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Abstract
We define the Collatz Function F_col:N->N(n) as follows:

F_col(n):=n/2 if nis even, and
F_col(n):= 3n+1if nis odd
We define the two branches f:N->N and g:N->N of the above function as follows:
f(n):= n/2 if nis even and g(n):= 3n+1 if n is odd

Also, we define the ‘functional sequence' of a number n as the set of functions applied
consecutively on n (obeying the obtained parities), and show that any two g's in a functional
sequence must be separated by at least one f.

Next, we prove that all numbers n, under repetitive execution of the Collatz function, eventually
yield a certain E < n. This is obvious for even n values, since-

F_col(n) =n/2 <n for evenn

For odd n values, we prove that any odd number n which does not yield an E < n under repetitive
execution of the Collatz function, must possess a functional sequence of the form-

S={gfgfgfgfgfof...}

We then prove that the existence of a number possessing such a functional sequence is not
possible, implying that our statement is true for odd numbers as well.

Hence, it follows that any natural number n, under repetitive execution of the Collatz function,
must yield an E < n.

The truth of the Collatz Conjecture follows immediately from the above.



The Collatz Conjecture, also referred to as the Ulam Conjecture, the
Kakutani Problem, the Thwaites Conjecture, Hasse’s Algorithm or the
Syracuse Problem, was proposed in 1937 by German Mathematician
Lothar Collatz.

The conjecture states that if we define the function

F i N = N such that-
N
F.,/(N) = PR if Niseven

F.oy(N) :==3N+1,if Nisodd
ThenV N € N, 3 k € N such that F,,;*(N) = 1, where
Fcolk(N) = Fcol(Fcol(Fcol(...(N))...), where F ., is repeated k times.

This conjecture has been verified to be true for all natural numbers till an

approximate value of 268

Since the posing of the problem, there have been many partial results on
it, the most recent of which is the partial result established by
mathematician Terence Tao, stating that ‘almost’ all numbers, under
repetitive execution of the function F,;: N — N | attain almost bounded
values. Before that, partial results were established by mathematician
Riho Terras in 1976 that ‘almost’ all numbers x yield an (0 < x, under
repetitive execution of the function F,;: N — N. This upper bound was

0.869

later improved to x in 1979, and then it was further improved

to x07925 in 1994,



1. SOME NOTATIONS
Letus define  f:N - N(N) = %, if Niseven

g:N—->N(N)=3N+1,if Nisodd

Also, let us define the ‘functional sequence’ for any N € N as the set of
functions applied consecutively on a certain natural number until the
number 1 is obtained, and let Sy denote the functional sequence of N.

For instance, if we have the natural number 5, we have the following

continuous mapping obtained by repetitive execution of the functions

f:N - Nand g:N — N, in obedience with the obtained parities:
5-16-8-4->2->1

Note that the functions applied, in consecutive order, are g, f, f, f and f.
Hence, the functional sequence of 5 is:

Ss = {9ffff}

We can also shorten the sequence to:

Ss = {gf*}

Since there are 4 consecutive repetitions of f: N — N,

2. SOME IMPORTANT RESULTS
Theorem 2.1

For anyn € N, S,, does not contain two consecutive g s.

Proof



Let us assume contrarily that In € N such that S, contains two
consecutive g s. Hence, a certain number of executions of F;: N —
N yields a certain } €N such that the function g:N - N is
applicable twice. This is possible if and only if both Q and g(Q) =
3Q + 1 are odd. We know that the subtraction of two odd numbers is
always even. Hence, 3Q+1) —Q =20+1 iseven, Q €N.
Evidently, this is a contradiction. Thus, the assumption must be
incorrect and hence,

For anyn € N, S,, does not contain two consecutive g's.

This concludes the proof o

The above theorem implies that any two consecutive g's are separated
by at least one f. Thus, for any odd n, S,, is of the form:

S, ={gf%gf*%gf*gf*..},wherea; € N,Vi € N

Theorem 2.2
V N € Nsj, 3 k € Nsuch that F,,;*(N) < N

Proof

The result is obvious for even values of N. This is because if N is
N i
even, then f(N) = 5 < N. Hence, we can concern ourselves with the

odd values of N only.

Let us now consider a certain odd natural number n € N. Hence, the
functional sequence of n must be of the form:

S, ={gfgf*gf*gf*..}, wherea; E N,Vi €N



Let us define W, (n) as the value obtained by the execution of the
functional sequence:

S(k) = {gf*t..gf"}

onn.

Now, let us assume contrarily that
VkeN,F, n) =n

Hence, it is evident that
Y.(n)=2nVkeN (*)

Claim 2.2.1

¥.(n) is recursive and follows the identity:

3P (n)+1
Vi1 (W) = =5~ VkEN

Proof

Note that, by definition, we can write
P () = f1(g(f (g (- (g(f1(m))..)
and, i(n) = (F(g((g(F (m))...)
The substitution of the second equation into the first gives-
Wiera(n) = £ (g(Wi() ) = f41 3%, (n) + 1)

Hence,

_ 3¢+
lIlk‘l‘l(n) - Zak+1

This concludes the proof o



Claim2.2.2
¥Y,.(n) is given by —

k k—1 ko ak—i. say+.ta_
n+ 3+ 33 2m 1
2a1+...+ak

V() =

Proof

Notice that for k = 1, ¥4 (n) is the value obtained by the execution of
the functional sequence

s = {9f)

onn.

Hence,
3n+1

24

Pi(m) = f1(gm) = f13n+1) =

which is in accordance with our claim.
This serves as the base for an inductive process.

Let us now assume that
3xn_|_ 3X—1 + Zx 3X—i . 2a1+...+ai_1
i=2

pr(n) = a1+ Fax

for a certain x € N.

Hence, using Claim 2.2.1, we can write ¥, (n) as-



x—1 .
Xt 3x—1+Z' , 3x—iga+.tai_q
1=

201t tax +1

3

_ 3¥r(m+1
lpx+1(n) - zak+1 - 20x+1

x .
3%+l 3X+Z' ) 3(x+1)—z,2a1+...+ai_1+2a1+...+ax>
1=

201t tax

Hence, ¥,.1(n) =

2%x+1
Note that,
x x+1
z 3(x+1)—i LAt A1 g Aty — z 3(x+1)—i L tetaiog
i=2 i=2
Hence,
3x+ly 4 3% 4 zx+1 3D =i gar+.taig
i=2
2a1+...+ax
(Px+1(n) = 2“x+1
Which implies,

3x+ly 4 3% 4 zx+1 3+ =i, par+.taig
_ i=2
llux+1(n) - 201t taxyq

Thus, our claim holds true for (x + 1).

Hence, by the principle of mathematical induction,

3kn+ 3](—1 + Zfzz 3k—l . 20(1+...+0(i_1
2a1+...+ak

Vke N, ‘I’k(n) =



This concludes the proof o

Claim 2.2.3

Let @:N — N be any arbitrary function such that
Y. .(n)=d(n),vxeN

Then,
29x+1-(n) — 1
Y. (n) = (n)
3

Proof
We have,

Y. .(n)=d(n),vVxeN
Hence,

Y.(n) =dn)and W, 1(n) = &(n),VxeN

This, along with Claim 2.2.2 gives,

x .
3Xn4+ 3x—1+z 3x—1_2a1+...+ai_1
i=2

Y.(n) = Qa1+t = &(n) (**)
3x+1n+ 3x+zx+1 3(x+1)—i_2a1+...+ai_1
W, () = e >d(n)  (xx)

2%x+1
3 ;

Multiplying both sides of the inequality established in ( *** ) by

3*n + 3x—1 + Zf:zl 3x—i . 2a1+...+ai_1 - i1 . (p(n)
2a1+...+ax = 3

Which implies,



3*n + 3x—1 + Z?zz 3x—i . 2a1+...+ai_1 + 3—12a1+...+ax . 21 . ¢(n)
2a1+...+ax - 3

Thus,
_ x —i :
3 + 3*-1 4 Zizz 3x—t.part..tai-1 L31s 2%x+1 . <D(n)
a1+ Fay - 3
Hence,
1 2%+1-@(n)
‘Px(n) + § = f
And thus,
2%+1-(n) — 1
Y. .(n) =
3
Hence,

If :N - N is an arbitrary function such that
Y. .(n)=d(n),VxeN
Then,
2041 - P(n) — 1
3

Y. .(n) =

This concludes the proof o

Let us choose the function @(n) = n. We can make this selection
because-

'Pk(n)Zn,VkEN

Also, let us define the function



2%x+1 . n— 1
px,m) = — 3
Hence, Claim 2.2.3 implies-
() = ¢(x,n)
We can apply this argument over and over again, to state that-

Y. .(n) = ¢*(x,n),Vk €N

Claim2.2.4
a; = 1,V iEN
Proof
It can easily be verified that @y = 1, since-
3n+1
¥, ,(n) = @ >n

can hold true if and only if &; = 1

Let us now assume contrarily that for some j € N-,, we have-

a; =2
Thus,

29 > 4
And hence,

2%n > 4n,vn €N
Thus,
2%m—1=24n—-1,VneN

And thus,

2%n — —
in—1 > 4n—-1
3 3

,Vn€eN



But, n € N. Hence,

n=1

Thus,

4n—-3n=1
And hence,

4n=3n+1
Hence,

4n—-12=3n
Which implies,

4773— 1 >

Hence, we have,

29 —1_ 4n-1 4n -1
U >77 U

3 =z and 3 =1
Thus,
Q. _
2 1773 1 >
But, by definition,
, 2%n -1
oG~ 1 =——

Thus,
‘P(J—l»n) ZU,VU EN

We can use the above argument over and over again to state that-
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PG —-1,n) =G -1, VkneEN

Hence,
llijgowkﬁ —1n) »>oVneN
But,
Y. .(n) = ¢*(x,n),Vk €N
Thus,

Y, _1(n) = ;ggowkq —1,n)

This implies that-
¥i1(n) > o0
But, Claim 2.2.1 suggests that-
If ¥iy1(n) - o0 then ¥y (n) -
We can use the above argument over and over again to argue that-
Yi(n) »
Which is possible if and only if
n— o

Which is a contradiction. Hence, our assumption must be incorrect and
hence,

a; = 1, VieN
This concludes the proof o
Claim 2.2.5

A n € N having the functional sequence —

Sy =1{9f9fgfafaraf-}
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Proof

Let us assume contrarily that 3 n € N having the functional sequence-

Sy =1{9f9fg9fafraraf-}
Thus,

a; = 1,\7’ ieEN
Thus, Claim 2.2.2 implies that V k € N -

k k
3k7’l+ 3k—1+z' 3k—i_2a1+...+(li_1 3k7’l+ 3k—1+z. 3k—i,2i—l
[Ijk(n) — i=2 — i=2

2a1+...+zxk 2k

Now, note that the sum-

k k
S(k) =3kt + Z gk-t. 271 = z 3k=t. 21 vk eN
=2 i=1

is the sum of the first k terms of a Geometric Progression, starting with

3*=1 and having a common ratio (%) Hence,V k €N,

2\F 2\F
1-(3) 1-(3) 2y
S(k) = 3+ 31| =3kt 3| =3k(1- (—)
L2 T 3
3 3
Hence,
S(k)=3k-2kvkeN
Thus,
3kn+ S  3kn+4 3k—2k  [(3kp 4 3K
Pi(n) = —7—= ok =\—Z—)-1LVkeN
This implies,
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3k(n+ 1
Y.(n) = <¥) —1,VkEeN
2
Note that
Y.(n)EN,VKEN
Thus,
3*(n+ 1)
—— €N VkeN
2
Hence,

2K13*(n+ 1),vk €N

But, V k € N, 2* 4 3%. Hence,
2|(n+ 1),vkEN
Thus,
il_{g 2% |(n+ 1)
Which is possible if and only if
n— oo

Which is a contradiction. Hence, our assumption must be incorrect and
hence,

A n € N having the functional sequence —

Sn=1{9f9fgfafafaf-}

This concludes the proof o

Now, note that Claim 2.2.4 is in contradiction with Claim 2.2.5.
Thus, our assumption must be incorrect, and thus,
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V N € Nap, 3 k € Nsuch that F,;*(N) < N
This concludes the proof o
Remark

The Collatz Conjecture follows immediately from Theorem 2.2 due to
the principle of mathematical induction. Theorem 2.2 suggests that every
number n € N yields an € < n. This argument can be used over and over
again to argue that all natural numbers eventually yield 1.

3. PROOF OF THE COLLATZ CONJECTURE

Theorem 3.1
The Collatz Conjecture is true. In other words, if we define the function

F.oi: N = N such that-
F.,/(N) = g ,if Niseven
F.o(N):=3N+1,if Nisodd
ThenV N € N,3 k € N such that F ,;*(N) = 1
Proof

The Collatz Conjecture has been verified to be true for all natural
numbers till an approximate value of 2°8. This serves as an appropriate
base for an inductive process.

Let us now assume that the Collatz Conjecture is true V. N € N,

B € N.
Thus, V. m € Ncg, 3 y,, € N such that
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Fcolym(m) =1

Let us now consider the case of N = (ff + 1). Thus, Theorem 2.2
implies that

36 € Nsuchthat F,, ’(B+1) < B +1
This implies that-
3 § € N_such that FCOZ6(ﬁ +1)=p<p (k)

Also, note that b < .Thus, b € N4 and hence, 3y}, € N such that-

Fcolyb(b) =1 (rrkkok)

Now, from (**x*x),

Fcol6(,3 +1) = b

Hence,
Feo” (B +1) = Feot" (b)
But, from (x#xxx), F.,,"?(p) = 1. Hence,
Feol” (B +1) =1
Also, note that § + yp, € N. Thus, 3y,1 = 8 + yp, € N such that-
Fo "1 (B +1) = 1
Implying that the conjecture holds true for (f + 1).

Hence, by the principle of mathematical induction, if we define the
function

F.oi: N = N such that-
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N
F.oi(N) = = if Niseven

F.o(N):==3N+1,if Nisodd

ThenV N € N, 3 k € N such that F,,;*(N) = 1, implying that the
Collatz Conjecture is true!
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