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Abstract. In a p-sequence, every term is the sum of p previous terms given p initial
values called seeds. It is an extension of the Fibonacci sequence. In this article, we
investigate the p-golden ratio of p-sequences. We express a positive integer power of
the p-golden ratio as a polynomial of degree p— 1, and obtain values of golden angles for
different p-golden ratios. We also consider further generalizations of the golden ratio.

1 Introduction

The Fibonacci sequence is a series of numbers, starting from 0 and 1, where every num-
ber is the sum of two previous numbers. It is named after the Italian mathematician
Fibonacci who introduced it to the Western world in his book Liber Abaci in 1202. The
ratio of two consecutive Fibonacci numbers approaches the golden ratio ® = 1.618.
The Fibonacci numbers and the golden ratio are central concepts in modern mathemat-
ics. The golden ratio together with the Fibonacci numbers is often called the nature’s
code because it is observed in several natural phenomena. See, e.g., [1-13], and the
references given therein for the theory of Fibonacci numbers and the golden ratio.

In this article, we present golden ratio (®,) and golden angle (6,(p)) associated with
p-sequences, and consider other generalizations of golden ratio.

2 p-golden ratio

The golden ratio is one of the most famous numbers. Given a and b(< a) two positive
numbers, the golden ratio is defined as [!]
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Figure 1: Division of a line into p segments.

Taking 7 = &, Eq. (1) reduces to the quadratic equation d? = & + 1 whose positive

solution is ® = @ = 1.61803. This value corresponds to the limiting ratio value of
the Fibonacci sequence.

For the golden ratios associated with p-sequences, we first ask a couple of questions:
(i) Does there exist a ratio, like golden ratio [Eq. (1)], for given p > 3 positive real
numbers? (ii) What is the value of this ratio? Is this value unique? (ii) Is this value of
ratio equal to the limiting ratio value of p-sequences? Surprisingly enough, the answer
is in affirmative.

Suppose a; < ay < --- < a, are p > 2 positive real numbers (see Fig. 1). We
define the p-golden ratio as
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Note that Eq. (1) is a special case of Eq. (2) for p = 2.

2.1 Characteristic equation for ¢,

We find that from Eq. (2) follows naturally the p-degree algebraic equation whose
positive solution gives the value of @,

Xy(x)=a =) ¥ =0. 3)

We call this golden equation. Note that X,(0) = —1 for all p and X,(1) = —(p — 1).
This equation has been obtained recently in an interesting physical problem concerning
center of masses in two and higher dimensions [ 14].

"'We will see later that actually tjﬂ is the golden ratio for large n. The relation of limiting ratio value

of p-sequence with the Euclid’s probfem, Eq. (2), is accidental.



Figure 2: Schematic representation of roots of the golden equation: xP = Zi;é zF.

2.2 Less radical characteristic equations

For fixed p and positive integers {k;}, one can choose recurrence relations with m terms
(2 < m, k; < p) to obtain the following less radical characteristic equations,

P = 1+ :Ekl,
P = 1428 422
P = 142 4 gk o

and so on, each with its own convergence. Wilson’s Meru I through Meru 9 are partic-
ular examples of the above 2-term characteristic equation for p = 2, 3,4, 5.

2.3 Roots of the golden equation

Here we look at the nature of roots of Eq. (3). Roots can be positive, negative and com-
plex. Complex roots obviously occur in pairs and lie within a unit circle and approaches
towards the boundary of the circle with increasing p. The only negative root approaches
—1 for large p. The only positive root lies between 1 and 2, and tends to 2 for large p.
See Figs. 2 and 3.
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Figure 3: Roots of the golden equation for different values of p.
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Figure 4: Schematic representation of roots of the near cousins of the golden equation.

2.4 Near cousins of the golden equation

The equations (a) 2 = #~'—2?~2+- ..+l and (b) 2? = — > .P_1 2" are two immediate
near cousins of the golden equation 27 = Y P_| z*. Roots of both (a) and (b) are
complex and real. Complex roots obviously occur in pairs and lie within a unit circle
and approaches towards the boundary of the circle with increasing p. The only real
positive root of (a) is +1, and the only real negative root of (b) is —1. See Fig. 4.

3 Recursion relation for ¢,

Because ®,, is a solution of Eq. (3), we have

p—1
Qo= QAP By 1=y B 4)
k=0
Oht = PP P+ D24 D,
= 200 1. (5)
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Eq. (4) can be equivalently rewritten as

o)
o, = 1+="_"7", (6)
p CI)g 1
— 14 ! ™
= —
P =1
Also, Eq. (4) implies a recursion relation
n—1
N A D D ©)

k=n—p

4 O, of 1-sequence

We have seen above that Eq. (4) is the basic equation for ®,~,. If we consider this
sacred golden equation for p = 1, we have

o, =Y = 1. 9)

We remark that @, is related with the limiting ratio value of 1-sequences. We construct
a 1-sequence by choosing a seed sy > 0 and a constant @ > 0 such that ¢, = s¢, and for
n>1

tp =1tn_1 +a =59+ na. (10)

The limiting ratio value for this 1-sequence is then

Ty (1 ) 1 )
lim 1 ): lim —SO+(n+ )a: lim (1—i—
n—oo t,(1) n—oo S+ na n—00 n -+ %0

)=1=0,. (1)

We note that Eq. (9) provides the lower limit on ®,,’s. That is,

Opq > 1. (12)



’ P ‘ D, ‘ 0= arcsin[%] ‘ § = arcsin|[®, /2] ‘
1 ]10 1 0.0 [ 30.0 |
2 | 1.61803 | 18.0 54.0
3 | 1.83929 | 24.8122 66.8742
4 | 1.92756 | 27.6313 74.5321
5 | 1.96595 | 28.8799 79.4124
6 | 1.98358 | 29.4583 82.6531
7 1 1.99196 | 29.7344 84.8608
8 | 1.99603 | 29.8688 86.3893
9 | 1.99803 | 29.9349 87.4567
10 | 1.99902 | 29.9676 88.2063
11 | 1.99951 | 29.9838 88.7317
12 | 1.99976 | 29.9921 89.1124
13 | 1.99988 | 29.996 89.3724
14 | 1.99994 | 29.998 89.5562
15 | 1.99997 | 29.999 89.6862
16 | 1.99998 | 29.9993 89.7438
17 | 1.99999 | 29.9997 89.8188
18 | 2.0 30.0 90.0
19 | 2.0 30.0 90.0
20 | 2.0 30.0 90.0

Table 1: Values of ®,, and the trigonometric angles such that ¢, = 142sin¢ = 2sin 6.

5 @) as a polynomial of degree p — 1

We have seen earlier the following relations:
b = PP 4 PP 4 4 D+ 1,
and
QN =N 4 QN PR
Here the question we want to address is: is it possible to reduce ) to a polynomial
of degree p — 17 Put differently, can we express @} in terms of {(ID’; }i;é? It is very

illuminating to see that it is possible to express @} (n > 0) in terms of {@’;}i;é as
follows:

" = t,[S, 1 (PP + - + 1, [S1(P)] Dy + a[So(P)]

= D talSk(p)] 9y, (13)

k=0
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Figure 5: Plot of p-golden ratios.

where t,,[Sk(p)] = Z}:ifp t;[Sk(p)]. Eq. (13) can be easily verified from Tables 2, 3,
4dand 5 [1].

In particular, for p = 2 and 3, the explicit expressiosn are

tn[51(2)] P2 + [S0(2)] (n > 0),

5 =9 tnt1[50(2)]P2 +1,[S(2)]  (n = 2), (14)
tn]Sx(2)]P2 + tn1[Sx(2)] (n > 2),

and

7 — { tn[S2(3)]DF + £[S1(3)] P + £n[So(3)] (n > 0),

f_s[S(3)]2 + by o[Sx (3)]Ps + tn_4[Ss(3)] (n>4). 1)

~—

6 Applications of p-golden ratios

We have seen earlier that the golden ratio and the related Fibonacci sequence are present
in abundance in our everyday life. We also learnt the skeptical view on this, and that not
all objects exhibit the golden ratio in the sense that convergent limits do not settle down
to the numerical value 1.618. This is now evident with the introduction of p-sequences
and the associated p-golden ratios why it is not the case. In fact, 5 = 1.618 is only
one member of several families of golden ratios (such as those of Stakhov, Spinadel,
Krcadinac, etc. including the present work). Therefore, it is natural to expect that @~
will have many interesting applications as well.



(0[50 [50® [5e@ [5:() [Sa@ |

0 (0 1 1 1 2

1 1 0 1 2 21
21t ]2 |3 | 23 |

3 12 1 3 5 44

4 13 2 5 8 67

5 1|5 3 8 13 111

6 |8 5 13 21 178

7 |13 8 21 34 289

8 |21 13 34 55 467

9 |34 21 55 89 756

10 | 55 34 89 144 1223

11 | 89 55 144 233 1979

12 | 144 89 233 377 3202

13 | 233 144 377 610 5181

14 | 377 233 610 987 8383

15 | 610 377 987 1597 13564
16 | 987 610 1597 2584 21947
17 | 1597 | 987 2584 4181 35511
18 | 2584 | 1597 | 4181 6765 57458
19 | 4181 | 2584 | 6765 10946 | 92969
20 | 6765 | 4181 | 10946 | 17711 | 150427
21 | 10946 | 6765 | 17711 | 28657 | 243396
22 | 17711 | 10946 | 28657 | 46368 | 393823
23 | 28657 | 17711 | 46368 | 75025 | 637219
24 | 46368 | 28657 | 75025 | 121393 | 1031042
25 | 75025 | 46368 | 121393 | 196418 | 1668261

Table 2: 2-sequences. (i) S¢ = 51 + Sp. (i) Sx = S;. (i) S ~ Sy ~ S¢ ~ Y5.
(iv) S¢ is a general 2-sequence with seeds sg = 2, s; = 21. (v) For each of these

2—sequences,h1nn_ﬂmt::1 = 1.61803.




n [ S5EB) [SB) [ SB) [ScB) [SxB) [S95(3)

0 10 0 0 1 0 1

110 1 0 1 1 2

2 |1 0 1 1 2 4

3 |1 1 1 E E |7

4 12 2 2 5 6 13

5 14 3 4 9 11 24

6 |7 6 7 17 20 4

7 |13 11 13 31 37 81

8 |24 20 24 57 68 149

9 |44 37 44 105 125 274

10 | 81 68 81 193 230 504

11| 149 125 149 355 423 927

12 [ 274 230 274 653 778 1705

13 | 504 423 504 1201 1431 3136

14 | 927 778 927 2209 2632 5768
151705 [ 1431 | 1705 [ 4063 4841 10609
16 3136 [ 2632 | 3136 | 7473 8904 19513
17 5768 | 4841 | 5768 | 13745 [ 16377 [ 35890
18 [ 10609 | 8904 | 10609 |25281 [30122 [ 66012
19 [ 19513 | 16377 | 19513 | 46499 | 55403 | 121415
20 | 35890 | 30122 | 35890 | 85525 | 101902 | 223317
21 | 66012 | 55403 | 66012 | 157305 | 187427 | 410744
22 | 121415 [ 101902 | 121415 | 289329 | 344732 | 755476
23 | 223317 | 187427 | 223317 | 532159 | 634061 | 1389537
24 | 410744 | 344732 | 410744 | 978793 | 1166220 | 2555757
25 | 755476 | 634061 | 755476 | 1800281 | 2145013 | 4700770

ln

10

tny1

1.83929.

Table 3: 3-sequences. (i) S¢ = So + S1 + Sp. (ii) Sy ~ Sy ~ Sg. (iii) S ~ Sx. (iv)
For each of these 3-sequences, lim,,




n [S(4)  [SH@) [SH4) [ S [Sc) [Sx(4) [ 85(4)

0 |0 0 0 1 1 0 1

1o 0 1 0 1 1 2

2 |0 1 0 0 1 2 4

3 |1 0 0 0 1 3 8

4 ]1 1 1 1 [ 4 6 | 15

5 ]2 2 2 1 7 12 29

6 |4 4 3 2 13 23 56
78 7 6 4 25 44 108

8 |15 14 12 8 49 85 208

9 129 27 23 15 94 164 401

10 | 56 52 44 29 181 316 773

11| 108 100 85 56 349 609 1490

12 | 208 193 164 108 673 1174 2872

13 | 401 372 316 208 1297 2263 5536

14 | 773 717 609 401 2500 4362 10671
15 | 1490 1382 | 1174 | 773 4819 8408 20569
16 | 2872 2604 | 2263 [ 1490 [ 9289 16207 | 39648
17 | 5536 5135 [ 4362 [2872 [ 17905 | 31240 [ 76424
18 | 10671 [ 9898 | 8408 [5536 | 34513 [ 60217 | 147312
19 120569 [ 19079 | 16207 [ 10671 | 66526 | 116072 | 283953
20 | 39648 | 36776 | 31240 | 20569 | 128233 | 223736 | 547337
21 | 76424 | 70888 | 60217 | 39648 | 247177 | 431265 | 1055026
22 | 147312 | 136641 | 116072 | 76424 | 476449 | 831290 | 2033628
23 [ 283953 | 263384 | 223736 | 147312 [ 918385 | 1592363 | 3919944
24 | 547337 [ 507689 | 431265 | 283953 | 1770244 | 3068654 | 7555935
25 | 1055026 [ 978602 | 831290 | 547337 | 3412255 | 5623572 | 14564533

tn+1
tn

11

= 1.92756.

Table 4: 4-sequences. (i) S¢ = S5 + So + S1 + Sp. (i) S3 ~ Sy ~ Ss.
(iv) For each of these 4-sequences, lim,, .

(iii) S ~ Sx.




[n [ Su(5) [S3(5) [ Sa(3) [Si(5) | Se(3) | Se(5) Sx(5) | Ss(5)
0 10 0 0 0 1 1 0 1
1[0 0 0 1 0 1 1 2
2 |0 0 1 0 0 1 2 4
3 10 1 0 0 0 1 3 8
4 11 0 0 0 0 1 4 16

15 |1 1 1 |1 1 5 10 | 31
6 |2 2 2 2 1 9 20 61
7 14 4 4 3 2 17 39 120
8 |8 8 7 6 4 33 76 236
9 |16 15 14 12 8 65 149 464
10 | 31 30 28 24 16 129 294 912
11 | 61 59 55 47 31 253 578 1793
12 | 120 116 108 92 61 497 1136 3525
13 | 236 228 212 181 120 977 2233 6930
14 | 464 448 417 356 236 1921 4390 13624
15 [ 912 881 820 700 464 3777 8631 26784
16 [ 1793|1732 [ 1612 | 1376 | 912 7425 16968 | 52656
17 [ 3525 |3405 [3169 [2705 |1793 [ 14597 |33358 | 103519
18 16930 | 6694 | 6230 | 5318 |3525 | 28697 | 65580 | 203513
19 | 13624 | 13160 | 12248 [ 10455 | 6930 [ 56417 | 128927 | 400096
20 | 26784 | 25872 | 24079 | 20554 | 13624 | 110913 | 253464 | 786568
21 | 52656 | 50863 | 47338 | 40408 | 26784 | 218049 | 498297 | 1546352
22 | 103519 [ 99994 | 93064 | 79440 | 52656 | 428673 | 979626 | 3040048
23 | 203513 | 196583 | 182959 | 156175 | 103519 | 842749 | 1925894 | 5976577
24 | 400096 | 386472 | 359688 | 307032 | 203513 | 1656801 | 3786208 | 11749641
25 | 786568 | 754784 | 707128 | 603609 | 400096 | 3257185 | 7443489 | 23099186

Table 5: 5-sequences. (i) S¢ = Sy + S35+ Sy + S + Sp. (i1) Sy ~ Sy ~ Sg. (iii) For

each of these 5-sequences, lim,,

tn+1 _
tn

12

= 1.96595.




- ad,
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Figure 6: The golden angle 6, is determined by using a/b = ®,,.

» ) 3 13
O, | 1.0 |1.61803 | 1.83929 | 2.0
6,(p) | 180° | 137.5° | 126.8° | 120°

Table 6: The golden angles for p-sequences, p = 1, 2, 3, 18.

7 Golden geometry

7.1 Golden angles

The golden angle is defined as the acute angle 6, that divides the circumference of a
circle into two arcs ABD and AC'D with lengths in the golden ratio. See Fig. 6(a).

The golden ratio here satisfies &, = 3. We then determine the golden angle by 9-‘;—(? =
L — L — ; Hence
a+b 1+2 1+, ° ’
2m
0 = . 16
4(P) 1+, (16)

From Table 6 we see that 2% < 0,(p) < .

7.2 Golden shapes

We can construct geometrical objects such as polygons (rectangle, pentagon, etc.) and
spirals which have properties characterizing the golden p-ratio or certain p-sequences.
Note that a square is a golden rectangle with golden ratio ¢, = 1.

13



8 Further generalizations of golden ratio

The trouble with the notion of golden ratio is that it can be extended in many ways such
that the original golden ratio @ is a particular case. In an earlier section, we have seen
that the recurrence relation ¢, (p) = 3} _, t,—&(p) and the golden ratio £ = 2 = ... =

a2
p
Zk:l ag k
a

correspond to the characteristic equation z? = Z;é x®. A straight-forward

genéralization of these yield

p
ta(p) = Y crtui(p), (17)
k=1
G _ a3 Dkmi GOk (18)
aq as a, ’
p—1
P = chxk. (19)
k=0

That is, for a sequence of numbers whose terms are given by the (weighted) sum of
its consecutive p-previous terms, the characteristic polynomial equation can be obtained
by using the golden ratio. However, how do we obtain the characteristic polynomial
equation for an arbitrary recurrence relation 2,

tn = Cltnfml + CQtnfmg +oe 4+ Cptnfmpa (20)

otherwise? In this case also, we can project a ratio like the golden one, Eq. (18), as
given below

tnfm tnfm tn
— o 2= : (21)
tn-m tn—m+1 th1
where m = max{my, ma, ---, m,} so that
tn—mk = xm_mktn—ma (1 <k< p)
thor = 2™ M. (22)

Then, the characteristic polynomial equation is *

" ="M e A g™ T, (23)

ZWilson’s Meru I through Meru 9 with their limiting ratios (see [1]) are particular examples of Eq.
(20).
3Proof of Eq. (23).

Tlp—1 =1t = cltnfml + C2tnfnL2 +--- 4+ Cptnfmpv
= x(l'm_ltn,m) _ (Clxm—ml g™ M2 4l 4 Cpl'm_mp)tn,m,
=™ = ™™ Feax™ T 4 T

14



We state a proposition below which gives us a straightforward general rule to obtain the
characteristic polynomial equation for an arbitrary recurrence relation.

Proposition. The polynomial equation characteristic to a given recurrence relation is
obtained by requiring "7 = lim,,_, %, where u and v are integers. The charac-
teristic equation is the minimal polynomial which gives the value of the limiting ratio
of the sequence, and from which all its algebraic properties follow. For the general-
ized recurrence relation, t, = cit,_m, + Cotp_m, + - + Cply_m,, the characteristic
polynomial equation is given by ™ = ciz™™ ™ + cox™ ™2 + -+ - + @™, where

m = max{my, mg, -+, my}*.

Moving a step further, we consider the relation

_ 1 C
(U1Z_j)v1 _ <U2Z_z)v2 B (uplajﬁl)vp 1 (uka%pkak)Uzz (24)

where {(u;, v;)} and {c;} are given. Goal is to find values of the ratios {%} and

Z’z%pcka’“ such that Eq. (24) holds. Does a solution exist? This problem is rather hard to
solve in general.

Next, one can choose any pair of ratios at a time. Say, (ulz—f)vl = (2@3—3)”2. There
are two cases here. (i) Assume that Z—j = x and Z_Z = fa3(x). Then the characteristic

. . U1 V2 ... . . 1 b2
equation is (ulx) = (u2f23(9c)) and the positive solution is x = o (Ugfgg(l')) v
(i) For 22 =z and 2 = f1,(x), the characteristic equation is (w1 fr2(2))" = (ugz)™

and the positive solution is = = - (u1 fi2(2)) »2 . Thus, equating two ratios at a time, we
will have 2(p — 1)! characteristic polynomial equations and consequently as many roots
of them for given {(u;, v;)} and {¢x}. To the best of our knowledge, most generaliza-
tions of the Fibonacci sequence and the golden ratio (see [!] and the references therein)
can be seen as special cases of Egs. (20), (23) and (24).

4 Another proof of Eq. (23).

. tn 1
z = lim +,
n—oo n

e Tt 2 P e e e T

)

n—o00 tn
. tn—(ml—l) . tn—(m2—1) . tn—(mp—l)
= ¢ llm ———+¢ lim ——— 4.+ 4¢, lim —2—,
n— oo n n— 00 n n— o0 tn

— Clxi(mlil) +02:L-7(m271) +...+Cpx7(m;v71),

Clxm—ml + ngm—mg et Cpxm—mp
xmfl

=2 = T Fex™ T 4 o™ T,

)

Thus, lim,, oo % is the golden ratio in general.
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