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Abstract. In this article, we recall the Fibonacci sequence, the golden ratio, their
properties and applications, and some early generalizations of the golden ratio. The
Fibonacci sequence is a 2-sequence because it is generated by the sum of two previous
terms, fn+2 = fn+1 + fn. As a natural extension of this, we introduce several typical
p-sequences where every term is the sum of p previous terms given p initial values
called seeds. In particular, we introduce the notion of 1-sequence. We then discuss
generating functions and limiting ratio values of p-sequences. Furthermore, inspired by
Fibonacci’s rabbit pair problem, we consider a general problem whose particular cases
lead to nontrivial additive sequences.

1 Introduction
We are familiar with the celebrated Fibonacci sequence [1–3]: 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, ... . In this sequence, each number is the sum of the previous two, starting from
1 and 1. The ratio of consecutive Fibonacci numbers approaches the unique number
1.618. That is, fn = fn−1 + fn−2 with f1 = 1 and f2 = 1 1, and limn→∞

fn+1

fn
= 1.618

(upto three decimal places). This sequence arose from the Fibonacci’s famous rabbit
pair problem. A version of this problem is: A man puts a male-female pair of adult
rabbits in a field. Rabbits take a month to mature before mating. One month after
mating, females give birth to one male-female pair and then mate again. It is assumed
that no rabbits die but continue breeding. How many rabbit pairs are there after one
year? See Table 1 for the answer.

Another problem, a modified version of Pingala’s (c. 200 BC) [4–9], which yields
the Fibonacci sequence is: Suppose {sk ≡ k}pk=1 is the set of syllable elements, and a

1One can also start with f0 = 0 and f1 = 1. In that case the Fibonacci sequence will be
{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...}.
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n (month) adult pair (an) baby pair (bn) total pair (tn)
0 1 0 1
1 1 0 1
2 1+0 1 2
3 1+1 1 3
4 2+1 2 5
5 3+2 3 8
6 5+3 5 13
7 8+5 8 21
8 13+8 13 34
9 21+13 21 55
10 34+21 34 89
11 55+34 55 144
12 89+55 89 233
13 144+89 144 377
14 233+144 233 610
15 377+233 377 987
16 610+377 610 1597
17 987+610 987 2584
18 1597+987 1597 4181

Table 1: The Fibonacci sequence resulting from Fibonacci’s famous rabbit pair problem.
In the beginning (n = 0), there is one male-female adult pair. At the start of the first
month, there is one adult pair (they mate) and zero juvenile pair so there is only 1 rabbit
pair. At the start of the second month they produce a new pair, so there are 2 pairs in
the field. At the start of the third month, the original pair produce a new pair, but the
second pair only mate without breeding, so there are 3 pairs in all. And so on. Note that
an≥2 = an−1 + bn−1, bn≥2 = an−1, and tn≥2 = an + an−1 = tn−1 + tn−2.
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n possible arrangements total
1 s1

1s
0
2(1) [1] 1

2 s2
1s

0
2(1) [11], s0

1s
1
2(1) [2] 2

3 s3
1s

0
2(1) [111], s1

1s
1
2(2) [12, 21] 3

4 s4
1s

0
2(1) [1111], s2

1s
1
2(3) [112, 121, 211], s0

1s
2
2(1) [22] 5

5 s5
1s

0
2(1) [11111], s3

1s
1
2(4) [1112, 1121, 1211, 2111], s1

1s
2
2(3) [122, 212, 221] 8

Table 2: Possible arrangements of occupation of n-syllable room with 1-syllable and 2-
syllable elements. Each occupation is of the form sn1

1 s
n2
2 (m), where snk

k means that sk
occurs nk times and number m in the parenthesis denotes the possible arrangements or
multiplicity of sn1

1 s
n2
2 . The numbers in the last column build up a sequence. We call this

syllable 2-sequence. This can be straightforward generalized for any number of syllable
elements: {sk ≡ k}pk=1. Note that n =

∑p
k=1 k nk and multiplicity m = (n1+n2+···+np)!

n1! n2!···np!
.

And the last column (total number of ways in which n-syllable room can be occupied
by these syllable elements): numbers in the first p rows will be 20, 21, · · · , 2p−1,
and number in the nth row (n > p) will be the sum of p-previous terms. Numbers
20, 21, · · · , 2p−1 serve as the seeds for the syllable p-sequence.

room of n syllables is available. In how many ways this n-syllable room can be occupied
by these syllable elements? See Table 2 for the answer. Indeed, there are many ways to
obtain the Fibonacci sequence.

1.1 Historical background
It is acknowledged that the notions of binomial coefficients via the Mount Meru and
the Fibonacci sequence were well known to Indian mathematicians–Pingala (c. 200
BC), Varahamihira (505-587), Kedara (7th century), Virahanka (7th century), Halayudha
(10th century), Gopala (c. 1135) and Hemachandra (1089-1172) [4–9], and Persian
mathematicians–Al-Karaji (953-1029) and Omar Hayyam (1048-1131) (see [10]) be-
fore Fibonacci who had introduced it to the Western world in his book Liber Abaci
(1202) 2. The shallow diagonals of the Mount Meru sum to the Fibonacci numbers (see
Fig. 1), and the Mount Meru is today popularly called the Pascal’s triangle [10–13] after
Blaise Pascal (1623-1662) who introduced this triangle in his treatise Traité du triangle
arithmétique (1653) 3. The notion of Pascal’s triangle and its properties were also known
to the Chinese–Jia Xian (1010-1070) and Yang Hui (1238-1298), the Germans–Petrus
Apianus (1495-1552) and Michael Stifel (1487-1567), and the Italian mathematicians

2We, therefore, advocate that the Fibonacci sequence be called the Pingala sequence or the Pingala-
Fibonacci sequence.

3Keeping up with the tradition of giving due credit to the original propounder, the Pascal’s triangle
should be called the Pingala’s triangle or the Pingala-Pascal’s triangle.
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Figure 1: Pingala’s Mount Meru (Pascal’s triangle).

Niccolo Fontana Tartaglia (1499-1557) and Gerolamo Cardano (1501-1576).

1.2 Other additive sequences
Lucas sequence, like Fibonacci sequence, is given by ln = ln−1 + ln−2 with l1 = 2 and
l2 = 1 [2,3]. In general, starting with g1 = a and g2 = b, one can construct the following
sequence: a, b, a + b, a + 2b, 2a + 3b, 3a + 5b, · · · , gn≥3 = fn−2a + fn−1b, · · · .
This general sequence is customarily called the Gopala-Hemchandra sequence [5, 6].
Furthermore, Narayana Pandita in his book Ganita Kaumudi (1356) [14] studies additive
sequences where each term is the sum of the p-previous terms. He states the problem as:
A cow gives birth to a calf every year. The calves become young and they begin giving
birth to calves when they are three years old. Tell me, O learned man, the number of
progeny produced during twenty years by one cow.

1.3 Golden ratio
The golden ratio [15–23] 4 as defined by Euclid in his book The Elements [22] is: A
straight line is said to have been cut in extreme and mean ratio when, as the whole line
is to the greater segment, so is the greater to the less.

4The golden ratio is also called golden proportion, golden number, golden section, golden mean,
divine proportion, and extreme and mean ratio.
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Figure 2: Division of a line into 2 segments.

That is, the golden ratio arises when we consider division of a line segment AB
with a point P such that AP

BP
= AB

AP
, where AP > BP (see Fig. 2). Given AP = a and

BP = b are two positive numbers, the above problem translates as

a

b
=
a+ b

a
. (1)

Taking a
b

= x, the above equation can be rewritten as x = 1 + 1
x
. This reduces to the

characteristic equation 5

X(x) = x2 − x− 1 = 0, (2)

whose positive solution is

Φ =

√
5 + 1

2
= 1.618. (3)

1.4 Relation between Fibonacci sequence and golden ratio
The Fibonacci sequence is closely related to the Golden Ratio in the sense that the
limiting ratio value of the Fibonacci sequence, i.e., the ratio of successive numbers of
the Fibonacci sequence tends to the golden ratio,

lim
n→∞

fn+1

fn
= Φ. (4)

1.5 Properties of Fibonacci numbers and golden ratio
The golden ratio has a number of interesting properties. They are listed below:

1. Some relations between Fibonacci numbers f0 = 0, f1 = 1, fn≥2 = fn−1 + fn−2,
and Lucas numbers l0 = 2, l1 = 1, ln≥2 = ln−1 + ln−2.

(a) ln = fn+1 + fn−1 = 2fn+1 − fn.

(b) fn + fn+2 = ln+1.

(c) ln + ln+2 = 5fn+1.
5The characteristic equation is the minimal polynomial from which all the algebraic properties of an

algebraic number (here Φ) can be drawn.
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2. fn+1fn−1 − f 2
n = (−1)n (Cassini’s identity).

3. Φ2 = Φ + 1.

4. Φ =

√
1 +

√
1 +
√

1 + · · ·.

5. Φ = 1+
√

5
2

and φ = −1−
√

5
2

.

6. φ = 1
Φ

= Φ− 1.

7. Φ = 1 + 1
Φ

.

8. The golden ratio, continued fractions and its convergents.

(a) The continued fraction 6 of the golden ratio:

Φ = 1 +
1

1 + 1
1+ 1

1+
...

≡ [1; 1]. (5)

(b) The convergents 7 of the golden ratio:

[Φ]n = [1; 1]n =
fn+1

fn
. (6)

(c) The continued fraction of powers of the golden ratio:

[Φn] =

{
[ln; ln] (n odd),
[ln − 1; 1, ln − 2] (n even).

(7)

(d) The convergents of powers of the golden ratio:

fa(n+1)

fan
=

{
[Φa]n (a odd),
[Φa]2n (a even). (8)

6A continued fraction is a form of representing a number by nested fractions, all of whose nu-
merators are 1. The continued fraction of a rational number x is finite and is represented as x =
a0 + 1

a1+
1

a2+ 1

. . .+ 1
an

≡ [a0; a1, a2, · · · , an], where a1, a2, · · · , an are positive integers and a0 is

any integer. For example, 5
3 = 1 + 1

1+ 1
2

≡ [1; 1, 2] and 10
7 = 1 + 1

2+ 1
3

≡ [1; 2, 3]. Note that the first term
is followed by a semicolon, while other terms are followed by commas. If x is irrational, then n→∞.

7A convergent is the truncation of a continued fraction. For example, the second convergent of
[1; 2, 3] is [1; 2] and the mth convergent of [a0; a1, a2, · · · , an] is [a0; a1, a2, · · · , am−1]. That is,
[a0; a1, a2, · · · , an]m := [a0; a1, a2, · · · , am−1].
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9. Φ = limn→∞
fn+1

fn
.

10. Φn = Φn−1 + Φn−2 = Φfn + fn−1.

11. fn = Φn−(−φ)n√
5

(Binet’s formula).

12. Φn = ln+fn
√

5
2

.

13. Φ as an infinite series: Φ = 13
8

+
∑∞

n=0
(−1)n+1(2n+1)!
n!(n+2)!42n+3 .

14. Φ as trigonometric functions: Φ = 1 + 2 sin 18◦ = 2 sin 54◦ = 1
2

csc 18◦.

1.6 Applications of golden ratio
The golden ratio is certainly a famous number, and also a divine one as considered by
some [15, 21]. It allegedly appears everywhere.

• In geometry, maths and science [21, 24–47]. The golden ratio appears, by con-
struction, in geometrical objects such as the golden polygons (triangle, rectangle,
pentagon, etc.) and golden spirals. It also appears in science, physical theories
and problems.

• In nature [21, 48, 49]. It exhibits in natural flora and fauna in the form of golden
shapes such as spirals and pentagon. A tantalizing connection appears between
the Fibonacci numbers (and hence the golden golden) and phyllotaxis (i.e., the
arrangement of leaves on a stem, scales on a pine cone, florets on a sunflower,
infloresences on a cauliflower, etc.). The plant tendrils get twisted by spirals, the
helical motions are seen in the growth of roots and sprouts, and the sunflower
seeds are arranged along the spirals. The spirals in sunflowers appear to rotate
both clockwise (21 spirals) and counterclockwise (34 spirals). Remarkably, the
numbers 21 and 34 are consecutive Fibonacci numbers. The golden ratio often
shows in horns of rams, goats and antelopes. The pentagonal symmetry in the
form of star fish, five-petal flowers, certain cactus plants, etc. are widespread in
nature.

• In human body [21,50–53]. It is believed that human body and its parts appear in
the golden ratio. A ratio of feet-to-head height to feet-to-navel height (and also,
ratio of feet-to-navel height to navel-to-head height) is called the navel ratio. A
perfect human body is divided by the navel into the golden section. The human
hand and face are also based on the golden ratio.
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• In architecture [21, 54, 55]. It appears that the golden ratio has been used sig-
nificantly in architecture: in Parthenon, in Great Pyramids of Egypt, in Indian
meditation symbol Sri Yantra, in Taj Mahal and several ancient Indian temples
such as Tanjavur Brihadeeshwara temple.

• In art, painting and music [8, 9, 21, 56–62]. The golden ratio is also prevalent in
art, music and painting. For example, in the works of Da Vinci (The Annunciation,
Madonna with Child and Saints, The Mona Lisa, St. Jerome, An Old Man, and
The Vitruvian Man), in The Holy Family by Michelangelo, The Crucifixion by
Raphael and The Sacrament of the Last Supper by Salvador Dali. It is illustrated
in prolific number in portraits, paintings of Christian God and sculptures during
the renaissance epoch. In music, it is present in works of Beethoven, Mozart,
Wilson’s Meru 1 etc.

As asserted by many, it exists in any place where life and beauty are present.

1.7 Are Fibonacci sequence and golden ratio sacred?
Despite all-round great appearance of the golden ratio, many hold skeptical views on
this [63–68]. The reasons are multifold.

• Application of the golden ratio to aesthetics is, by its nature, subjective and con-
troversial. In order to find the golden ratio in our everyday life, we consider
the following either separately or in combination [68]: (i) arbitrary placement of
points, lines, rectangles and spirals, (ii) arbitrary thickness of points and lines
used as basis for measurements, and (iii) measurements of monuments eroded by
time and of objects in photographs distorted by perspective.

• Not all spirals in the nature are the golden ones. The nautilus shell, a prime
pedagogical example, corresponds to a spiral with the value Φ′ = 1.33 (< 1.618).

2 Early generalizations of golden ratio
There have been sincere attempts to extend or generalize the notion of golden ratio from
various perspectives such as generalizations of Euclid’s problem, limits of recurrence
relations, and the characteristic equations [8, 9, 17, 18, 20, 69–82]. Fowler [69] revisited
the Euclid’s problem the line divided in extreme and mean ratio and explored the propo-
sitions not investigated and proved in Euclid’s Elements. Here, we review briefly some
early generalizations.
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n 0 1 2 3 4 5 6 7 8 9
fn(p = 0) 1 2 4 8 16 32 64 128 256 512
fn(p = 1) 1 1 2 3 5 8 13 21 34 55
fn(p = 2) 1 1 1 2 3 4 6 9 13 19
fn(p = 3) 1 1 1 1 2 3 4 5 7 10

Table 3: The Fibonacci p-numbers fn(p) for different p values. fn(p = 0) = 2n are the
binary numbers, fn(p = 1) are the Fibonacci numbers, and so on.

2.1 Golden p-proportions of Alexey Stakhov
Recall the Euclid’s division problem of a line segment AB into two segments AP (= a)
andBP (= b) whereAP > BP (see Fig. 2). Alexey Stakhov, a Russian mathematician,
considered the following generalization in his book [20]

AP

BP
=
(AB
AP

)p ⇒ a

b
=
(a+ b

a

)p
, (9)

where p is a non-negative integer. From Eq. (9), with AB
AP

= x, we obtain the following
algebraic equation

xp+1 = xp + 1, (10)

whose the only positive solution χp is called the golden p-proportion. The Fibonacci
p-numbers are obtained with the recurrence relation(s),

fn(p) = tn−1(p) + tn−(p+1)(p), (n ≥ p+ 1)

fn+1(p) = tn(p) + tn−p(p), (n ≥ p) (11)

where fk(p) = 1, k = 0, 1, · · · , p. These numbers are related to the concept of “de-
formed” Pascal’s p-triangles via the binomial coefficients as

fn+1(p) =
∞∑
k=0

(
n− kp
k

)
. (12)

Note the following observations:

1. fn(p = 0) = 2n are the binary numbers, fn(p = 1) are the Fibonacci numbers,
and so on (see Table 3).

2. χ0 = 2, χ1 = 1+
√

5
2

= Φ, χ∞ = 1, and 1 ≤ χp ≤ 2.

3. χnp = χn−1
p + χ

n−(p+1)
p = χp × χn−1

p .

4. Binomial coefficients, Fibonacci p-numbers, and golden p-proportions.
fn+1(p) =

∑∞
k=0

(
n−kp
k

)
and χp = limn→∞

fn+1(p)
fn(p)

.
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The notions of the golden p-proportions and Fibonacci p-numbers generalized the
original mathematical concepts, and led to several interesting applications including in
the different fields of mathematics and computer science [20, 28, 80].

2.2 Metallic means family of Vera Spinadel
Vera Spinadel, an Argentinean mathematician, considered an interesting generalization
of the Fibonacci recurrence relation, tn+1 = tn + tn−1, in the following form

tn+1 = ptn + qtn−1, (13)

⇒ tn+1

tn
= p+ q

tn−1

tn
,

where p and q are non-negative integers. Assuming that limn→∞
tn+1

tn
= x exists, we

have
x = p+

q

x
⇒ x2 = px+ q. (14)

The algebraic equation (14) has a solution

χp,q =
p+

√
p2 + 4q

2
. (15)

Positive solutions in Eq. (15) form a metallic means family (MMF), and Vera Spinadel
gave a number of applications of the metallic means in her works [72–76]. Note the
following observations:

1. x2 = px+ q implies x =

√
q + p

√
q + p

√
q + p

√
q + · · ·.

2. x = p+ q
x

implies x = p+ q
p+ q

p+
q

p+
...

.

3. χp,q =
p+
√
p2+4q

2
= limn→∞

tn+1

tn
.

4. χ1,1 = 1+
√

5
2

= [1; 1] = Φ.

5. χp,1 =
p+
√
p2+4

2
= [p; p].

6. χ4,1 = 2 +
√

5 = [4; 4] = Φ3.
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meru recurrence relation characteristic equation convergence limit
Meru 1 An = An−1 + An−2 x2 = x+ 1 1.61803
Meru 2 Bn = Bn−1 +Bn−3 x3 = x2 + 1 1.46557
Meru 3 Cn = Cn−2 + Cn−3 x3 = x+ 1 1.32472
Meru 4 Dn = Dn−1 +Dn−4 x4 = x3 + 1 1.38028
Meru 5 En = En−3 + En−4 x4 = x+ 1 1.22074
Meru 6 Fn = Fn−1 + Fn−5 x5 = x4 + 1 1.32472
Meru 7 Gn = Gn−2 +Gn−5 x5 = x3 + 1 1.23651
Meru 8 Hn = Hn−3 +Hn−5 x5 = x2 + 1 1.19386
Meru 9 In = In−4 + In−5 x5 = x+ 1 1.16730

Table 4: Wilson’s Meru 1 through Meru 9, each with its recurrence relation, the charac-
teristic equation, and the convergence limit.

2.3 Mount merus of Erwin Wilson
Recall Pingala’s Mount Meru (Pascal’s Triangle) in Fig. 1. It was illustrated in 1968
by Thomas Green [83] that the sum of the simplest diagonals of Mount Meru yields
the Fibonacci sequence, and that the sum of other diagonals similarly generate other
recurrence relations, each with its own limit. Ervin Wilson, a Mexican/American music
theorist, investigated these other diagonals and their recurrence relations in music [8,9].
He considered recurrence relations that he called Meru 1 through Meru 9. See Table 4.

2.4 Lower and upper golden ratios of Vedran Krcadinac
We saw earlier that Stakhov considered generalization of the form a

b
=
(
a+b
a

)p leading
to the algebraic equation xp+1 − xp − 1 = 0 when a+b

a
= x. A similar generalization,

proposed by Krcadinac [79], for non-negative integer p, is(a
b

)p
=
a+ b

a
. (16)

This relation, in general, leads to two algebraic equations:

X1(x) = xp+1 − x− 1 = 0, (when
a

b
= x) (17)

X2(x) = x(x− 1)p − 1 = 0, (when
a+ b

a
= x) (18)

Let ϕp be the positive root of the polynomial X1(x) and φp be that of the polynomial
X2(x). Then, ϕp and φp are respectively called the pth lower and upper goden ratio.
Note the following observations:

1. ϕ0 = undefined and φ0 = 1.
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2. limp→∞ ϕp = 1 and limp→∞ φp = 2.

3. Evidently, (ϕp)
p = φp.

4. Recurrence relation for X1(x): fn(p) = fn−p(p) + fn−(p+1)(p).

5. Recurrence relation forX2(x): Fn(p) =
∑p

k=1

(
p
k

)
(−1)k+1Fn−k(p)+Fn−(p+1)(p).

6. limn→∞
fn+1(p)
fn(p)

= ϕp and limn→∞
Fn+1(p)
Fn(p)

= φp.

7. limn→∞
fn+p(p)

fn(p)
= (ϕp)

p = φp.

3 p-sequences
We call the Fibonacci sequence a 2-sequence because it is generated by the sum of two
previous terms. In a similar spirit, we introduce the p-sequence 8.

To construct a p-sequence, we begin with p seeds (s0, s1, · · · , sp−1) such that t0 =
s0, t1 = s1, · · · , tp−1 = sp−1, and the nth term is the sum of its p previous terms 9:

tn(p) := tn−1(p) + tn−2(p) + · · ·+ tn−p(p) =
n−1∑

k=n−p

tk(p). (19)

By definition of tn(p), we have

tn+1(p) > tn(p), (20)
tn+1(p) = 2tn(p)− tn−p(p) < 2tn(p). (21)

Depending on the values of seeds, one can construct an infinite number of p-sequences.
A few typical p-sequences are:

(i) General p-sequence whose seeds are arbitrary.

SG(p) ≡ {(s0, s1, · · · , sp−1), tn(p)}. (22)

(ii) k p-sequence whose kth seed is unity and other seeds are zero.

Sk(p) ≡ {(si = δik, 0 ≤ i ≤ p− 1), tn(p)}. (23)

8p in the p-sequence is for Pingala, Phi(Φ), and previous.
9This can be equivalently rewritten as tn+p(p) := tn+p−1(p) + tn+p−2(p) + · · ·+ tn(p).
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For example, S0(p) ≡ {(1, 0, · · · , 0), tn(p)}, S1(p) ≡ {(0, 1, 0, · · · , 0), tn(p)}, and
Sp−1(p) ≡ {(0, 0, · · · , 1), tn(p)}. Interestingly, we can rewrite tn[SG(p)] in terms of
seeds using these k p-sequences,

tn[SG(p)] =

p−1∑
k=0

tn[Sk(p)]sk (n ≥ 0). (24)

For example, t1[SG(p)] = 0.s0 + 1.s1 + · · ·+ 0.sp−1 = s1.

(iii) Coefficient p-sequence whose all seeds are unity.

SC(p) ≡ {(sk = 1, 0 ≤ k ≤ p− 1), tn(p)}. (25)

There is an important relation between the terms of coefficient p-sequence and those of
k p-sequences: SC(p) ≡

∑p
k=1 Sk(p). Put differently,

tn[SC(p)] =

p−1∑
k=0

tn[Sk(p)]. (26)

(iv) Exponent p-sequence whose seeds are (0, 1, · · · , p− 1).

SX(p) ≡ {(sk = k, 0 ≤ k ≤ p− 1), tn(p)}. (27)

(v) Syllable p-sequence whose seeds are (1, 2, · · · , 2p−1).

SS(p) ≡ {(sk = 2k, 0 ≤ k ≤ p− 1), tn(p)}. (28)

We will learn the significance of these particular sequences in the forthcoming articles.
For illustrations of and getting familiarized with these sequences, see Tables 5, 6, 7 and
8. Henceforth, SG(p) ≡ S(Gp), Sk(p) ≡ S(kp), SC(p) ≡ S(Cp), SX(p) ≡ S(Xp),
and SS(p) ≡ S(Sp) will be used interchangeably. We will denote the nth-term of
an arbitrary p-sequence by tn(p), and that of a particular p-sequence, viz. exponent
sequence by tn(Xp), syllable sequence by tn(Sp), k sequence by tn(kp), and so on.
Furthermore, in case of no ambiguity, we will not mention p explicitly in the sequence
names and their terms.

3.1 1-sequence
What is 1-sequence? We construct a 1-sequence by choosing a seed s0 ≥ 0 and a
constant a ≥ 0 such that t0 = s0, and for n ≥ 1

t1 = t0 + a = s0 + a,

t2 = t1 + a = s0 + 2a,

tn = tn−1 + a = s0 + na. (29)
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Thus, an additive 1-sequence is essentially an arithmetic progression. With s0 = 0 and
a = 1, 1-sequence is the set of whole numbers

S(1) = {0, 1, 2, · · · , 99, 100, · · · }. (30)

When a = 0, the 1-sequence is a constant sequence: {s0, s0, s0, · · · }.

4 Generating functions of p-sequences
The generating function for p-sequences can be given by the power series

fp(x) =
∞∑
n=0

tn(p)xn, (31)

where tn(p) is the nth term of a given p-sequence. If we assume that the power series
converges, we can show that fp(x) is given by

(
1−

p∑
k=1

xk
)
fp(x) =

p−1∑
k=0

[
tk(p)−

k−1∑
j=0

tj(p)
]
xk. (32)

For example, for the exponent p-sequence S(Xp), the generating functions are

fX2(x) =
x

1− x− x2
,

fX3(x) =
x+ x2

1− x− x2 − x3
,

fX4(x) =
x+ x2

1− x− x2 − x3 − x4
,

fX5(x) =
x+ x2 − 2x4

1− x− x2 − x3 − x4 − x5
.

5 Limiting ratio value of p-sequences
For an arbitrary p-sequence whose subsequent terms are the sum of p-previous terms
[tn(p) :=

∑n−1
k=n−p tk], we see from Tables 5, 6, 7 and 8 that the limiting ratio value of

every p-sequence approaches a constant, say Φp. That is,

Φp = lim
n→∞

tn+1(p)

tn(p)
. (33)

Because tn+1(p) > tn(p) and tn+1(p) < 2tn(p), hence

1 < Φp < 2. (34)
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Using Eq. (33), for integers u and v, it is easy to see that

lim
n→∞

tn+u(p)

tn(p)
= Φu

p , lim
n→∞

tn+u(p)

tn+v(p)
= Φu−v

p . (35)

5.1 Φp in the limit p→∞
Consider the syllable p-sequence SS(p→∞) = {1, 2, 4, 8, 16, · · · }, and the extended
syllable p-sequence S(p→∞) ≡ {(0, 1), SS(p→∞)} = {0, 1, 1, 2, 4, 8, 16, · · · },
where each term is the sum of all the previous terms except the first two. For both these
sequences, we have

Φp→∞ = lim
n→∞

tn+1(p)

tn(p)
= 2. (36)

Moreover, from Table 9, Φp = 2 for p ≥ 18.

5.2 Propositions
In Tables 5, 6, 7 and 8, we constructed p-sequences for p = 2, 3, 4, 5, and found their
limiting ratio values. Similarly, one can construct tables of higher p-sequences and find
their limiting ratio values. See Table 9 for the values of limiting ratios. In this regard,
we propound the following two propositions.

(P1) The limiting ratio value of any p-sequence S(p) is Φp. It is independent of the
initial conditions (i.e., the seeds).

(P2) Φp≥18 = 2.

6 More additive sequences
In this section, motivated by Pingala’s syllable problem, Fibonacci’s rabbit pair prob-
lem, and Narayan Pandit’s cow’s progeny problem, we investigate a general problem:
A creature gives birth to α female young ones in one unit of time. Baby creature grows
and gives birth when β units of time old. The creature ceases to give birth after γ terms,
and dies when δ units of time old.. What is the total number of progeny at the end of n
units of time? Initially, there is a single adult creature. Following, we consider a few
illustrations sans δ. See Tables 10, 11, 12 and 13. We invite the readers to investigate
the problem taking into account δ also.
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n S1(2) S0(2) SC(2) SS(2) SG(2)

0 0 1 1 1 2
1 1 0 1 2 21
2 1 1 2 3 23
3 2 1 3 5 44
4 3 2 5 8 67
5 5 3 8 13 111
6 8 5 13 21 178
7 13 8 21 34 289
8 21 13 34 55 467
9 34 21 55 89 756
10 55 34 89 144 1223
11 89 55 144 233 1979
12 144 89 233 377 3202
13 233 144 377 610 5181
14 377 233 610 987 8383
15 610 377 987 1597 13564
16 987 610 1597 2584 21947
17 1597 987 2584 4181 35511
18 2584 1597 4181 6765 57458
19 4181 2584 6765 10946 92969
20 6765 4181 10946 17711 150427
21 10946 6765 17711 28657 243396
22 17711 10946 28657 46368 393823
23 28657 17711 46368 75025 637219
24 46368 28657 75025 121393 1031042
25 75025 46368 121393 196418 1668261

Table 5: 2-sequences. (i) SC ≡ S1 + S0. (ii) SX = S1. (iii) S1 ∼ S0 ∼ SC ∼ SS .
(iv) SG is a general 2-sequence with seeds s1 = 2, s2 = 21. (v) For each of these
2-sequences, limn→∞

tn+1

tn
= 1.61803.
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n S2(3) S1(3) S0(3) SC(3) SX(3) SS(3)

0 0 0 0 1 0 1
1 0 1 0 1 1 2
2 1 0 1 1 2 4
3 1 1 1 3 3 7
4 2 2 2 5 6 13
5 4 3 4 9 11 24
6 7 6 7 17 20 44
7 13 11 13 31 37 81
8 24 20 24 57 68 149
9 44 37 44 105 125 274
10 81 68 81 193 230 504
11 149 125 149 355 423 927
12 274 230 274 653 778 1705
13 504 423 504 1201 1431 3136
14 927 778 927 2209 2632 5768
15 1705 1431 1705 4063 4841 10609
16 3136 2632 3136 7473 8904 19513
17 5768 4841 5768 13745 16377 35890
18 10609 8904 10609 25281 30122 66012
19 19513 16377 19513 46499 55403 121415
20 35890 30122 35890 85525 101902 223317
21 66012 55403 66012 157305 187427 410744
22 121415 101902 121415 289329 344732 755476
23 223317 187427 223317 532159 634061 1389537
24 410744 344732 410744 978793 1166220 2555757
25 755476 634061 755476 1800281 2145013 4700770

Table 6: 3-sequences. (i) SC ≡ S2 + S1 + S0. (ii) S2 ∼ S0 ∼ SS . (iii) S1 ∼ SX . (iv)
For each of these 3-sequences, limn→∞

tn+1

tn
= 1.83929.
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n S3(4) S2(4) S1(4) S0(4) SC(4) SX(4) SS(4)

0 0 0 0 1 1 0 1
1 0 0 1 0 1 1 2
2 0 1 0 0 1 2 4
3 1 0 0 0 1 3 8
4 1 1 1 1 4 6 15
5 2 2 2 1 7 12 29
6 4 4 3 2 13 23 56
7 8 7 6 4 25 44 108
8 15 14 12 8 49 85 208
9 29 27 23 15 94 164 401
10 56 52 44 29 181 316 773
11 108 100 85 56 349 609 1490
12 208 193 164 108 673 1174 2872
13 401 372 316 208 1297 2263 5536
14 773 717 609 401 2500 4362 10671
15 1490 1382 1174 773 4819 8408 20569
16 2872 2664 2263 1490 9289 16207 39648
17 5536 5135 4362 2872 17905 31240 76424
18 10671 9898 8408 5536 34513 60217 147312
19 20569 19079 16207 10671 66526 116072 283953
20 39648 36776 31240 20569 128233 223736 547337
21 76424 70888 60217 39648 247177 431265 1055026
22 147312 136641 116072 76424 476449 831290 2033628
23 283953 263384 223736 147312 918385 1592363 3919944
24 547337 507689 431265 283953 1770244 3068654 7555935
25 1055026 978602 831290 547337 3412255 5623572 14564533

Table 7: 4-sequences. (i) SC ≡ S3 + S2 + S1 + S0. (ii) S3 ∼ S0 ∼ SS . (iii) S1 ∼ SX .
(iv) For each of these 4-sequences, limn→∞

tn+1

tn
= 1.92756.
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n S4(5) S3(5) S2(5) S1(5) S0(5) SC(5) SX(5) SS(5)

0 0 0 0 0 1 1 0 1
1 0 0 0 1 0 1 1 2
2 0 0 1 0 0 1 2 4
3 0 1 0 0 0 1 3 8
4 1 0 0 0 0 1 4 16
5 1 1 1 1 1 5 10 31
6 2 2 2 2 1 9 20 61
7 4 4 4 3 2 17 39 120
8 8 8 7 6 4 33 76 236
9 16 15 14 12 8 65 149 464
10 31 30 28 24 16 129 294 912
11 61 59 55 47 31 253 578 1793
12 120 116 108 92 61 497 1136 3525
13 236 228 212 181 120 977 2233 6930
14 464 448 417 356 236 1921 4390 13624
15 912 881 820 700 464 3777 8631 26784
16 1793 1732 1612 1376 912 7425 16968 52656
17 3525 3405 3169 2705 1793 14597 33358 103519
18 6930 6694 6230 5318 3525 28697 65580 203513
19 13624 13160 12248 10455 6930 56417 128927 400096
20 26784 25872 24079 20554 13624 110913 253464 786568
21 52656 50863 47338 40408 26784 218049 498297 1546352
22 103519 99994 93064 79440 52656 428673 979626 3040048
23 203513 196583 182959 156175 103519 842749 1925894 5976577
24 400096 386472 359688 307032 203513 1656801 3786208 11749641
25 786568 754784 707128 603609 400096 3257185 7443489 23099186

Table 8: 5-sequences. (i) SC ≡ S4 + S3 + S2 + S1 + S0. (ii) S4 ∼ S0 ∼ SS . (iii) For
each of these 5-sequences, limn→∞

tn+1

tn
= 1.96595.
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p 2 3 4 5
Φp 1.61803 1.83929 1.92756 1.96595
p 6 7 8 9
Φp 1.98358 1.99196 1.99603 1.99803
p 10 11 12 13
Φp 1.99902 1.99951 1.99976 1.99988
p 14 15 16 17
Φp 1.99994 1.99997 1.99998 1.99999
p 18 19 20 21
Φp 2.0 2.0 2.0 2.0

Table 9: The limitining ratio value Φp := limn→∞
tn+1

tn
for p-sequences, 2 ≤ p ≤ 21.

We have limited ourselves here to five decimal places (for no sacred reasons). Evidently,
Φ2 < Φ3 < · · · < Φp≥18 = 2.

n creature baby (bn) at start total (tn) at end
0 1 0 0
1 1 1 1
2 1 1 2
3 1+1 2 3
4 2+1 3 5
5 3+2 5 8
6 5+3 8 13
7 8+5 13 21
8 13+8 21 34
9 21+13 34 55
10 34+21 55 89
11 55+34 89 144
12 89+55 144 233
13 144+89 233 377
14 233+144 377 610
15 377+233 610 987

Table 10: α = 1, β = 2 and γ = NA. This yields Pingala (Fibonacci) sequence. Here
tn≥1 = bn + bn−1, tn≥3 = bn + bn−2 + bn−3 (sum of β + 1 terms), tn≥3 = tn−1 + tn−2

(recurrence relation), x2 = x+1 (characteristic equation) and x = limn→∞
tn+1

tn
= 1.618

(limiting ratio).
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n creature baby (bn) total (tn)
0 1 0 0
1 1 1 1
2 1 1 2
3 1 1 3
4 1 1 4
5 1+1 2 5
6 2+1 3 7
7 3+1 4 10
8 4+1 5 14
9 5+2 7 19
10 7+3 10 26
11 10+4 14 36
12 14+5 19 50

Table 11: α = 1, β = 3 and γ = NA. This sequence corresponds to Narayana Pandit’s
cow’s progeny problem posed in Ganit Kaumudi. Here tn≥3 = bn + bn−1 + bn−2 + bn−3

(sum of β+1 terms), tn≥5 = tn−1+tn−4 (recurrence relation), x4 = x3+1 (characteristic
equation) and x = limn→∞

tn+1

tn
= 1.38 (limiting ratio). See also Wilson’s Meru 4.

n creature baby (bn) total (tn)
0 1 0 0 0
1 1 α α 2
2 1 α 2α 4
3 1 α 3α 6
4 (1 + α)− 1 α2 α2 + 2α 8
5 (α + α)− α α2 2α2 + α 10
6 (α + α2)− α α2 3α2 12
7 (α2 + α2)− α2 α3 α3 + 2α2 16
8 (α2 + α2)− α2 α3 2α3 + α2 20
9 (α2 + α3)− α2 α3 3α3 24
10 (α3 + α3)− α3 α4 α4 + 2α3 32
11 (α3 + α3)− α3 α4 2α4 + α3 40
12 (α3 + α3)− α3 α4 3α4 48

Table 12: α = 2, β = 2 and γ = 3. Here tn≥2 = bn + bn−1 + bn−2 (sum of β+ 1 terms).
If n = aγ + b then tn = bα (when a = 0) and tn = [b(α − 1) + γ]αa (when a ≥ 1).
Also note that tn≤2(α = 1) = b and tn≥3(α = 1) = γ = 3.
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n creature baby (bn) total (tn)
0 1 0 0 0
1 1 α α 2
2 1 α 2α 4
3 0 0 2α 4
4 0 0 2α 4
5 α α2 α2 + α 6
6 α + α 2α2 3α2 12
7 (2α + 0)− α α2 4α2 16
8 (α + 0)− α 0 4α2 16
9 (0 + α2)− 0 α3 α3 + 3α2 20
10 (α2 + 2α2)− 0 3α3 4α3 + α2 36
11 (3α2 + α2)− α2 3α3 7α3 56
12 (3α2 + 0)− 2α2 α3 8α3 64
13 (α2 + α3)− α2 α4 α4 + 7α3 72
14 (α3 + 3α3)− 0 4α4 5α4 + 4α3 112
15 (4α3 + 3α3)− α3 6α4 11α4 + α3 184

Table 13: α = 2, β = 3 and γ = 2. Here tn≥3 = bn + bn−1 + bn−2 + bn−3 (sum of β + 1
terms).
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