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Magic Squares with Centrally Embedded Squares of Even Order: A Construction Method 
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Abstract 

We present a method which modifies a magic square of even order n and then adds two outer 

rows and two outer columns to produce a magic square of order n + 2 .  The modification of the 

original square will change half of its numbers and will preserve the equality of sums of the 

rows, columns, and main diagonals.  This modified square will be centrally embedded in the 

magic square of order n + 2 . 

Definitions 

For the purposes of this paper, a magic square of order 𝑛 shall mean an 𝑛 × 𝑛 arrangement of 

the integers 1 through 𝑛2 such that the sums of each row, each column and both main diagonals 

all equal the magic sum  𝑆 =
𝑛2(𝑛2+1)

2𝑛
=  

𝑛

2
 (𝑛2 + 1) .  An embedded square of order 𝑛 shall 

mean an 𝑛 × 𝑛 arrangement of distinct positive integers such that each row, each column and 

both main diagonals have the same sum.  For reasons which shall become obvious, the 

construction method presented here applies only to squares of even order.  We will say that a 

magic square of even order 𝑛 is balanced if each row, each column and each main diagonal 

contains exactly 
𝑛

2
   numbers which are greater than 

𝑛2

2
 .  Figure 1 shows a balanced magic square 

of order 6, with a centrally embedded square of order 4. 

9 15 17 19 26 25   9 15 17 47 54 53 

27 4 35 34 1 10   55 4 63 62 1 10 

24 29 6 7 32 13   52 57 6 7 60 13 

23 5 30 31 8 14   51 5 58 59 8 14 

16 36 3 2 33 21   16 64 3 2 61 49 

12 22 20 18 11 28   12 50 48 18 11 56 

                     

                         Figure 1       Figure 2 

Construction Method 

Our method may be carried out with the aid of a calculator for the necessary arithmetic and a 

spreadsheet to check the results.   Each stage of our construction starts with a magic square of 

even order 𝑛, modifies it and then surrounds it with two new rows and two new columns to 

arrive at a magic square of order 𝑛 + 2.  The original square will become an embedded square at 

the center of the larger one.   We will signal those steps of this process which involve trial-and-

error experimentation.  One example will serve to illustrate our process. 

Our example begins with the order-6 square shown in Figure 1, which will become the centrally 

embedded square within a magic square of order 8.  The new square will contain integers 1 
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through 64.  For this reason, we add 28 to each entry in the range 19 through 36 so that they 

become 47 through 64.  The columns, rows and diagonals of this array (Figure 2) all sum to 195.  

The numbers in the two new rows and columns will be integers 19 through 46.  They form 14 

pairs, each summing to 65, as listed in Figure 3.  So when any such pair is added at the ends of 

an existing row, column or diagonal, the new row, column or diagonal will consist of eight 

integers whose sum is 260.  If the two new rows and two new columns also sum to 260, we will 

have a magic square of order 8. 

        pair        difference 

19 46 27 x 

20 45 25      x 

21 44 23 x 

22 43 21 x 

23 42 19  
24 41 17 x 

25 40 15 x 

26 39 13  
27 38 11  
28 37 9 x 

29 36 7 x 

30 35 5  
31 34 3  
32 33 1  

         

           Figure 3 

Here is where our trial and error experimentation begins.  We first choose two of our 14 pairs to 

occupy the corners of our new order-8 square as shown in Figure 4.  We illustrate by choosing 

the pairs (20,45) and (25,40). 

20       40 

 9 15 17 47 54 53  

 55 4 63 62 1 10  

 52 57 6 7 60 13  

 51 5 58 59 8 14  

 16 64 3 2 61 49  

 12 50 48 18 11 56  

25       45 

 

           Figure 4 
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The magic sum for an order-8 magic square is 260.  Thus, we determine that the remaining six 

numbers in our top row must sum to 200 and the remaining numbers in the rightmost column 

must sum to 175.  One choice for completion of the rightmost column is  

175 = 44 + 37 + 19 + 22 + 24 + 29  

Note that this choice keeps our square balanced. 

At this point, 8 of our 14 pairs have been used.  They are marked in Figure 3.  Our attempt will 

succeed if we can achieve the needed sum of 200 for the remaining entries of the top row with 

the remaining pairs.  If we add the larger numbers from each of these pairs, we have 221.  We 

need numbers whose sum is 200 and 221 − 200 = 21 .  We have succeeded if we can find three 

numbers in the difference column of the remaining six pairs whose sum is 21.  Indeed, we find 

13 + 5 + 3 = 21, indicating that we should choose the smaller values of these pairs associated 

with these differences.  Thus, we have  200 = 42 + 26 + 38 + 30 + 31 + 33 .  We have 

completed our order-8 magic square as shown in Figure 5.  This magic square is in fact balanced 

so that it can be used as the starting point to repeat our process and create a 10 × 10 magic 

square. 

20 42 26 38 30 31 33 40 

21 9 15 17 47 54 53 44 

28 55 4 63 62 1 10 37 

46 52 57 6 7 60 13 19 

43 51 5 58 59 8 14 22 

41 16 64 3 2 61 49 24 

36 12 50 48 18 11 56 29 

25 23 39 27 35 34 32 45 

 

                                 Figure 5 

Observations and Suggestions for Further Investigation  

The first choice in our example above was to pick two pairs to occupy the corners of the enlarged 

square.  We now offer an example to illustrate what can go wrong with a bad choice at this initial 

stage.  If we choose the pairs 20-45 and 24-41, then we have the following. 

  20       41 

 9 15 17 47 54 53  

 55 4 63 62 1 10  

 52 57 6 7 60 13  

 51 5 58 59 8 14  

 16 64 3 2 61 49  

 12 50 48 18 11 56  

24       45 

                                 Figure 6 
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Now to complete the rightmost column we need six numbers totaling 260 − 86 = 174 .  To 

maintain the balance of our square, exactly two of these six must be the larger number of their 

pairs.  We may choose, for example,  174 = 42 + 37 + 19 + 22 + 25 + 29 .  At this point the 

following six pairs remain available to complete the top and bottom row:   

         pair       difference 

21 44 23  
26 39 13  
27 38 11  
30 35 5  
31 34 3  
32 33 1  

 

           Figure 7 

The sum of the six number to complete the top row must be 260 − 61 = 199 .  To maintain 

balance, three of them must be from the first column (smaller numbers of their pairs) and three 

from the second column.  The sum of the six numbers in the second column is 223 and we see 

that will need three numbers from the difference column whose total is 223 − 199 = 24 .  This 

is impossible since all numbers in the difference column are odd. 

The problem hinges on parity.  If the numbers in the two left corners have the same parity then 

so do the two in the two right corners.  This means that the sum 𝑆1 of the remaining numbers to 

be placed in the rightmost column must be even and exactly two must be the larger number of 

their pairs.  Finally, the sum 𝑆2 of the remaining numbers to complete the top row must be odd 

and exactly half of them must be the larger number of their pairs.  This is not achievable as 

shown in our example. 

The above analysis applies when the embedded square has order 4𝑛 + 2 and the completed 

magic square has order 4𝑛 .  In the opposite case (enlarging from order 4𝑛 to order 4𝑛 + 2 ), the 

magic sum of the square under construction is odd.  The parities in the above argument must be 

adjusted accordingly but the contradiction is the same.  We have the following general result: 

Theorem:  When an order 2𝑛 balanced square is embedded in an order 2𝑛 + 2 balanced magic 

square by the method presented in this paper, the smaller numbers of the two pairs occupying the 

four corners will be at opposite ends of one side (left or right) of the magic square and will be of 

opposite parity. 

We choose not to provide a formal proof of this theorem as it is rather tedious and hardly more 

instructive than a well-chosen example.  Moreover, it applies only to squares constructed by this 

method and therefore is of limited theoretical interest.  Its value is primarily practical.  That 

being said, a more elegant proof, not based so directly on details of our construction process, 

would be of interest and could possibly lead to further insights. 
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The balanced square concept can be used in another way.  We begin with the order-6 magic 

square and embedded order-4 square shown in Figure 8.  Now each number larger than 32 is 

increased by 288, resulting in the square shown in Figure 9.  The largest number in this square is 

324 = 182.  This is one of nine squares which will be arranged to form an order-18 magic 

square.  If we increase the 32 smaller numbers in this square by 36 and decrease each larger 

number by 36, we arrive at the square shown in Figure 10.  Repeating this process of increasing 

the smaller entries by 36 and decreasing the larger entries by 36 produces seven more squares, 

the last of which is shown in Figure 11.  Now we have nine 6 × 6 squares with magic sum 975, 

each of which has an embedded 4 × 4 square with magic sum 650.  These can be used to 

produce an order-18 magic square as shown in Figure 12.  We leave it in this form in order to 

illustrate the construction method as clearly as possible.  In fact, a very large number of 

variations are possible since the nine order-6 squares are interchangeable as are their embedded, 

order-4 subsquares.  These interchanges, along with the eight symmetries of a square (rotations 

and reflections), could change the square in Figure 12 in ways which would make the details of 

our construction method much less discernable. 

  

33 12 13 2 30 31   321 12 3 2 318 319 

36 11 28 27 8 1   324 11 316 315 8 1 

18 20 15 16 23 19   18 308 15 16 311 307 

5 14 21 22 17 32   293 14 309 310 17 32 

13 29 10 9 26 24   13 317 10 9 314 312 

6 25 34 35 7 4   6 313 322 323 7 4 

      

                         Figure 8       Figure 9 

 

285 48 39 38 282 283   33 300 291 290 30 31 

288 47 280 279 44 37   36 299    28 27 296 289 

54 272 51 52 275 271   306 20 303 304 23 19 

257 50 273 274 53 68   5 302 21 22 305 320 

49 281 46 45 278 276   301 29 298 297 26 24 

42 277 286 287 43 40   294 25 34 35 295 292 
              

              Figure 10       Figure 11 
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321 12 3 2 318 319 285 48 39 38 282 283 249 84 75 74 246 247 

324 11 316 315 8 1 288 47 280 279 44 37 252 83 244 243 80 73 

18 308 15 16 311 307 54 272 51 52 275 271 90 236 87 88 239 235 

293 14 309 310 17 32 257 50 273 274 53 68 221 86 237 238 89 104 

13 317 10 9 314 312 49 281 46 45 278 276 85 245 82 81 242 240 

6 313 322 323 7 4 42 277 286 287 43 40 78 241 250 251 79 76 

213 120 111 110 210 211 177 156 147 146 174 175 141 192 183 182 138 139 

216 119 208 207 116 109 180 155 172 171 152 145 144 191 136 135 188 181 

126 200 123 124 203 199 162 164 159 160 167 163 198 128 195 196 131 127 

185 122 201 202 125 140 149 158 165 166 161 176 113 194 129 130 197 212 

121 209 118 117 206 204 157 173 154 153 170 168 193 137 190 189 134 132 

114 205 214 215 115 112 150 169 178 179 151 148 186 133 142 143 187 184 

105 228 219 218 102 103 69 264 255 254 66 67 33 300 291 290 30 31 

108 227 100 99 224 217 72 263 64 63 260 253 36 299 28 27 296 289 

234 92 231 232 95 91 270 56 267 268 59 55 306 20 303 304 23 19 

77 230 93 94 233 248 41 266 57 58 269 284 5 302 21 22 305 320 

229 101 226 225 98 96 265 65 262 261 62 60 301 29 298 297 26 24 

222 97 106 107 223 220 258 61 70 71 259 256 294 25 34 35 295 292 

 

Figure 12 
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