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Abstract. In a p-sequence, every term is the sum of p previous terms given p initial
values called seeds. It is an extension of the Fibonacci sequence. In this article, we
investigate the p-golden ratio of p-sequences. We express a positive integer power of
the p-golden ratio as a polynomial of degree p−1, and obtain values of golden angles for
different p-golden ratios. We also consider further generalizations of the golden ratio.

1 Introduction
The Fibonacci sequence is a series of numbers, starting from 0 and 1, where every num-
ber is the sum of two previous numbers. It is named after the Italian mathematician
Fibonacci who introduced it to the Western world in his book Liber Abaci in 1202. The
ratio of two consecutive Fibonacci numbers approaches the golden ratio Φ = 1.618.
The Fibonacci numbers and the golden ratio are central concepts in modern mathemat-
ics. The golden ratio together with the Fibonacci numbers is often called the nature’s
code because it is observed in several natural phenomena. See, e.g., [1–13], and the
references given therein for the theory of Fibonacci numbers and the golden ratio.

In this article, we present golden ratio (Φp) and golden angle (θg(p)) associated with
p-sequences, and consider other generalizations of golden ratio.

2 p-golden ratio
The golden ratio is one of the most famous numbers. Given a and b(< a) two positive
numbers, the golden ratio is defined as [1]

a

b
=
a+ b

a
. (1)
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Figure 1: Division of a line into p segments.

Taking a
b

= Φ, Eq. (1) reduces to the quadratic equation Φ2 = Φ + 1 whose positive
solution is Φ =

√
5+1
2

= 1.61803. This value corresponds to the limiting ratio value of
the Fibonacci sequence.

For the golden ratios associated with p-sequences, we first ask a couple of questions:
(i) Does there exist a ratio, like golden ratio [Eq. (1)], for given p ≥ 3 positive real
numbers? (ii) What is the value of this ratio? Is this value unique? (ii) Is this value of
ratio equal to the limiting ratio value of p-sequences? Surprisingly enough, the answer
is in affirmative.

Suppose a1 < a2 < · · · < ap are p ≥ 2 positive real numbers (see Fig. 1). We
define the p-golden ratio as 1

a2

a1

=
a3

a2

= · · · =
∑p

k=1 ak
ap

(= Φp). (2)

Note that Eq. (1) is a special case of Eq. (2) for p = 2.

2.1 Characteristic equation for Φp

We find that from Eq. (2) follows naturally the p-degree algebraic equation whose
positive solution gives the value of Φp:

Xp(x) ≡ xp −
p−1∑
k=0

xk = 0. (3)

We call this golden equation. Note that Xp(0) = −1 for all p and Xp(1) = −(p − 1).
This equation has been obtained recently in an interesting physical problem concerning
center of masses in two and higher dimensions [14].

1We will see later that actually tn+1

tn
is the golden ratio for large n. The relation of limiting ratio value

of p-sequence with the Euclid’s problem, Eq. (2), is accidental.
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Figure 2: Schematic representation of roots of the golden equation: xp =
∑p−1

k=0 x
k.

2.2 Less radical characteristic equations
For fixed p and positive integers {ki}, one can choose recurrence relations withm terms
(2 ≤ m, ki < p) to obtain the following less radical characteristic equations,

xp = 1 + xk1 ,

xp = 1 + xk1 + xk2 ,

xp = 1 + xk1 + xk2 + xk3 ,

and so on, each with its own convergence. Wilson’s Meru 1 through Meru 9 are partic-
ular examples of the above 2-term characteristic equation for p = 2, 3, 4, 5.

2.3 Roots of the golden equation
Here we look at the nature of roots of Eq. (3). Roots can be positive, negative and com-
plex. Complex roots obviously occur in pairs and lie within a unit circle and approaches
towards the boundary of the circle with increasing p. The only negative root approaches
−1 for large p. The only positive root lies between 1 and 2, and tends to 2 for large p.
See Figs. 2 and 3.
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(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 5

(e) p = 10 (f) p = 15

(g) p = 18 (h) p = 24

Figure 3: Roots of the golden equation for different values of p.
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(a) xp = xp−1 − xp−2 + · · · ± 1 (b) xp = −
∑p−1

k=0 x
k

Figure 4: Schematic representation of roots of the near cousins of the golden equation.

2.4 Near cousins of the golden equation
The equations (a) xp = xp−1−xp−2+· · ·±1 and (b) xp = −

∑p−1
k=0 x

k are two immediate
near cousins of the golden equation xp =

∑p−1
k=0 x

k. Roots of both (a) and (b) are
complex and real. Complex roots obviously occur in pairs and lie within a unit circle
and approaches towards the boundary of the circle with increasing p. The only real
positive root of (a) is +1, and the only real negative root of (b) is −1. See Fig. 4.

3 Recursion relation for Φp

Because Φp is a solution of Eq. (3), we have

Φp
p = Φp−1

p + Φp−2
p + · · ·+ Φp + 1 =

p−1∑
k=0

Φk
p, (4)

Φp+1
p = Φp

p + Φp−1
p + · · ·+ Φ2

p + Φp,

= 2Φp
p − 1. (5)
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Eq. (4) can be equivalently rewritten as

Φp = 1 +

∑p−2
k=0 Φk

p

Φp−1
p

, (6)

= 1 +
1

Φp − 1 + 1∑p−2
k=0 Φk

p

. (7)

Also, Eq. (4) implies a recursion relation

Φn
p = Φn−1

p + Φn−2
p + · · ·+ Φn−p

p =
n−1∑

k=n−p

Φk
p. (8)

4 Φ1 of 1-sequence
We have seen above that Eq. (4) is the basic equation for Φp≥2. If we consider this
sacred golden equation for p = 1, we have

Φ1 = Φ0
1 = 1. (9)

We remark that Φ1 is related with the limiting ratio value of 1-sequences. We construct
a 1-sequence by choosing a seed s0 ≥ 0 and a constant a ≥ 0 such that t0 = s0, and for
n ≥ 1

tn = tn−1 + a = s0 + na. (10)

The limiting ratio value for this 1-sequence is then

lim
n→∞

tn+1(1)

tn(1)
= lim

n→∞

s0 + (n+ 1)a

s0 + na
= lim

n→∞

(
1 +

1

n+ s0
a

)
= 1 = Φ1. (11)

We note that Eq. (9) provides the lower limit on Φp’s. That is,

Φp≥1 ≥ 1. (12)
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p Φp θ = arcsin[Φp−1

2
] θ = arcsin[Φp/2]

1 1.0 0.0 30.0
2 1.61803 18.0 54.0
3 1.83929 24.8122 66.8742
4 1.92756 27.6313 74.5321
5 1.96595 28.8799 79.4124
6 1.98358 29.4583 82.6531
7 1.99196 29.7344 84.8608
8 1.99603 29.8688 86.3893
9 1.99803 29.9349 87.4567
10 1.99902 29.9676 88.2063
11 1.99951 29.9838 88.7317
12 1.99976 29.9921 89.1124
13 1.99988 29.996 89.3724
14 1.99994 29.998 89.5562
15 1.99997 29.999 89.6862
16 1.99998 29.9993 89.7438
17 1.99999 29.9997 89.8188
18 2.0 30.0 90.0
19 2.0 30.0 90.0
20 2.0 30.0 90.0

Table 1: Values of Φp, and the trigonometric angles such that Φp = 1+2 sin θ = 2 sin θ.

5 Φn
p as a polynomial of degree p− 1

We have seen earlier the following relations:

Φp
p = Φp−1

p + Φp−2
p + · · ·+ Φp + 1,

and
Φn
p = Φn−1

p + Φn−2
p + · · ·+ Φn−p

p .

Here the question we want to address is: is it possible to reduce Φn
p to a polynomial

of degree p − 1? Put differently, can we express Φn
p in terms of {Φk

p}
p−1
k=0? It is very

illuminating to see that it is possible to express Φn
p (n ≥ 0) in terms of {Φk

p}
p−1
k=0 as

follows:

Φn
p = tn[Sp−1(p)]Φp−1

p + · · ·+ tn[S1(p)]Φp + tn[S0(p)]

=

p−1∑
k=0

tn[Sk(p)]Φ
k
p, (13)
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Figure 5: Plot of p-golden ratios.

where tn[Sk(p)] =
∑n−1

j=n−p tj[Sk(p)]. Eq. (13) can be easily verified from Tables 2, 3,
4 and 5 [1].

In particular, for p = 2 and 3, the explicit expressiosn are

Φn
2 =


tn[S1(2)]Φ2 + tn[S0(2)] (n ≥ 0),
tn+1[S0(2)]Φ2 + tn[S0(2)] (n ≥ 2),
tn[SX(2)]Φ2 + tn−1[SX(2)] (n ≥ 2),

(14)

and

Φn
3 =

{
tn[S2(3)]Φ2

3 + tn[S1(3)]Φ3 + tn[S0(3)] (n ≥ 0),
tn−3[SS(3)]Φ2

3 + tn−2[SX(3)]Φ3 + tn−4[SS(3)] (n ≥ 4).
(15)

6 Applications of p-golden ratios
We have seen earlier that the golden ratio and the related Fibonacci sequence are present
in abundance in our everyday life. We also learnt the skeptical view on this, and that not
all objects exhibit the golden ratio in the sense that convergent limits do not settle down
to the numerical value 1.618. This is now evident with the introduction of p-sequences
and the associated p-golden ratios why it is not the case. In fact, Φ2 = 1.618 is only
one member of several families of golden ratios (such as those of Stakhov, Spinadel,
Krcadinac, etc. including the present work). Therefore, it is natural to expect that Φp>2

will have many interesting applications as well.
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n S1(2) S0(2) SC(2) SS(2) SG(2)

0 0 1 1 1 2
1 1 0 1 2 21
2 1 1 2 3 23
3 2 1 3 5 44
4 3 2 5 8 67
5 5 3 8 13 111
6 8 5 13 21 178
7 13 8 21 34 289
8 21 13 34 55 467
9 34 21 55 89 756
10 55 34 89 144 1223
11 89 55 144 233 1979
12 144 89 233 377 3202
13 233 144 377 610 5181
14 377 233 610 987 8383
15 610 377 987 1597 13564
16 987 610 1597 2584 21947
17 1597 987 2584 4181 35511
18 2584 1597 4181 6765 57458
19 4181 2584 6765 10946 92969
20 6765 4181 10946 17711 150427
21 10946 6765 17711 28657 243396
22 17711 10946 28657 46368 393823
23 28657 17711 46368 75025 637219
24 46368 28657 75025 121393 1031042
25 75025 46368 121393 196418 1668261

Table 2: 2-sequences. (i) SC ≡ S1 + S0. (ii) SX = S1. (iii) S1 ∼ S0 ∼ SC ∼ SS .
(iv) SG is a general 2-sequence with seeds s0 = 2, s1 = 21. (v) For each of these
2-sequences, limn→∞

tn+1

tn
= 1.61803.
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n S2(3) S1(3) S0(3) SC(3) SX(3) SS(3)

0 0 0 0 1 0 1
1 0 1 0 1 1 2
2 1 0 1 1 2 4
3 1 1 1 3 3 7
4 2 2 2 5 6 13
5 4 3 4 9 11 24
6 7 6 7 17 20 44
7 13 11 13 31 37 81
8 24 20 24 57 68 149
9 44 37 44 105 125 274
10 81 68 81 193 230 504
11 149 125 149 355 423 927
12 274 230 274 653 778 1705
13 504 423 504 1201 1431 3136
14 927 778 927 2209 2632 5768
15 1705 1431 1705 4063 4841 10609
16 3136 2632 3136 7473 8904 19513
17 5768 4841 5768 13745 16377 35890
18 10609 8904 10609 25281 30122 66012
19 19513 16377 19513 46499 55403 121415
20 35890 30122 35890 85525 101902 223317
21 66012 55403 66012 157305 187427 410744
22 121415 101902 121415 289329 344732 755476
23 223317 187427 223317 532159 634061 1389537
24 410744 344732 410744 978793 1166220 2555757
25 755476 634061 755476 1800281 2145013 4700770

Table 3: 3-sequences. (i) SC ≡ S2 + S1 + S0. (ii) S2 ∼ S0 ∼ SS . (iii) S1 ∼ SX . (iv)
For each of these 3-sequences, limn→∞

tn+1

tn
= 1.83929.
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n S3(4) S2(4) S1(4) S0(4) SC(4) SX(4) SS(4)

0 0 0 0 1 1 0 1
1 0 0 1 0 1 1 2
2 0 1 0 0 1 2 4
3 1 0 0 0 1 3 8
4 1 1 1 1 4 6 15
5 2 2 2 1 7 12 29
6 4 4 3 2 13 23 56
7 8 7 6 4 25 44 108
8 15 14 12 8 49 85 208
9 29 27 23 15 94 164 401
10 56 52 44 29 181 316 773
11 108 100 85 56 349 609 1490
12 208 193 164 108 673 1174 2872
13 401 372 316 208 1297 2263 5536
14 773 717 609 401 2500 4362 10671
15 1490 1382 1174 773 4819 8408 20569
16 2872 2664 2263 1490 9289 16207 39648
17 5536 5135 4362 2872 17905 31240 76424
18 10671 9898 8408 5536 34513 60217 147312
19 20569 19079 16207 10671 66526 116072 283953
20 39648 36776 31240 20569 128233 223736 547337
21 76424 70888 60217 39648 247177 431265 1055026
22 147312 136641 116072 76424 476449 831290 2033628
23 283953 263384 223736 147312 918385 1592363 3919944
24 547337 507689 431265 283953 1770244 3068654 7555935
25 1055026 978602 831290 547337 3412255 5623572 14564533

Table 4: 4-sequences. (i) SC ≡ S3 + S2 + S1 + S0. (ii) S3 ∼ S0 ∼ SS . (iii) S1 ∼ SX .
(iv) For each of these 4-sequences, limn→∞

tn+1

tn
= 1.92756.
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n S4(5) S3(5) S2(5) S1(5) S0(5) SC(5) SX(5) SS(5)

0 0 0 0 0 1 1 0 1
1 0 0 0 1 0 1 1 2
2 0 0 1 0 0 1 2 4
3 0 1 0 0 0 1 3 8
4 1 0 0 0 0 1 4 16
5 1 1 1 1 1 5 10 31
6 2 2 2 2 1 9 20 61
7 4 4 4 3 2 17 39 120
8 8 8 7 6 4 33 76 236
9 16 15 14 12 8 65 149 464
10 31 30 28 24 16 129 294 912
11 61 59 55 47 31 253 578 1793
12 120 116 108 92 61 497 1136 3525
13 236 228 212 181 120 977 2233 6930
14 464 448 417 356 236 1921 4390 13624
15 912 881 820 700 464 3777 8631 26784
16 1793 1732 1612 1376 912 7425 16968 52656
17 3525 3405 3169 2705 1793 14597 33358 103519
18 6930 6694 6230 5318 3525 28697 65580 203513
19 13624 13160 12248 10455 6930 56417 128927 400096
20 26784 25872 24079 20554 13624 110913 253464 786568
21 52656 50863 47338 40408 26784 218049 498297 1546352
22 103519 99994 93064 79440 52656 428673 979626 3040048
23 203513 196583 182959 156175 103519 842749 1925894 5976577
24 400096 386472 359688 307032 203513 1656801 3786208 11749641
25 786568 754784 707128 603609 400096 3257185 7443489 23099186

Table 5: 5-sequences. (i) SC ≡ S4 + S3 + S2 + S1 + S0. (ii) S4 ∼ S0 ∼ SS . (iii) For
each of these 5-sequences, limn→∞

tn+1

tn
= 1.96595.
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(a) (b)

Figure 6: The golden angle θg is determined by using a/b = Φp.

p 1 2 3 18
Φp 1.0 1.61803 1.83929 2.0
θg(p) 180◦ 137.5◦ 126.8◦ 120◦

Table 6: The golden angles for p-sequences, p = 1, 2, 3, 18.

7 Golden geometry

7.1 Golden angles
The golden angle is defined as the acute angle θg that divides the circumference of a
circle into two arcs ABD and ACD with lengths in the golden ratio. See Fig. 6(a).
The golden ratio here satisfies Φp = a

b
. We then determine the golden angle by θg(p)

2π
=

b
a+b

= 1
1+a

b
= 1

1+Φp
. Hence,

θg(p) =
2π

1 + Φp

. (16)

From Table 6 we see that 2π
3
≤ θg(p) ≤ π.

7.2 Golden shapes
We can construct geometrical objects such as polygons (rectangle, pentagon, etc.) and
spirals which have properties characterizing the golden p-ratio or certain p-sequences.
Note that a square is a golden rectangle with golden ratio Φ1 = 1.
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8 Further generalizations of golden ratio
The trouble with the notion of golden ratio is that it can be extended in many ways such
that the original golden ratio Φ2 is a particular case. In an earlier section, we have seen
that the recurrence relation tn(p) =

∑p
k=1 tn−k(p) and the golden ratio a2

a1
= a3

a2
= · · · =∑p

k=1 ak
ap

correspond to the characteristic equation xp =
∑p−1

k=0 x
k. A straight-forward

generalization of these yield

tn(p) =

p∑
k=1

cktn−k(p), (17)

a2

a1

=
a3

a2

= · · · =
∑p

k=1 ckak
ap

, (18)

xp =

p−1∑
k=0

ckx
k. (19)

That is, for a sequence of numbers whose terms are given by the (weighted) sum of
its consecutive p-previous terms, the characteristic polynomial equation can be obtained
by using the golden ratio. However, how do we obtain the characteristic polynomial
equation for an arbitrary recurrence relation 2,

tn = c1tn−m1 + c2tn−m2 + · · ·+ cptn−mp , (20)

otherwise? In this case also, we can project a ratio like the golden one, Eq. (18), as
given below

x =
tn−m+1

tn−m
=
tn−m+2

tn−m+1

= · · · = tn
tn−1

, (21)

where m = max{m1, m2, · · · , mp} so that

tn−mk
= xm−mktn−m, (1 ≤ k ≤ p)

tn−1 = xm−1tn−m. (22)

Then, the characteristic polynomial equation is 3

xm = c1x
m−m1 + c2x

m−m2 + · · ·+ cpx
m−mp . (23)

2Wilson’s Meru 1 through Meru 9 with their limiting ratios (see [1]) are particular examples of Eq.
(20).

3Proof of Eq. (23).

xtn−1 = tn = c1tn−m1 + c2tn−m2 + · · ·+ cptn−mp ,

⇒ x(xm−1tn−m) = (c1x
m−m1 + c2x

m−m2 + · · ·+ cpx
m−mp)tn−m,

⇒ xm = c1x
m−m1 + c2x

m−m2 + · · ·+ cpx
m−mp .
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We state a proposition below which gives us a straightforward general rule to obtain the
characteristic polynomial equation for an arbitrary recurrence relation.
Proposition. The polynomial equation characteristic to a given recurrence relation is
obtained by requiring xu−v := limn→∞

tn+u

tn+v
, where u and v are integers. The charac-

teristic equation is the minimal polynomial which gives the value of the limiting ratio
of the sequence, and from which all its algebraic properties follow. For the general-
ized recurrence relation, tn = c1tn−m1 + c2tn−m2 + · · · + cptn−mp , the characteristic
polynomial equation is given by xm = c1x

m−m1 + c2x
m−m2 + · · · + cpx

m−mp , where
m = max{m1, m2, · · · , mp} 4 .

Moving a step further, we consider the relation(
u1
a2

a1

)v1 =
(
u2
a3

a2

)v2 = · · · =
(
up−1

ap
ap−1

)vp−1 =
(
up

∑p
k=1 ckak
ap

)vp
, (24)

where {(ui, vi)} and {ck} are given. Goal is to find values of the ratios {ak+1

ak
} and∑p

k=1 ckak
ap

such that Eq. (24) holds. Does a solution exist? This problem is rather hard to
solve in general.

Next, one can choose any pair of ratios at a time. Say,
(
u1

a2
a1

)v1 =
(
u2

a3
a2

)v2 . There
are two cases here. (i) Assume that a2

a1
= x and a3

a2
= f23(x). Then the characteristic

equation is
(
u1x
)v1 =

(
u2f23(x)

)v2 and the positive solution is x = 1
u1

(
u2f23(x)

) v2
v1 .

(ii) For a3
a2

= x and a2
a1

= f12(x), the characteristic equation is
(
u1f12(x)

)v1 =
(
u2x
)v2

and the positive solution is x = 1
u2

(
u1f12(x)

) v1
v2 . Thus, equating two ratios at a time, we

will have 2(p− 1)! characteristic polynomial equations and consequently as many roots
of them for given {(ui, vi)} and {ck}. To the best of our knowledge, most generaliza-
tions of the Fibonacci sequence and the golden ratio (see [1] and the references therein)
can be seen as special cases of Eqs. (20), (23) and (24).

4Another proof of Eq. (23).

x = lim
n→∞

tn+1

tn
,

= lim
n→∞

c1tn−(m1−1) + c2tn−(m2−1) + · · ·+ cptn−(mp−1)

tn
,

= c1 lim
n→∞

tn−(m1−1)

tn
+ c2 lim

n→∞

tn−(m2−1)

tn
+ · · ·+ cp lim

n→∞

tn−(mp−1)

tn
,

= c1x
−(m1−1) + c2x

−(m2−1) + · · ·+ cpx
−(mp−1),

=
c1x

m−m1 + c2x
m−m2 + · · ·+ cpx

m−mp

xm−1 ,

⇒ xm = c1x
m−m1 + c2x

m−m2 + · · ·+ cpx
m−mp .

Thus, limn→∞
tn+1

tn
is the golden ratio in general.
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