RandomVariate [NormalDistribution[ySrc[[i]],o¥Src[[i]1]]1],{i,nSrc}];
(»table of PPA angles y for the sources in region j@, in radiansx)
rSrcxySrc = Table[ Sin[¢SrcU[[i]]]eNSrc[[i]]-
Cos[ySrcU[[i]]] eESrc[[i]l], {i,nSrc}];
(»table of the cross product of rSrc and vector in direction of y¥Srcu,
a unit vectors)jnBarToGridU = Table[{j, (1/nSrc)Sum[ArcCos|
Abs[ rSrcxySrc[[i]].rSrcxrGrid[[i,j]] ] - ©.000001 ],{i,nSrc}]},{j,nGrid}];
(*
{grid point #, value of the alignment angle nnHj[j] averaged over all sources,
in radians}=x) sortjnBarToGridU=Sort[jnBarToGridU,#1[[2]]<#2[[2]]1&];
(*jnBarToGridU, {j,nj}, but sorted with the smallest alignment angles first
*)
jnBarMinU=sortjnBarToGridU[[1]]; (* {J,nj}, at the grid point H; with minimum 77«)
jnBarMaxU=sortjnBarToGridU[[-1]]; (* {J,n5}»
at the grid point H; with maximum 77+)AppendTo[yData, {nRun,ySrcU}];
AppendTo[gridDataUn, {nRun, { jnBarMinU[[2]],
{aGrid [ [ jnBarMinU[[1]] 1]1,6Grid [[ JjnBarMinU[[1]] 11}},
{ jnBarMaxU[[2]],{aGrid [[ jnBarMaxU[[1]] 1],6Grid [[ JjnBarMaxU[[1]] 11}}} 1;
(xcollect discrete (on-grid) datax)
nminaSsHU=FindMinimum[nBarAtHwithAnyy [aH, 6H,yData[ [nRun,2]1]],
{{aH,gridDataun[ [nRun,2,2,1]1]}, {6H,gridDataun[ [nRun,2,2,2711}}1;
nmaxadHU=
FindMaximum[nBarAtHwithAnyy [aH, 6H,yData[ [nRun,2]1]1],
{{aH,gridDatauUn[ [nRun,3,2,1]1]}, {6H,gridDataun[ [nRun,3,2,21]1}}1;
AppendTo [funcDataU, {nRun, { nminaéHU[[1]], {aH,8H}/.nminaéHU[[2]]},{ nmaxasdHU[[1]],
{aH,8H}/ .nmaxaSHU[ [2]]}} ] (xcollect continuous (function-based) datas) ]

t2=TimeUsed[];
Print["Time used to compute yData, gridDataUn, and funcDataU: t2 - t1 = ",t2-t1]

*)

Hint: You can save memory if you do not get the “yData”. The table yyData is needed to reconstruct the exact values of the gridDa-

taUn table, but it is not needed in any following calculation.
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ni74= SetDirectory[homeDirectory];
(*Save a new data filex)
(*
Put [yData, "20211005PsiDataUqsoClump2U4000.dat"” ]
%)
(*
Put [gridDataUn, "20211005gridDataUnqsoClump2U4000.dat" ]
*)
(*
Put [funcDataU, "20211005funcDataQSON13Un10000b.dat" ]
*)

Hint: Saving “gridDataUn” to a file avoids the time it takes to complete the “For” statement. Make the above “For” statement into a

remark so that it doesn’t evaluate.

ni75:=  SetDirectory[homeDirectory];
(xRetrieve an old data filex)
(*
yDatad000=Get ["20211004PsiDatalqsoClump2U4000.dat"] ;
yData60e0=Get ["20210928PsiDatalqsoClump2U6000.dat"] ;
%)
(*
gridDataUn4000=Get ["20211004gridDataUnqsoClump2U4000.dat"];
gridDataUn6000=Get [ "20210928runDatalqsoClump2U6000.dat"] ;
*)
(xGet the funcDataU file for the pdf version:x)

funcDatal = Get["20211005funcDataQSON13Un10000a.dat"];

n771= (*If needed, edit the following to collect data files together.x)
(*
yData=Join [¢yDatad000, yData6000] ;
Length[yData]
yData[[1]]
gridDataUn=Join[gridDataUn4000, gridDataln6000] ;
nR=Length[gridDataUn]
gridDataUn[[1]]

*)

ni7e= (*NR may not be previously defined, depending on what cells have been processed. )
(*Define nR for the pdf version:x)

nR = Length[funcDataU]

out178]= 10 000
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In[179]:=

In[430]:=

Out[430]=

(*Define quantities based on the function continuous results. The

continuous results should be better than the on-grid quantities.x)
nBarMinfunDatalU = Table[funcDataU[[il, 2, 1]], {il, Length[funcDataU]}];
nBarMaxfunDataU = Table[funcDataU[[il, 3, 1]] , {il, Length[funcDataU]}];
HminafunDataU = Table[ funcDataU[[il, 2, 2, 1]] , {il, Length[funcDataU]}];
HminsfunDataU = Table[funcDataU[ [i1, 2, 2, 2]], {il, Length[funcDataU]}];
HminaéfunDataU =

Table[ {funcDatau[[il, 2, 2, 1]], funcDataU[[il, 2, 2, 2]]}, {il, Length[funcDataU]}];
HmaxafunDataU = Table[ funcDataU[[il, 3, 2, 1]] , {il1, Length[funcDataU]}];
HmaxsfunDataU = Table[funcDataU[ [il, 3, 2, 2]], {il, Length[funcDataU]}];
HmaxaéfunDataU =

Table[ {funcDataU[[il, 3, 2, 1]], funcDataU[[il, 3, 2, 2]]}, {il, Length[funcDataU]}];

ListPlot [ {HminaéfunDataU, HmaxasfunDataU}, PlotRange - All,
PlotStyle » {{Blue, PointSize[0.01]}, {Red, PointSize[0.01]}},
PlotLabel -» "The hubs from the uncertainty runs", AxesLabel -» {"a (rad)", "6 (rad)"}]
Print["Figure 14: Uncertainty run hubs. The alignment hubs H,;, are in blue, ",
Blue, " The avoidance hubs Hp,x are in ", Red,
". Symmetry across a diameter means there are hubs

diametrically opposed to these. Including any diametrically

opposed hubs would ruin the statistical calculations for hubs."]

The hubs from the uncertainty runs

6 (rad)
I ®

0.8 =

0.6

04r

0.2
““““““““““““““““‘(I(I'ad)

2.85 2.90 2.95 3.00 3.05 3.10 3.15

Figure 14: Uncertainty run hubs. The alignment hubs H,i, are in blue,
Bl The avoidance hubs Hp,x are in W
. Symmetry across a diameter means there are hubs diametrically opposed to these. Including
any diametrically opposed hubs would ruin the statistical calculations for hubs.

6b. The Effects of Uncertainty on the Smallest Alignment Angle i,

This section fits a Gaussian distribution to the 7,,;, from the uncertainty runs.

Definitions

sortyBarMin sort the list of 77,,;, from the uncertainty runs
nOminU estimated mean of the Gaussian fit

ominU estimated half-width of the Gaussian fit

hlminUO0, hlminU histogram {n, bin height} tables needed to set up the NonlinearModelFit



In[189]:=

In[190]:=

In[195]:=

out[195]=

In[197]:=
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nlmminU non-linear model fit of a Gaussian to the 77, histogram
showNLMB plot of Gaussian and histogram
pTableNLMminU table of parameter attributes, including standard error

onBarminUFit, nBarminUFit - half-width, and mean of the Gaussian fit

Print["The number of uncertainty runs is ", Length[funcDataU], "."]

The number of uncertainty runs is 10000.

sortnBarMinU = Sort[nBarMinfunDataU];

n@minU = mean [nBarMinfunDataUl ]; (*Guess the mean for the Gaussian. x)

ominU = stanDev[nBarMinfunDataUl ]; (xGuess the half-width.x)

hlminU@ = HistogramList [sortnBarMinU, {n@minU - 5 ominU, n@minU + 5 ominU, 0.4 ominU}];

hlminU = Table[{(1/2) (hlminu@[[1, i1]] + hlminU@[[1, il+1]]), hlminU@[[2, i1]]1},
{i1, Length[ hlminUe[[2]] 1}];

nlmminU = NonlinearModelFit[hlminuU, a Exp[- (1/2.) ((x-xe) /b) 2] ,
{{a, Length[sortnBarMinu / 6]}, {b, ominU}, {x@, n@minU}}, x]; (*x is nBarMinx)

pTableNLMminU = nlmminU["ParameterTable"]
{onBarminUFit, nBarminUFit} = {b, x@} /. nlmminU["BestFitParameters"]; (xradiansx*)

Estimate  Standard Error t-Statistic P-Value

1580.79  8.78314 17998  2.36808x1073¢
0.0187055 0.000120009  155.867 5.59355x 1073°
x0 | 0.198773 0.000120009  1656.32  1.4834x 107>

showNLMB = Show [ {Histogram[sortnBarMinU, {n@minU - 5 ominU, neminU + 5 ominU, @.4 ominU},
PlotLabel » "Uncertainty run 7ni, ", AxesLabel - {“r_;min, radians", "AR" ],
Plot [Normal [nlmminU], {x, n@minU - 5 ominU, n@®minU + 5 ominU}, PlotLabel - "rTmi,,"] R
ListPlot[hlminU, PlotLabel » "Fnin"] }];

| 37



38 | 20211009Clump2PaperFirst.nb

ini198:= ShowNLMB
Print["Figure 15: The Gaussian fit to the alignment angle 7, histogram. The height
is the number of runs AR in each bin. Note how nicely symmetric this is."]
Print["The total number of runs is R = = (AR) = ", Length[funcDatau], "."]

Uncertainty run Nmin
AR

7\

1N

500 (-

out[198]=

Nmin, radians

0.15 0.20 0.25

Figure 15: The Gaussian fit to the alignment angle 7,i, histogram. The
height is the number of runs AR in each bin. Note how nicely symmetric this is.

The total number of runs is R = Z(AR) = 10000.

6¢. The Effects of Uncertainty on the Largest Avoidance Angle max

This section fits a Gaussian distribution to the 7. returned by the uncertainty runs.

Definitions: Similar to the definitions in Sec. 6b.

in2o1:= sortnBarMaxU = Sort [nBarMaxfunDataU];

n@maxU = mean [nBarMaxfunDatal ]; (*Guess the mean for the Gaussian. x)

omaxU = stanDev[nBarMaxfunDataUl ]; (xGuess the half-width.x)

histogramrangemaxU = {n@maxU - 5 omaxU, n@maxU + 5 omaxU, 0.4 omaxU};

hl@maxU = HistogramList [sortnBarMaxU, histogramrangemaxu] ;

hlmaxU = Table[{(1/2) (hlemaxU[[1, i1]] + hl@maxU[[1, il+1]]), hlemaxU[[2, i1]]1},
{i1, Length[ hlemaxU[[2]] 1}];

nlmmaxU = NonlinearModelFit[hlmaxU, a Exp[- (1/2.) ((x-xe) /b) 2] ,
{{a, 300.}, {b, omaxU}, {x0, nbmaxU}}, x];(*x is nBarmaxU =*)

X-X0+b -1 1 X - X0 2
nlmBmaxU = NonlinearModelFit [hlmaxU, {a (1 +e Ty ] Exp[- — ( ) ] (x,b>0%) },
2, b

{{as ﬁ}, {b, omaxU }, {x@, nemaxU}}, x];
12

inz0s;= pTableNLMmaxU = nlmBmaxU["ParameterTable"]
{onBarmaxFitU, nBarmaxFitU} =
ParametersNLMmaxU = {b, x0} /. nlmBmaxU["BestFitParameters"]; (xradiansx)
Estimate  Standard Error t-Statistic P-Value

1559.75  17.1284 91.0624 7.49644x 10~
0.0168288 0.000206563 814703 8.61619x 1072
x0 | 1.10294  0.000172835 638143  1.92418x 10770

out[208]=



In[210]:=

In[211]:=

out[211]=

In[213]:=
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showNLMmaxU = Show[ {Histogram[sortnBarMaxuU,
histogramrangemaxU, PlotLabel - "fuax", AxesLabel —» {"7nax, radians”, "aR"}],
Plot [Normal [n1mBmaxU], {x, n@maxU - 5 omaxU, n@maxU + 5 omaxU}, PlotLabel - "TTmax"] R
ListPlot [hlmaxU, PlotLabel » "7nax"]| }];

showNLMmaxU
Print |
"Figure 16: The Non-Gaussian fit to the avoidance angle 7.x histogram. Each bin has a
height equal to the number of runs AR in the bin. This graph slants like a random
run distribution, i.e. away from n = /4. See the random
run discussions in Part I above and below in Sec. 7.“]

nmax
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Figure 16: The Non-Gaussian fit to the avoidance angle 7,ax histogram. Each bin has a height
equal to the number of runs AR in the bin. This graph slants like a random run distribution,
i.e. away from n = /4. See the random run discussions in Part I above and below in Sec. 7.

6d. The Effects of Uncertainty on the Locations (@,0) of the Alignment Hubs H,

Each uncertainty run returns an alignment hub H,,;,. In this section, we investigate the distribution of the locations the alignment
Hubs Hmin'
There are two hubs, H,,;, and —H,;, for each uncertainty run, by the symmetry across a diameter. So we collect the data together

by moving the —H,;, hubs across a diameter to join the H,,;, hubs. See Fig. 14.

sortHminasfunDataU = Sort [Union [HminasfunDataU]];
1pHminU =
ListPlot [Union [Hmina&funDataU], PlotRange -» All, PlotStyle -» {Blue, PointSize[0.01]},
PlotLabel - "The alignment hubs from the uncertainty runs",
AxesLabel -» {"a (rad)", "6 (rad)"}];
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in215:= sortHmina = Sort[HminafunDataU];

XxOHmin = mean [HminafunDataUl ]; (#Guess the mean for the Gaussian. %)

dx@Hmin = stanDev[HminafunDataUl ]; (xGuess the half-width.x)

histogramrangeRAHminU = {x@Hmin - 5 dx@Hmin, x@Hmin + 5 dx@Hmin, 0.4 dx@Hmin} ;

hlexHmin = HistogramList [sortHmina, histogramrangeRAHminU] ;

hlxHmin = Table[{(1/2) (hlexHmin[[1, i1]] +hl@xHmin[[1, il+1]]), hlexHmin[[2, i1]1},
{i1, Length[ hlexHmin[[2]] ]}];

nlmxHmin = NonlinearModelFit [hlxHmin, a Exp[- (1/2.) ((x-x@) /b) 2] ,
{{as Length[sorthina/G] }» {b, dx@Hmin}, {x@, x@Hmin}}, x]; (*x is Hminax)

in221= pTablenlmxHmin = nlmxHmin["ParameterTable"]
{oHminaFit, HminaFit} = ParametersnlmxHmin = {b, x@} /. nlmxHmin["BestFitParameters"];
(*radiansx)
Normal [nlmxHmin]
expOfnlmxHmin[x_] := - (1/2.) ((x-x8) /b) 2 /. nlmxHmin [ "BestFitParameters"]
expOfnlmxHmin [x]

Estimate Standard Error t-Statistic P-Value
S 4684.95 588.845 795618  6.46607x 1078
0.000479938 0.0000791483 6.06379  4.20082x107°
x0 | 3.13413 0.000130467 240224 4.15789x10°%

6 2
out[223]= 4684 .95 e72.1797><10 (-3.13413+x)

oulzzs ~2.1707 x 10° (-3.13413 + x) 2

in226)= ShownlmxHmin = Show[ {Histogram[sortHmina, histogramrangeRAHminU,
PlotLabel » "aHmin ", AxesLabel - {"aHmin, radians", "AR"}, PlotRange -» All],
Plot [Normal [nlmxHmin], {x, 3.12, 3.145}, PlotRange -» All, PlotLabel - "aHmin"],
ListPlot [h1xHmin, PlotLabel -» "aHmin"] }];

in227:= sortHminé = Sort[Hmin&funDatau] ;

yOHmin = mean [Hmin&éfunDataU ]; (¥Guess the mean for the Gaussian. x)

dyOHmin = stanDev[Hmin&funDataU ]; (xGuess the half-width.x)

histogramrangeDecHminU = {y@Hmin - 5 dy@Hmin, y@Hmin + 5 dy@Hmin, 0.4 dyOHmin};

hleyHmin = HistogramList [sortHmins, histogramrangeDecHminU] ;

hlyHmin = Table[{(1/2) (hl@yHmin[[1, i1]] +hl@yHmin[[1, il1+1]]), hleyHmin[[2, i1]1},
{i1, Length[ hleyHmin[[2]] 1}];

nlmyHmin = NonlinearModelFit [hlyHmin, a Exp[- (1/2.) ((y-ye) /b) 2] ,
{{a, Length[sortHmins /6]}, {b, dy@Hmin}, {y@, yeHmin}}, y]; (xy is Hmins«)
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in233= pTablenlmyHmin = nlmyHmin["ParameterTable"]
{oHminéFit, HminéFit} = ParametersnlmyHmin = {b, y@} /. nlmyHmin["BestFitParameters"];
(*radiansx)
Normal [n1lmyHmin]
expOfnlmyHmin[y_] := - (1/2.) ((y-ye) /b) 2 /. nlmyHmin [ "BestFitParameters"]

expOfnlmyHmin[y]
Estimate Standard Error t-Statistic P-Value
a | 783508 122.439 63.9917 1.71076x 10726

out[233]=

b | 0.000909269 0.0000386478 23.5271 4.36022x107"7
y0 | 0.855277 0.0000977768 874724 1.86759x 10773

2
Out235]= 7835.08 e—604763. (-0.855277+y)

ouzsr ~604763. (-0.855277 +y)?

in23s;= shownlmyHmin = Show[ {Histogram[sortHminé, histogramrangeDecHminU,
PlotLabel -» "&Hmin ", AxesLabel - {"SHmin, radians", "AR"}, PlotRange - All],
Plot [Normal [nlmyHmin], {y, ©.82, 0.88}, PlotRange -» All, PlotLabel - "SHmin"],
ListPlot [hlyHmin, PlotLabel -» "SHmin"] }1;

General: Exp[-752.569] is too small to represent as a normalized machine number; precision may be lost.

in23g)= GraphicsRow [ {shownlmxHmin, shownlmyHmin} ]
Print["Figure 17: The Gaussian fits to the Hmin RA and DEC
histograms, where the height is the number of runs AR in each bin. "]

Print["In both graphs, the total number of runs is R = = (AR) = ", Length[funcDatau], "."]
aHmin OHmin
AR AR
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Figure 17: The Gaussian fits to the Hmin RA and DEC
histograms, where the height is the number of runs AR in each bin.

In both graphs, the total number of runs is R = % (AR) = 10000.
in242;= eXpoHminU[x_, y_] := —(expOfnlmmein[x]-+exp0fn1myHmin[y])

Print["The exponent of the probability distribution for
Hpin, 1.e. the negative log of the distribution: ", expoHminU[a, &6]]

The exponent of the probability distribution for H,i,, 1.e. the negative log of the distribution:
2.1707x10° (-3.13413 + 1) 2 + 604763. (-0.855277 + &) 2
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in2441= Plot3D[ {expoHminU[x, y], 0.5}, {X, x0 - 0.0010, x0 + 0.0010} /. nlmxHmin["BestFitParameters"],
{y, y0 - 0.0015, y0 + 0.0015} /. nlmyHmin["BestFitParameters"],
PlotLabel » "Negative log of the probability of (a,&) for Hpin",
AxesLabel » {"a (rad)", "6 (rad)"}]
Pr-int["Figur-e 18: The negative log of the likelihood of (RA,dec) for Hui,, as a
function of RA and dec. Where the likelihood is down by a factor e'/%, the
negative log is 0.5 and that defines the half-width o of the distribution."]

Negative log of the probability of (a,d) for Hmin

Out[244]=

S (rad
0.855 (rad)
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Figure 18: The negative log of the likelihood of (RA,dec) for Hui,, as

a function of RA and dec. Where the likelihood is down by a factor e™'/?, the
negative log is 0.5 and that defines the half-width o of the distribution.

inzas)= (*Find the curve for the intersection in Fig. 18x)
freHmin[r_, 6_] :=
Simplify [ (expoHminU[x, y]) - 8.5 /. {X - HminaFit + r Cos[6], y -» Hmin6Fit + rSin[e]}]
freHmin[r, 6];
solverHmine[6_] := Solve[freHmin[r, 6] =0, r];
solverHmine[6] ;
rHmine[6_] := Abs[r /. solverHmine[©6] [[2]]]
rHmine[6];
rHmine[0.8];
Plot[rHmine[6], {6, O, 2. 7}];

- Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding

exact system and numericizing the result.

. Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding

exact system and numericizing the result.
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in2s4= Show [ {1pHminU, ParametricPlot [ {HminaFit + rHmine[6] Cos[6], Hmin&Fit + rHmine[©] Sin[6]},
{e, 0, 2. rr}, PlotStyle -» Orange, PlotRange » A1l (%x{{3.12,3.14},{0.84,0.90}}*)]}]
Print["Figure 19: All of the alignment hubs H,;, from uncertainty runs. The ellipse
encloses the most likely locations of the hubs. Symmetry across diameters
means there is another set diametrically opposite those displayed here."]

The alignment hubs from the uncertainty runs

0.855
0.850
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Figure 19: All of the alignment hubs H;i, from uncertainty runs.
The ellipse encloses the most likely locations of the hubs. Symmetry across
diameters means there is another set diametrically opposite those displayed here.

6e. The Effects of Uncertainty on the Locations (a,0) of the Avoidance Hubs Hmax

Each uncertainty run returns an avoidance hub Hpmax. In this section, we investigate the distribution of the locations the avoidance
hubs Hpax.
There are two hubs, Hmax and —Hmax for each uncertainty run, by the symmetry across a diameter. So we collect all the hubs

together by moving the —Hmax hubs across a diameter to join the Hmax hubs. See Fig. 14.
nesel= (xCheck that 8° < a < 180° and -90° < & < 90° %)

360.
sortHmaxasfunDatal = Sort[Union [HmaxasfunDataU] (—] ]
2.7

1pHmaxU =
ListPlot [Union [HmaxaéfunDataU], PlotRange » All, PlotStyle » {Red, PointSize[0.01]},
PlotLabel » "The avoidance hubs from the uncertainty runs",
AxesLabel » {"a (rad)", "6 (rad)"}];

in2ssi= sortHmaxa = Sort[HmaxafunDataU];

x0@Hmax = mean [HmaxafunDataU ]; (xGuess the mean for the Gaussian. x)

dx@Hmax = stanDev[HmaxafunDataUl ]; (xGuess the half-width.x)

histogramrange = {x@Hmax - 5 dx@Hmax, x@Hmax + 5 dx@Hmax, dx@Hmax} ;

hlexHmax = HistogramList [sortHmaxa, histogramrange];

hlxHmax = Table[{(1/2) (hlexHmax[[1, i1]] +hl@xHmax[[1, il+1]]), hlexHmax[[2, i1]]},
{i1, Length[ hlexHmax[[2]] ]1}];

nlmxHmax = NonlinearModelFit [hlxHmax, a Exp[- (1/2.) ((x-x@) /b) 2] ,
{{as Length[sor‘thaxa/s] }» {b, dx@Hmax}, {x@, x@Hmax}}, x]; (*x is Hmaxax)
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In[264]:=

a
out[264]=

out[266]=

pTablenlmxHmax = nlmxHmax["ParameterTable"]

{oHmaxaFit, HmaxaFit} = ParametersnlmxHmax = {b, x0} /. nlmxHmax["BestFitParameters"];
(*radiansx)

Normal [nlmxHmax]

expOfnlmxHmax [x_] := - (1/2.) ((x-x8) /b) 2 /. nlmxHmax [ "BestFitParameters"]
expOfnlmxHmax [x]

Estimate  Standard Error t-Statistic P-Value

3279.85 1349.65 243016  0.0454102

0.0508147 0.0241455 2.10452  0.0733793

x0 | 290428  0.0241444 120.288  7.23729x107"3

3279.85 (67193.638 (-2.90428+x) 2

oufzes- ~193.638 (-2.90428 + x)*
inzeg)= ShownlmxHmax = Show[ {Histogram[sortHmaxa, histogramrange,
PlotLabel - "aHmax ", AxesLabel - {"aHmax, radians", "AR"}, PlotRange - All],
Plot [Normal [nlmxHmax], {x, 2.7, 3.1}, PlotRange -» All, PlotLabel -» "aHmax"],
ListPlot [hlxHmax, PlotLabel -» "aHmax"] }1;
in27oi= sortHmaxé = Sort[HmaxéfunDataU] ;
yOHmax = mean [Hmax&funDataU ] ; (¥Guess the mean for the Gaussian. =x)
dyOHmax = stanDev[HmaxéfunDatal ]; (xGuess the half-width.x)
histogramrange = {y@Hmax - 5 dy@Hmax, y@Hmax + 5 dy@Hmax, 0.4 dy@Hmax} ;
hloyHmax = HistogramList [sortHmaxé, histogramrange];
hlyHmax = Table[{(1/2) (hl@yHmax[[1, i1]] +hl@yHmax[[1, il+1]]), hleyHmax[[2, i1]]1},
{i1, Length[ hleyHmax[[2]] ]}];
nlmyHmax = NonlinearModelFit [hlyHmax, a Exp[- (1/2.) ((y-ye) /b) 2] ,
{{a, Length[sortHmaxs / 6]}, {b, dyeHmax}, {y@, yeHmax}}, y]; (+x is Hmaxs&x)
276 = pTablenlmyHmax = nlmyHmax["ParameterTable"]
{oHmax&6Fit, Hmax6Fit} = ParametersnlmyHmax = {b, y@} /. nlmyHmax["BestFitParameters"];
(*radiansx)
Normal [nlmyHmax]
expOfnlmyHmax[y_] := - (1/2.) ((y-ye) /b) 2 /. nlmyHmax [ "BestFitParameters"]
expOfnlmyHmax [y]
Estimate Standard Error t-Statistic P-Value
oupr. @ | 12529 520.149 240874  0.0248248
0.235369 0.112836 2.08594  0.0487919
y0 | 0.589584 0.11283 522543  0.0000305743
ouzre- 1252.9 @-9-02549 (-0.589584+y) 2
oufzeol- -9.02549 (-0.589584 +y)?



In[281]:=

out[282]=

In[285]:=
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shownlmyHmax = Show[ {Histogram[sortHmaxé, histogramrange,
PlotLabel -» "S6Hmax ", AxesLabel -» {"&Hmax, radians", "AR"}, PlotRange - All],
Plot [Normal [nlmyHmax], {y, 0., 1.5}, PlotRange -» All, PlotLabel -» "SHmax"],
ListPlot [hlyHmax, PlotLabel -» "SHmax"] }1;
GraphicsRow[ {shownlmxHmax, shownlmyHmax} ]
Print["Figure 20: The Gaussian fits to the Hmax RA and DEC
histograms, where the height is the number of runs AR in each bin. "]

| a5

Print["In both graphs, the total number of runs is R = = (AR) = ", Length[funcDatau], "."]
aHmax 6Hmax

AR AR
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Figure 20: The Gaussian fits to the Hmax RA and DEC
histograms, where the height is the number of runs AR in each bin.

In both graphs, the total number of runs is R = = (AR) = 10000.
expoHmaxU[x_, y_] := —(expOfnlmmeax[x]-rexpOfnlmyHmax[y])

Print["The exponent of the probability distribution for
Hpaxs 1.€. the negative log of the distribution: ", expoHmaxU[a, &6]]

The exponent of the probability distribution for H,.x, 1.e. the negative log of the distribution:

193.638 (-2.90428 + o) 2 + 9.02549 (-0.589584 + &) >
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ine7= Plot3D[ {expoHmaxU[x, y], 0.5}, {X, x0 - 0.08, x0 + 0.08} /. nlmxHmax [ "BestFitParameters"],
{y, y0-0.5, y0 +0.5} /. nlmyHmax ["BestFitParameters"],
PlotLabel » "Negative log of the probability of (a,&) for Hp.",
AxesLabel » {"a (rad)", "6 (rad)"}]
Pr-int["Figur-e 21: The negative log of the likelihood of (RA,dec) for Hy.x, as a
function of RA and dec. Where the likelihood is down by a factor e'/%, the
negative log is 0.5 and that defines the half-width o of the distribution.“]

Negative log of the probability of (a,d) for Hmax

out[287]=

Figure 21: The negative log of the likelihood of (RA,dec) for Huax, as
a function of RA and dec. Where the likelihood is down by a factor e %2, the
negative log is 0.5 and that defines the half-width o of the distribution.

nesor= (*Find the curve for the intersection in Fig. 21x)
freHmax([r_, 6_] :=
Simplify[ (expoHmaxU[x, y]) - 0.5 /. {x » HmaxaFit + r Cos[6], y » HmaxéFit + r Sin[6]}]
freHmax[r, 6];
solverHmaxe[6_] := Solve[freHmax[r, 6] =0, r];
solverHmaxe[O] ;
rHmaxe[6_] := Abs[r /. solverHmaxoe[©] [[2]]]
rHmaxe [6] ;
rHmaxe[0.8];
Plot[rHmaxe[e6], {6, 0, 2. 7}];

. Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding

exact system and numericizing the result.

. Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding

exact system and numericizing the result.



In[297]:=

out[297]=
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Show[ {1pHmaxU, ParametricPlot [ {HmaxaFit + rHmaxe[©] Cos[6], Hmax6Fit + rHmaxe[6] Sin[e]},
{e, 9, 2. r}, PlotStyle -» Orange, PlotRange -» All]}]

Print["Figure 22: Avoidance hubs Hp,x from uncertainty runs. The ellipse
encloses the most likely locations of the hubs. Symmetry across diameters
means there is another set diametrically opposite those displayed here."]

The avoidance hubs from the uncertainty runs
6 (rad)

0.8 - e e
0.6

04

0.2

" " 1 " " " 1 " " " 1 " " " 1 " " " 1 " " " 1 " " " 1 " a (rad)
2.86 2.88 2.90 2.92 2.94 2.96 2.98

Figure 22: Avoidance hubs H,.x from uncertainty runs. The ellipse

encloses the most likely locations of the hubs. Symmetry across diameters
means there is another set diametrically opposite those displayed here.

6f. The Effects of Uncertainty on the angle 6 between the planes of the Sample to H,,,;, Great Circle and the Sample to Hmax Great

Circle.

These are the Gray lines in Figs. 3, 4, 12, 13. However, in Sec. 7 below, we see that the avoidance angle Fpax is not significant,
random i would be likely to yield a fj,ax that is as large or larger. Also, we see a lot of scatter in Fig. 22 for the avoidance hubs Hmax.
Conversely, the alignment angle fyin is very significant and the alignment hubs collect in a tight formation. Compare the axes scales

in Figs. 19 and 22. The Great Circle from the Sample to Hmax is not well-defined. So the angle 6 varies over a wide range.

Definitions:

“uRuns” prefix results from the uncertainty runs

uRunsCrossMin unit vector normal to the Great Circle connecting the center of the source region with the alignment hub H;,
uRunsCrossMax unit vector normal to the Great Circle connecting the center of the source region with the alignment hub Hmax
uRuns#minmaxUgreatcircles angle between the two normals in degrees

sortdminmaxU sort “uRunsffminmaxUgreatcircles”, smallest 6 first

See Definitions above in Secs. 6a,6b for other quantities below. There you should find similarly named quantities.
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In[299]:=

In[304]:=

In[310):=

out[310]=

In[312]:=

URunsCrossMin®@ = Table[Cross [er [HminafunDataU[[i]], Hmin&funDataU[[i]]], sourceCenter ],
{i, Length[HminafunDataU]}];
URunsCrossMin@[[i]]

uRunsCrossMin = Table

3
(uRunsCrossMin®@ [ [i]].uRunsCrossMin@[[i]])Y'*

{i, Length[HminafunDataU]}];
uRunsCrossmaxu@ = Table[Cross [er [HmaxafunDataU[[i]], Hmax&funDataU[[i]]], sourceCenter ],
{i, Length[HmaxafunDataU]}];
uRunsCrossmaxu = Table[ URunsCrossmaxUo[[i]] /
(uRunsCrossmaxU@[ [i]].uRunsCrossmaxUe[[i]]) 1/2. " {i, Length[HmaxafunDataU] ]

uRunseminmaxUgreatcircles = Table [ArcCos [uRunsCrossmaxU[ [i]] .uRunsCrossMin[[i]]] ( - ) R
2.7

{i, Length[HmaxafunDataU]}];

(xFit two peaks for o6:%)
sorteminmaxU = Sort[uRunseminmaxUgreatcircles];
x06 = mean [uRunseminmaxUgreatcircles]; (xGuess the mean for the Gaussian. x)
dx@6 = 0.3 stanDev[uRunseminmaxUgreatcircles ]; (*Guess the half-width.x)
histogramrange = {x06 - 5 dx06, x06 + 5 dx06, 0.4 dx06};
hle = HistogramList [sorteminmaxU, histogramrange] ;
hl =
Table[{(1/2) (h1l@[[1, i1]] +h1@[[1, i1+1]]), hl@[[2, i1]]}, {il, Length[ hl@[[2]] 1}];
nlme = NonlinearModelFit[hl, a3 Exp[- (1/2.) ((x-xe@3) /b3) 2] +
ad Exp[- (1/2.) ((x-xe4) /b4)2], {{a3, 2000.}, {b3, 5.}, {x03, 100.},
{a4, 1000.}, {b4, 15.}, {x@4, 155.}}, {X}]; (*x is eminmaxUx)

pTableNLMé = nlme["ParameterTable"]
{dx@eminmaxUFit3, eminmaxUFit3, dx@eminmaxUFit4, eminmaxUFit4} =
{b3, x03, b4, x04} /. nlme["BestFitParameters"]; (xdegreesx)

Estimate Standard Error t-Statistic P-Value

a3 |3858.83 306.185 12.6029  1.12711x107'°
b3 | -2.01426 0.196727 -10.2389 3.59334x107°
x03 | 105.092 0.157148 668.742  5.30798x 10743
a4 | 101542 125.289 8.10463  1.38104x1077
b4 |76131 248322 3.06581 0.00636138
x04 | 170.689 3.26776 52.2344 545207 x 1072

showNLMe = Show[ {Histogram[sorteminmaxU, histogramrange,
PlotLabel -» "Angle 6 between the Two Gray Great Circles in Figs. 3, 4, 12, 13.",
AxesLabel » {"o, degrees", "AR"}],
Plot [Normal[nlme], {x, @, 250}, PlotRange -» All], ListPlot[hl] }];

General: Exp[-1360.92] is too small to represent as a normalized machine number; precision may be lost.
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in313:= ShowNLMe
Print["Figure 23: The Gaussian fit to the angle © histogram. We fit two angles o,
corresponding to the two likely locations of the avoidance hubs Hp.x. "]

Angle 6 between the Two Gray Great Circles in Figs. 3, 4, 12, 13.
AR

4000 1
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out[313]=
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Figure 23: The Gaussian fit to the angle 6 histogram. We fit two angles
6, corresponding to the two likely locations of the avoidance hubs Hyay.

6g. Map of the Hubs for the Uncertainty Runs

In this subsection, we map the locations of the many alignment hubs H,;, and the avoidance hubs Hpayx that are found in the

uncertainty runs.

Definitions:

viySrcBig, Small unit vectors, v({ = o), large & small, the one-sigma range of polarization directions ¢

nz1s= (*The Aitoff coordinates for the hubs H,ij, locations.x)
xyAitoffHminU = Table[{xH18@[ HminafunDataU[[n]] (360 / (27)),
HminsfunDataU[ [n]] (360 / (2x)) |, yH188[ HminafunDataU[[n]] (360 / (2x)),
HminsfunDataU[[n]] (360 / (2x)) ]}, {n, Length[HminsfunDataU ]}];

nzie= (*The Aitoff coordinates for the hubs H,,x locations.x)
xyAitoffHmaxU = Table[{xH180[ HmaxafunDataU[[n]] (360 / (27)),
HmaxsfunDataU[[n]] (368 / (2x)) |, yH188[ HmaxafunDataU[[n]] (360 / (2x)),
HmaxsfunDataU[[n]] (360 / (2x)) ]}, {n, Length[Hmax&funDataU ]}];

nz17:= (*The Aitoff coordinates for the hubs -H,;, locations.x)
xyAitoffOppositeHminU = Table[{xH180[ If[@ < HminafunDataU [[n]] (360 / (2x)) < +188,
HminafunDataU[[n]] (366 / (2x)) + 180, If[36@ > HminafunDataU[[n]] (366 / (2x)) > 180,
HminafunDataU[[n]] (360 / (2x)) - 18@]], -HminsfunDatau[[n]] (368 / (27)) ],
yH180[ If[@ < HminafunDataU[[n]] (360 / (2x)) < +18e,
HminafunDataU[[n]] (360 / (2x)) + 180, If|
360 > HminafunDataU[ [n]] (368 / (2x)) > 180, HminafunDataU[[n]] (360 / (2x)) - 180]],
-Hmin&funDataU[ [n]] (360/ (27)) ]}5 {n, Length[Hmin&funDatau ]1}];
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nzis= (*The Aitoff coordinates for the hubs -H,,x locations.x)
xyAitoffOppositeHmaxU = Table[{xH180[ If[@ < HmaxafunDataU[[n]] (368 / (2x)) < +180,

HmaxafunDataU[ [n]] (366 / (2x)) + 180, If[36@ > HmaxafunDataU[[n]] (366 / (2x)) > 180,
HmaxafunDataU[ [n]] (360 / (2x)) - 18] ], -HmaxsfunDataU[[n]] (368 / (2x)) ],

yH188[ If[@ < HmaxafunDataU[[n]] (360 / (2x)) < +180,

HmaxafunDataU[ [n]] (368 / (2x)) + 180, If|
360 > HmaxafunDataU[ [n]] (368 / (2x)) > 180, HmaxafunDataU[[n]] (360 / (2x)) - 180]],

-HmaxsfunDataU[[n]] (360 / (2x)) ]}, {n, Length[Hmax5funDataU ]}];

ni319i= (% Vy unit vectors pointing along the polarization direction,
have an experimental uncertainty. These are their plus/minus values. =)
vySrcBig = Table[Cos[ (¥Src[[i]] + o¥Src[[i]]) | eN[ aSrc[[i]], &Src[[i]] ]+
sin[ (¥Src[[i]] + oySrc[[i]]) | eE[ aSrc[[il], &Src[[il] I, {i, nSrc}];
vySrcSmall = Table[Cos[ (¥Src[[i]] - oySrc[[i]]) | eN[ aSrc[[i]], &Src[[i]] ]+
Sin[ (4Src[[i]] - oySrc[[i]]) | eE[ aSrc[[il], &Src[[il] ], {i, nSrc}];

ns21= (*Plot polarization direction Uncertainty in Sec. 6x)
(rSrc[[i]] +dvySrcBig[[i]]) /

rPlusyBig[i_, d_] :=
((rSrc[i]] +dvySrcBig[[i]]). (rSrc[[i]] +d vySrcBig[[i]]))"?

polarLinesBig[d_] := Table|
. .. 60. L. 360.
Line [{{xH18@[aFROMr[ rPlusyBig[i, d]] (—], SFROMr [ rPlusyBig[i, d]] (—]],
2.7 2.7
60. L. 360.
—), SFROMr [ rPlusyBig[i, d]] (—)]},
2.7

yH180 [aFROMr [ rPlusyBig[i, d]] (
2.7
60. L 360.
], SFROMr [ rPlusyBig[i, -d]] (—)], yH180 |
2.7

{lese[aFROMr-[ rPlusyBig[i, -d]] (—
2.7
360.
——]111 t, nsrey]
7T

60.
), SFROMr [ rPlusyBig[i, -d]] (
2

aFROMr [ rPlusyBig[i, -d]] (
2.7

nz23)= (*Plot polarization direction Uncertainty in Sec. 6x)
rPlusysmall{i_, d_] := (rSrc[[i]] +dvySrcSmall[[i]]) /
((rSre[[i]] +dvySrcSmall[[i]]). (rSrc[[i]] +d vySrcSmall[[i]]))*/?

&)],

polarLinesSmall[d_] := Table|
60.
), SFROMr [ rPlusySmall[i, d]] (
2.7

Line[{{xH18@[aFROMr[ rPlusySmall[i, d]] (
2.7 .
6e. . 360
], SFROMr [ rPlusysSmall[i, d]] (—] ] },
2.7

yH180 [aFROMr [ rPlusysSmall[i, d]] (—
2.7
360.
_] 1,

60.
), SFROMr [ rPlusySmall[i, -d]] (
2.7

{xH18@[aFROMr [ rPlusySmall[i, -d]] (
2.7
360.
],

yH180 [aFROMr [ rPlusysSmall[i, -d]] (
2.7
360.
—]]}}], (i, nsrc} ]
« 7T

SFROMr [ rPlusySmall[i, -d]] (
2
nz2s= (% Local contour plot of the alignment angle function 7 (H) on the grid. =x)

(*dnContourPlot = 6 ;%) (*, in degrees. %)
frameticks = {{{ {yH[150, 22.5], 30 °}, {yH[150, 48.5], 60 °}}, None},

{{{xH180[150, (%15%)30], "10h"},
{xH180[180, 15], "12h"}, {xH180[210, 15], "14h"}}, {None}}};
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n3261= listCPlocalU = Show[ {Table[

ParametricPlot[{xH180@[a, 5], yH180[a, 61}, {5, 10, 90}, PlotStyle » {Black, Thickness[0.002]},
PlotPoints —» 60, PlotRange » { {xH180[ (x135x%)150, 30], xH180[ (¥225%)190, 30]},
{yH180[180, (%15%)30], yH180[180, 62]}}, Axes -> False, Frame - True,
FrameLabel » {"a", "6", "Close-Up View"}, FrameTicks - frameticks], {a, 120, 240, 30}],
Table[ParametricPlot[{xH18@[a, 5], yH180[a, 61}, {a, 90, 270},
PlotStyle - {Black, Thickness[0.002]}, PlotPoints -»60], {5, @, 90, 30} ],
Graphics[{PointSize[0.01], Red, (xHmax:)Point[ xyAitoffHmaxU |, PointSize[0.009], Gray,
{Thick, polarLines[@.83]}, {Thick, polarLinesBig[@.03]}, {Thick, polarLinesSmall[e.e3]},
(xSources S:x)Green, PointSize[@.012], Point[ xyAitoffSources |,
PointSize[0.01], Blue, (xHmin:x)Point[ xyAitoffHminU |, Gray, PointSize[0.005]

360.
o Par‘ametr‘icPlot[{lese[ (HminaFit + rHmine[e] Cos[©]) (2—] ,
« TT

360.
(HminsFit + rHmine[e] Sin[e]) ( )]’
2

360. 360.
yH180[(HminaFit-+erine[e] Cos[6]) (;———], (HminsFit + rHmine[6] Sin[e]) [;———]]},
« 7T .

{6, @., 2. 7}, PlotStyle » {Orange, Thickness[0.01] }], ParametricPlot[

360.
{leSO[ (HmaxaFit + rHmaxe [6] Cos[6]) (2—] » (HmaxsFit + rHmaxe[e] Sin[e]) (
o« 7T

w
<))
()
—_—
—
-

2.7

360. 360.
yH180[(HmaxaFit-+eraxe[e] Cos[6]) (————], (Hmax5Fit + rHmaxe[©] Sin[e]) [ ]]},
2.7 2.7

{e, 0., 2. 1}, PlotStyle > {Orange, Thickness[0.005] }]}, ImageSize » 0.9 <432 ];
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in3271:= 1listCPlocalU
Pr‘int[“Figur‘e 24: Uncertainty plot. The sources are shaded green, "
Green, ". Polarization directions for the reported value
¥, and the one-sigma values ¥ + oy are plotted as gray, ", Gray,
, line segments through the sources. All of the alignment hubs H,;, from the uncertainty
runs are plotted as overlapping blue, ", Blue, ", dots, with the orange, ", Orange,

, spot denoting the tiny ellipse of highest hub density. Many of the avoidance red dots, "
Red, ", for the H,,x are off-graph. The big orange
ellipse encloses the likely locations for avoidance hubs. ]

3

B

Close-Up View

60°

outz27= ©

30°
10h 12h

Figure 24: Uncertainty plot. The sources are shaded green,
[. Polarization directions for the reported
value ¥, and the one-sigma values y + oy are plotted as gray, W
, line segments through the sources. All of the alignment hubs Hpi, from the
uncertainty runs are plotted as overlapping blue, i, dots, with the orange, @
, spot denoting the tiny ellipse of highest hub density. Many of the avoidance red dots,
W, for the Hy,x are off-graph. The big orange
ellipse encloses the likely locations for avoidance hubs.

6h. Section Summary
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nE2oi= Print["To estimate the effects of experimental uncertainty, there were ",
Length[funcDataU], " uncertainty runs."]
Print["Uncertainty runs have polarization directions ¥ = ySrc + &y, ",
"where 6y is chosen with a normal
distribution of half-width oy about the best value ySrc."]

Print["The uncertainty runs determine the smallest alignment angle to be nnuin = ",
nBarminUFit (36@. / (2. x)), "° ¢ ", onBarminUFit (36e. / (2. 7x)), "°." ]
Print["The uncertainty runs determine the largest avoidance angle to be #nx = ",

nBarmaxFitu (36@. / (2. x)), "° &+ ", onBarmaxFitU (360. / (2. 7)), "°." ]
Print["Note, from Fig. 24, the avoidance hubs Hp,x from uncertainty
runs separate into two distinct blobs. Thus, the uncertainty
runs determine the angle © between the two grey Great Circles in
Figs. 3, 4, 12, 13, to be centered around two different values."]
Print["For the more likely H,.xS, we have © = ", eminmaxUFit3,
"o + ", Abs[dx@eminmaxUFit3], "°." ]
Print["The less likely group of H,,x hubs give the angle
© between the two grey Great Circles © = ", eminmaxUFit4,
"% & ", dx@eminmaxUFit4, "°. The more likely Great Circle from the
sample to the avoidance hubs H;,x is drawn in the figures." ]

To estimate the effects of experimental uncertainty, there were 10000 uncertainty runs.

Uncertainty runs have polarization directions ¢ = ySrc + &y,
where &6y is chosen with a normal distribution of half-width oy about the best value ySrc.

The uncertainty runs determine the smallest alignment angle to be fuin = 11.3889° + 1.07175°.
The uncertainty runs determine the largest avoidance angle to be 7. = 63.1935° + 0.964218°.

Note, from Fig. 24, the avoidance hubs Hy,x from uncertainty runs separate into two
distinct blobs. Thus, the uncertainty runs determine the angle 6 between the two
grey Great Circles in Figs. 3, 4, 12, 13, to be centered around two different values.

For the more likely Hp.xs, we have 6 = 105.092° + 2.01426°.

The less likely group of Hp.x hubs give the angle © between the two grey Great Circles 6 =
170.689° + 7.6131°. The more likely Great Circle
from the sample to the avoidance hubs H,,x is drawn in the figures.

7. Probability and Significance

The problem of “significance” is to determine the likelihood that random polarizations directions would produce better align-
ment or avoidance than the observed polarization directions.

To determine the probability distributions and related formulas, we made many runs with random data and fit the results. In this
effort, as has occurred previously elsewhere, one finds that the probability distributions for the smallest alignment angle 7,,,;, and the
largest avoidance angle 77, are not well-described by Gaussian functions. Better fits have the Gaussian multiplied by a step-function.

The fitting functions are based on the following distribution,

1P
f(y) = ?;f;;; (1+ e 0-D) 1e% 4)
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More discussion appears below when the function (4) is needed.

For example, random polarization directions are well-fit by a probability distribution for the smallest alignment angle 7,;, that takes

the form

Pt = (5] (10 ) T

o (2m)t/?

where norm makes the integral of distribution equal to unity, 70 and o are parameters that are adjusted to fit the random run results.

7a. Probability and Significance Formulas

Definitions:

norm a constant used to normalize the distribution so the integral of probability is 1.
probMINO, probMA X0 probability distributions for alignment (MIN) and avoidance (MAX), functions of 7, 9, o
signiMINO, signiMA XOsignificance as a function of (1, 19, o)

nE3el= (% Y = ((n - nO)/c); dy = dr]/o *)
(* The normalization factor "norm" is needed for the probability density =x)
-1
1 2
norm = [ ————— NIntegrate[ (1+ e* (y'l))'le yz, {y, -, @}]| ;
(27r) 1/2

norm ; (¥xConstant needed to make the integral
of the probability distribution equal to unity.=x)

norm 4 (n-me-0) \ -1 _l(n—n@)z
in33si= probMINO[n_, n@_, o_] i= [—| [1+ e o e
o (2 7r) 172
signiMIN@[n_, n@_, o_] := NIntegrate[probMINO[nl1, no, o], {nl, -, n}]

norm _g lnmero) \ 71 1 (w)z
prooMAX0[n_, n@_, o_] 1= | ———— (1+ e o ) e 2\ o
o (2 n) 1/2

signiMAXe[n_, n@_, o_] := NIntegrate[probMAX0[nl, n0, o], {nl, n, «}]
The significance signiMIN@[n, n@, o] is the Integral of probMIN®, i.e. signiMIN@ = ﬂmPMIN (n) dn.

The significance signiMAXe[n, n@, o] is the Integral of probMAXe, i.e. signiMAX@ = J:PMAX (n) dn.

7b. Generating random ¥ runs

The notebook .nb version generates new random runs. The pdf version uses old random runs that are uploaded from previously
saved files that are not publically available. Thus both versions have some cells commented out: (* comments are not processed by

Mathematica*).
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Definitions:

nRunMax number of random runs to be generated

pRgnRadius distance to furthest source from sourceCenter, radians

minGridCenterToHmin, max - minimum number of grid spaces between Hmin, Hmax and sources’ center
gridjyBarMinRand

iSminmas parameters for center to hub distance

nRunPrint ~ dummy index to control printing frequency

rSrexrGrid  unit vector perpendicular to the plane of rSrc for S; and rGrid to point H;

YSrcRand  random polarization directions for the sources

rSrexySrc cross product of rSrc and the vector in direction of ¥/SrcR, both are unit vectors

jnBarToGrid {j, 77;} = {grid point #, value of the alignment angle Eq. (1) averaged over all sources S;, in radians}
sortjnBarToGrid - sort jyBarToGrid, smallest alignment angles 7; first
gridjyBarMinRand - {j,;n;} for the grid point H; with the smallest alignment angle 77;, not counting /; that are too close to the

sample

gridjpBarMaxRand - {j,1;} for the grid point H; with the largest avoidance angle 77;, not counting /; that are too close to the

sample

niSnrData l.run# 2.iSmin 3.iSmax 4. nSrc 6. pRgnRadius

yDataRand 1.run# 2.ySrcRand table

runData l.run# 2.sourceCenter 3. {j, 77} at point H; where smallest 77 4. {j, 77} at point /; where largest 77 5. nSrc 6.
pRgnRadius

In[342]:=

(*Remove comment marks, " (x" and "x)", below to generate your own table "runData". x)
(» Evaluate this cell for the notebook .nb version x)

(*

nRunMax=500;

niSnrData={};

yDataRand={};

runData={};

times={};

(xSet up the For statement.x)

nRunPrint=0;

minGridCenterToHmin = 2;

(*minimum number of grid spaces between Hmin and sources' centerx)
minGridCenterToHmax = 2;

(*minimum number of grid spaces between Hmax and sources' centerx)

*)
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In[343]:=

(* Evaluate this cell for the notebook .nb version x)

(*You may have found rSrcxrGrid already with uncertainty. Here it is again:x)

(*

rSrcxrGridl =Table[ Cross[ rSrc[[i]],rGrid[[j]] 1] ,

(»first step: raw cross product, not unit vectorsx);

rSrcerrid:Table[ rSrcerridl[[i,j]]/
(rSrexrGridi[[i,j]1].rSrcxrGridi[[i,j]]+ 0.000001)1”' ,

{i,nSrc}, {j,nGrid}]

{i,nsrc}, {j,nGrid}];

*)
(*rSrcxrGrid: table of the unit vectors perpendicular to the plane

of the great circle containing the source S; and the grid point Hjx)
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npa4i= (% Evaluate this cell for the notebook .nb version =x)
(*
t[1]=TimeUsed[];
For [nRun=1,nRuns<nRunMax, nRun++,
If [nRun>nRunPrint,Print ["At the start of run ",nRun,", the time is ",
TimeUsed[]," seconds and the memory in use is ",MemoryInUse[]," bytes."];

nRunPrint=nRunPrint+100] ;

ySrcRand=Table [RandomReal [ {0.001,7-0.001}], {i,nSrc}];
(xtable of PPA angles ¥ for the sources, in radiansx)
rSrcxysSrc =
Table[ Sin[¢SrcRand[[i]]]eNSrc[[i]]-Cos[¥SrcRand[[i]]]eESrc[[i]], {i,nSrc}];
(xtable of the cross product of rSrc and vector in direction of ySrcRand,
a unit vectorx)
jnBarToGrid = Table[{j, (1/nSrc)Sum[ ArcCos [
Abs[ rSrcxySrc[[i]].rSrcxrGrid[[i,j]] ] - ©.000001 ],{i,nSrc}1},{j,nGrid}];
(*
{grid point #,
value of the alignment angle nnHj[j] averaged over all sources, in radians}x)
sortjnBarToGrid=Sort[jnBarToGrid,#1[[2]]<#2[[2]]&];
(*jnBarToGrid, {j,n;j}, but sorted with the smallest alignment angles first
*)iSmin=
Catch[Do[If[ArcCos[sourceCenter.rGrid[[sortjnBarToGrid[[i,1]] ]] -©.000e0l ]/del:
minGridCenterTonin,Throw[i]],{1,100}]];
gridjnBarMinRand=sortjnBarToGrid[[iSmin]]; (* {Jj,n5},
at the grid point Hj with minimum 7,not counting the center j@x)iSmax=
Catch [Do[If[ArcCos[sourceCenter.rGrid[[sortjnBarToGrid[[-i,1]] ]] -0.000001 ]/de1>
minGridCenterTonax,Throw[i]],{1,100}]];
gridjnBarMaxRand=sortjnBarToGrid[[-iSmax]]; (* {J,n5},
at the grid point Hj with maximum 7, not counting the center jox)
AppendTo [niSnrData, {nRun,iSmin, iSmax,nSrc,pRgnRadius}];
AppendTo [¢DataRand, {nRun,ySrcRand}];
AppendTo [runData,
{nRun, sourceCenter, {grid[[ gridjnBarMinRand[[1]] 1], gridjnBarMinRand[[2]]},
{grid[[ gridjnBarMaxRand[[1]] 1], gridjnBarMaxRand[[2]]},nSrc,poRgnRadius } ]
(xcollect data for saving in a file.x) | ;

*)

npas= (* Evaluate this cell for the notebook .nb version x)
(»t[2]=TimeUsed[];
Print["Computer time needed to generate random runs: ",t[2]-t[1]," seconds."]x)

inpaci= (*Save a new tablex)
SetDirectory[homeDirectory];
(*Put [niSnrData, "20211012niSnrDataQSON13Random20@0a.dat" ]x)
(xPut [yDataRand, "20211012yDataRandQSON13Random2000a.dat" ]+)
(*Put[runData, "20211012runDataQSON13Random2000a.dat"] x)
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nsa7:= (*Get and old yDataRand tablex)
SetDirectory[homeDirectory];
(*niSnrData=Get ["20210917niSnrDataQSON13Random2000a.dat"] )
(»yDataRand=Get ["20210917niSnrDataQSON13Random2000a.dat"] x)
(»Get the runData files for the pdf version:x)

runData2000a = Get["20210917runDataQSON13Random2000a.dat"] ;
runData8000a = Get["20210917runDataQSON13Random8000a.dat"];

ngssop= (*Edit the following statements to Join separate data files, if neededx)
(*Join the runData files for the pdf version:x)

runData
nRunMax

Join[runData2000a, runData8000a] ;
Length[runData];

7c. Analyzing random ¥ runs

Definitions:
nBarminData Tmin 10 order of random runs
sortyBarmin sorted

n0Bmin, cBmin mean and standard deviation of 7BarminData

hlmin, hlmin0 histogram data

nlmBmin fit to i histogram

{a,b,x0} best fit parameters

showNImBmin  figure displaying the fit to the 7, from random runs

nlmBminPtable  Parameter table for the fit

nBarmaxData Tmax

sortyBarmax sorted

n0Bmax, cBmax mean and standard deviation of yBarmaxData

hlmax, himax0  histogram data

nlmBmax fit t0 Fmax histogram

{a,b,x0} best fit parameters

showNImBmax  figure displaying the fit to the yax from random runs

nlmBmaxPtable  Parameter table for the fit

rHminR rGrid at H;,
anglerHminToCenter 6 from H,y;, to sourceCenter

OrHminToCenter, c0rHminToCenter - mean and standard deviation of 6
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rHmaxR rGrid at Hmax
anglerHmaxToCenter 6 from Hpmax to sourceCenter

OrHmaxToCenter, c6rHmaxToCenter - mean and standard deviation of 6

nss2;= Print["There are ", Length[runData], " random runs to analyze."]

There are 10000 random runs to analyze.

runData
1. nRun 2. 7at Region Center  3a. grid data for Hmin 3b. 77,,;, 4a. grid data for Hmax 4b. Tax S5.nSrc 6. radius
pRgnRadius

in@s3:= nBarminData = Table[runData[[il, 3, 2]], {il, Length[runData]}];
nBarmaxData = Table[runData[[il, 4, 2]], {il, Length[runData]}];
rHminR = Table[runData[[il, 3, 1, 6]] , {il, Length[runData]}] ;
rHmaxR = Table[runData[[il, 4, 1, 6]] , {il, Length[runData]}];
sortnBarmin = Sort[nBarminData];
n@Bmin = mean[nBarminData ] ; (*Guess the mean for the Gaussian. x)
oBmin = stanDev[nBarminData ]; (xGuess the half-width.x)
hlmin®@ = HistogramList [sortnBarmin, {n®Bmin - 5 cBmin, n®Bmin + 5 oBmin, 0.4 oBmin}];
hlmin = Table[{(1/2) (hlmin@[[1, i1]] + hlmin@[[1, i1+1]]), hlmin@[[2, i1]]},
{i1, Length[ hlmin@[[2]] 1}];

(xxe-b) | -1 1 (x-x0
nlmBmin = NonlinearModelFit[hlmin, {a (1+ e* ) Exp[-— (
2.

{{a,

insesi= {amin, bmin, x@min} = {a, b, x0} /. nlmBmin["BestFitParameters"];
{damin, dbmin, dx@min} = nlmBmin["ParameterErrors"”]; (xx is nBarminx)

2
) ] (*,b>0%) },
Length[runData]
12

}» {b, oBmin}, {x@, neBmin}}, x];

in3es:= sortnBarmax = Sort[nBarmaxData];
n@Bmax = mean[nBarmaxData ]; (*Guess the mean for the Gaussian. x)
oBmax = stanDev[nBarmaxData ]; (xGuess the half-width.x)
hlmax@ = HistogramList [sortnBarmax, {n@Bmax - 5 cBmax, n@Bmax + 5 oBmax, 0.4 oBmax}];
hlmax = Table[{(1/2) (hlmax@[[1, i1]] + hlmax@[[1, il1+1]]), hlmax@[[2, i1]]},
{i1, Length[ hlmax@[[2]] ]}];

_g [x-xesb -1 1 X - X0
) ot 2
2.

2
nlmBmax = NonlinearModelFit [hlmax, {a [1 + e b ) ] (x,b>0%)},

nRunMax
{{as T}, {b, oBmax}, {x@, neBmax}}, x];
np7op= {amax, bmax, x@max} = {a, b, x0} /. nlmBmax["BestFitParameters"];
{damax, dbmax, dx@max} = nlmBmax["ParameterErrors"]; (xx is nBarmaxsx)
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In[372]:=

In[379]:=

out[383]=

out[386]=

anglerHminToCenter =
Table[ArcCos [Abs [rHminR[[i]] .sourceCenter] -0.00001], {i, Length[rHminR]}];
erHminToCenter = mean[anglerHminToCenter];
oérHminToCenter = stanDev[anglerHminToCenter];
anglerHmaxToCenter =
Table[ArcCos [Abs [rHmaxR[[i]].sourceCenter] - ©.00001], {i, Length[rHmaxR]}];
erHmaxToCenter = mean[anglerHmaxToCenter];
oérHmaxToCenter = stanDev[anglerHmaxToCenter]; t[6] = TimeUsed[];
fitData = {{nSrc,
pRgnRadius, pRMS}, {x@min, dx@min}, {bmin, dbmin}, {amin, damin},
{x@max, dx@max}, {bmax, dbmax}, {amax, damax}, {cérHminToCenter,
erHminToCenter}, {oorHmaxToCenter,
orHmaxToCenter}} (xcollect data for saving in a file.x);

ListPlot[ {sortnBarmin, sortnBarmax}];

ListPlot [hlmin];

Normal [n1lmBmin] ;

Print["The parameter table for the fit to pin: “]
nlmBminPtable = nlmBmin ["ParameterTable"]

Normal [nlmBmax] ;

Print["The parameter table for the fit to nax: "]
nlmBmaxPtable = nlmBmax["ParameterTable"]

The parameter table for the fit to 7Tyin:
Estimate  Standard Error t-Statistic P-Value
a | 1591.22 9.66492 164.639 1.67881x10°3°

b | 0.0823933 0.000559361 147.299  1.93825x 10734
x0 | 0.531878 0.000468054 1136.36 5.90205x 10™>*

The parameter table for the fit to 7pax:
Estimate  Standard Error t-Statistic P-Value
1592.54  14.7099 108.263  1.67991x 1073

b |0.0807127 0.000833291 96.8601 1.93433x 1073
x0 | 1.0418 0.000697268 149412  1.432x107°¢

“fitData” table

la. nSrc, number of sources 1b. rgnRadius, nominal radius of region ~ 1c. RMS radius

2a. xOmin: x0= 70 align (min) 2b. dxOmin error: dx0 - o for x0 = 70 align (min)

3a. bmin: b= ¢ align (min) 3b. dbmin: err: db - o for b= ¢ align (min)

4a. amin: a= Amplitude align (min) 4b. damin: err: da - o for a= Amplitude align (min)

Sa. xOmax: x0 = 70 avoid (max) 5b. dxOmaxxOmax: err: dx0 - o for x0 = 70 avoid (max)

6a. bmax: b= o avoid (max) 6b. dbmax: err: db- o for b= o avoid (max)

7a. amax: a= Amplitude avoid (max)7b. damax: err: da - o for a= Amplitude avoid (max)

8a. cOrHminToCenter: stanDev[anglerHminToCenter] - o for 6to H 8b. frtHminToCenter: mean[anglerHminToCenter] -6to H
9a. cfrHmaxToCenter: stanDev[anglerHmaxToCenter] - o for fto H 9b. frHmaxToCenter: mean[anglerHmaxToCenter] - 6 to H
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in387:= ShowN1mBmin =
Show [ {Histogram[Sort [nBarminData], {n@Bmin - 5 cBmin, n@Bmin + 5 cBmin, 0.4 oBmin},
PlotLabel - "Histogram for 7,i,, random runs", AxesLabel - {"7nin, radians", "aR"}],

Plot [Normal [n1lmBmin], {x, n@Bmin - 5 oBmin, n@Bmin + 5 oBmin}], ListPlot [hlmin],

Graphics[{Blue, Arrow[{{nBarMinfunDataoObs, m}, {nBarMinfunDataObs, 5.}}]}] }];
24

in3ss;= ShowN1lmBmax =
Show [ {Histogram|[Sort [nBarmaxData], {n@Bmax - 5 oBmax, n@Bmax + 5 cBmax, @.4 oBmax},
PlotLabel - "Histogram for 7.y, random runs", AxesLabel - {"7nax, radians", "aR"}],

Plot [Normal [n1lmBmax], {x, n@Bmax - 5 ocBmax, n@Bmax + 5 oBmax}], ListPlot [hlmax],

Graphics [ {Red, Arrow[{{nBarMaxfunDataObs, EEEEME{}, {nBarMaxfunDataobs, 5.}}]}] }];
24

inzsg)= GraphicsRow [ {showN1mBmin, showN1mBmax} ]
Print [
"Figure 25: Random run results for smallest alignment angle 7., and largest avoidance
angle 7pax- Note that both curves have steeper sides toward the middle,
n = n/4 = 45°. That requires non-Gaussian fitting functions
in the 'NonlinearModelFit' statements above. The observed
polarization directions give the results indicated by the arrows.“]

Histogram for nyin, random runs Histogram for Nmax, random runs
AR AR
1500 1500
Out[389]= 1000 1000
500 500
} l L L . Tmin» radians (B L L L TNmax, radians
02 03 04 05 06 07 08 08 09 10 11 12 13 14

Figure 25: Random run results for smallest alignment angle 7,i, and largest avoidance angle
Tmax- Note that both curves have steeper sides toward the middle, n = n/4 = 45°.
That requires non-Gaussian fitting functions in the 'NonlinearModelFit' statements
above. The observed polarization directions give the results indicated by the arrows.

7d. Significance of the alignment and avoidance Hub Test metrics for the sample studied in this work

Definitions

fitting function parameters from random runs:

nOmin  mean of probability distribution for smallest alignment angle 7pin
dnOmin standard error in the mean as reported by Mathematica
omin  half-width of probability distribution for smallest alignment angle 7pin

domin standard error in the half-width as reported by Mathematica
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In[391]:=

In[395]:=

n0max mean of probability distribution for largest avoidance angle 7pax
dnOmax standard error in the mean as reported by Mathematica
omax  half-width of probability distribution for largest avoidance angle 7yax

domax standard error in the half-width as reported by Mathematica

probmin probability distribution for smallest alignment angle 7j,i, . This depends on the random runs.
signimin significance, integral of probmin over smaller values of 7pin

probmax probability distribution for largest avoidance angle 7yax

signimax significance, integral of probmax over larger values of 7pax

signBarMinfunDataObs Significance of the smallest alignment angle 7pin
sigrangenBarMinfunDataObs standard errors in 70min and omin, i.e. dnOmin and domin, give the significances plus/minus
values

sigSmallpBarMinfunDataObs, Big  extremes of significance assuming one standard error

signBarMaxfunDataObs Significance of the largest avoidance angle 7yax
sigrangenBarMaxfunDataObs  standard errors in 70max and omax, i.e. dnOmax and domax, give the significances plus/minus
values

sigSmallyBarMaxfunDataObs, Big  extremes of significance assuming one standard error

(*Parameters n@ and o from random runs, together with their standard errors.x)
nlmin = x0min; dnOmin = dxOmin;

némax = xemax; dnOmax = dxOmax;

omin = bmin; domin = dbmin;

omax = bmax; domax = dbmax;

probmin[n_] := probMINO[ n, n@min, omin ]
signimin[n_] := signiMIN@[n, n@min, omin]
probmax[n_] := probMAXO[ n, n@max, omax]
signimax[n_] := signiMAX@[n, nmax, omax]
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In[399]:=
Print["For this sample, but with random polarization directions ¥, the
random runs give the mean value n@min and the half-width omin of the
fitting function of random runs for the smallest alignment angle ﬁmin:“]

. . . (360. . (360. .
Pr1nt[" némin = ", né@min ( ), "° + ", dnémin ( ), "° and omin = ",
2.7 2.7
. (360. . (360. .
omin ( ); "e + ", domin ( ), "°. (Random y distribution)"]
2.7 2.7
Print[" "]

Print[
"For this sample, but with random polarization directions ¢, the random runs give the
mean n@max and the half-width omax for the distributions for avoidance :"]

) 360. 360.
Print[" nemax = ", n@max (—), "° & ", dn@max (—), "° and omax = ",
2.7 2.7
360. 360. . . .
omax [ ]: "° + ", domax (—), "°. (Random y distribution)"]
2.7 2.7

For this sample, but with random polarization directions
¥, the random runs give the mean value n@min and the half-width omin of
the fitting function of random runs for the smallest alignment angle pin:

némin = 30.4744° + 0.0268175° and omin = 4.72079° + 0.032049°. (Random y distribution)

For this sample, but with random polarization directions ¢, the random runs give
the mean n@max and the half-width omax for the distributions for avoidance :

nomax = 59.6907° + ©.0399505° and omax = 4.6245° + 0.0477441°. (Random J distribution)

na4o4= (*Significance of the smallest alignment angle 7pin .*)
signBarMinfunDataObs = signimin[nBarMinfunDataObs];
sigrangenBarMinfunDataObs =
Sort[Partition[Flatten[Table[ {signiMIN@ [BarMinfunDataObs, nOmin + y1 dn@min,
omin + y2domin], ¥1, ¥2}, {¥1, -1, 1}, {¥2, -1, 1}] 1,31 1;
{sigrangenBarMinfunDataObs[[1]], sigrangenBarMinfunDataObs[[-1]]};
sigSmallnBarMinfunDataObs = sigrangenBarMinfunDataObs[[1, 1]];
sigBignBarMinfunDataObs = sigrangenBarMinfunDataObs[[-1, 1]];

inaog)= (*Significance of the largest avoidance angle fpax - *)
signBarMaxfunDataObs = signimax [nBarMaxfunDataObs];
sigrangenBarMaxfunDataObs =
Sort[Partition[Flatten[Table[ {signiMAX®@ [nBarMaxfunDataObs, n@max + y1l dnmax,
omax + y2 domax], ¥1, ¥2}, {¥1, -1, 1}, {¥2, -1, 1}] 1,3] 1;
{sigrangenBarMaxfunDataObs[[1]], sigrangenBarMaxfunDataObs[[-1]]};
sigSmallnBarMaxfunDataObs = sigrangenBarMaxfunDataObs[[1, 1]];
sigBignBarMaxfunDataObs = sigrangenBarMaxfunDataObs[[-1, 1]];
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In[414]:=

In[415]:=

In[432]:=

(*The names "gridjnBarMinRan", "jnBarMax" are, or perhaps were,

similar to quantities below, so save the current values labeled by "Best".x)
(* jnBar entries: 1. grid point # , 2. alignment angle .=x)

{jnBarMinBest, jnBarMaxBest} = {nBarMinfunDataObs, nBarMaxfunDataObs} ;

Print["The smallest alignment angle is npmin = ", nBarMinfunDataObs « (360. / (2. 7)),
"° , which has a significance of sig. = ", signBarMinfunDataObs,
", plus/minus = + ", sigBignBarMinfunDataObs - signBarMinfunDataObs, " and - ",
signBarMinfunDataObs - sigSmallnBarMinfunDataObs, " , giving a range from sig. = ",
sigSmallnBarMinfunDataObs, " to ", sigBignBarMinfunDataObs, " ."]
Print["The largest avoidance angle is nmax = ", nBarMaxfunDataObs x (360. / (2. x)),
"° , which has a significance of sig. = ", signBarMaxfunDataObs,
", plus/minus = + ", sigBignBarMaxfunDataObs - signBarMaxfunDataObs, " and - ",
signBarMaxfunDataObs - sigSmallnBarMaxfunDataObs, " , giving a range from sig. = ",
sigSmallnBarMaxfunDataObs, " to ", sigBignBarMaxfunDataObs, " ]
Print["These uncertainties are due to the standard

errors for the parameters in the fit to the random runs."]

The smallest alignment angle is nmin = 10.8648
° , which has a significance of sig. = 0.0000199444, plus/minus = + 3.14916x10°°®
and - 2.77319x10°® , giving a range from sig. = ©.0000171712 to 0.0000230936 .

The largest avoidance angle is nmax = 62.6651° , which has a significance of sig. = ©.317233
> plus/minus = + 0.00600697 and - ©.00607283 , giving a range from sig. = 0.31116 to ©.32324 .

These uncertainties are due to the standard
errors for the parameters in the fit to the random runs.

Print["More Statistics of the Alignment Function 7 (H) :"]
Print[" "]
Print["The min alignment angle, nmin = ", nBarMinfunDataObs « (360. / (2.7)),
"e, is An = ", (n@min - nBarMinfunDataObs) « (360. / (2. 7)),
"° below the most likely value, ", n@min  (36@./ (2.x)), "°, for random runs."|
Print["Since the half-width o is ", omin« (360. /(2. 7)),
"°, the difference, An = ", (n@min - nBarMinfunDataObs) * (360. / (2.7)),
"° makes nmin separated from the most likely random run value by ",
(nemin - nBarMinfunDataObs) /omin, "os."]
Print["Thus, the smallest alignment angle 7ni, is ", (n@min - nBarMinfunDataObs) / omin,
"os below the most likely random run value. (Very Significant)"]
Print[""]
Print["The max avoidance angle, nmax = ", nBarMaxfunDataObs « (360. / (2. 7)),
"°, is an = ", - (n@max - nBarMaxfunDataObs) » (36@. / (2. )),
"° above the most likely value, ", n@max = (360./ (2. 7)), "°, for random runs."]
Print["Since the half-width o is ", omax * (360./ (2. 7)),
"°, the difference an = ", - (n@max - nBarMaxfunDataObs) * (36@. / (2. n)),
"° makes nmax separated from the most likely random run value by ",
- (nemax - nBarMaxfunDataObs) / omax, "os."]
Print["Thus, the smallest avoidance angle fn.x is ", - (n@max - nBarMaxfunDataObs) / omax,
"os above the most likely random run value. (Not significant)“]
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More Statistics of the Alignment Function 7 (H) :

The min alignment angle, nmin = 10.8648°, is An =
19.6096° below the most likely value, 30.4744°, for random runs.

Since the half-width o is 4.72079°, the difference, An = 19.6096
° makes nmin separated from the most likely random run value by 4.153880cs.

Thus, the smallest alignment angle 7pin is 4.15388
os below the most likely random run value. (Very Significant)

The max avoidance angle, nmax = 62.6651°, is An =
2.97431° above the most likely value, 59.6907°, for random runs.

Since the half-width o is 4.6245°, the difference An = 2.97431
° makes nmax separated from the most likely random run value by ©.6431650s.

Thus, the smallest avoidance angle 7. is ©0.643165
os above the most likely random run value. (Not significant)

7e. Conclusion

The avoidance of the polarization directions for points on the Celestial Sphere is not significant, with § = 0.32. That means about
one in three random runs would avoid some place on the Celestial Sphere better than the sample avoids Hpyax. That is not significant.
The polarization directions are very significantly aligned, with S = 2. x10-5. That means about one random run in 50,000 would
produce better alignment, a “40™” result.

The polarization directions converge on the hub H,,;, with a smallest alignment angle 7,1, that is very significant. They are therefore

correlated.

Print["The computer time on my computer is about one minute because I have
uploaded the uncertainty runs and random runs from saved data files."]

Print["The same computer takes about 10 minutes to complete the .nb version with the
bulk of the time needed to generate 500 uncertainty runs and 500 random runs."]

The computer time on my computer is about one minute because I
have uploaded the uncertainty runs and random runs from saved data files.

The same computer takes about 10 minutes to complete the .nb version with the
bulk of the time needed to generate 500 uncertainty runs and 500 random runs.

Print["The computer time expended so far is ", TimeUsed[], " seconds."]

The computer time expended so far is 74.067 seconds.



