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Abstract
In our terms, this is Bell’s 1964 theorem, ‘No local hidden-variable theory
can reproduce exactly the quantum mechanical predictions.’ Against this,
and bound by what Bell takes to be Einstein’s definition of locality, we refute
Bell’s theorem and reveal his error. We show that Einstein was right: the
physical world is local; and we advance Einstein’s quest to make quantum
mechanics intelligible in a classical way. With respect to understanding, and
taking mathematics to be the best logic, the author is as close as an email.
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1. Introduction

1.1. “... you make a very thorough analysis of EPR-Bell. As you still remain a ‘realist’

and refer to Bell’s beables when you resolve Bell’s dilemma, Bell might have liked your

approach, who knows,” Reinhold Bertlmann (2017), pers. comm. 26 June. Let’s see.

1.2. We take this to be Bell’s theorem, ‘No local hidden-variable theory can reproduce

exactly the predictions of quantum mechanics (QM),’ after Bell (1964:195).

1.3. Bell’s text, freely available (see §8.1), is taken as read. However, using P for

probabilities, we replace Bell’s expectation P(~a,~b) by E(AB) or 〈AB〉; etc. Then, beneath

Bell 1964:(14), we identify the three unnumbered expressions as (14a)-(14c).

1.4. Our goal is a theory that matches the statistical predictions of QM, given two

axioms. (i) Locality: ‘the real situation of a physical system S2 is independent of what

is done with a physical system S1 that is spatially separated from the former,’ after Ein-

stein; Bell (1964:200). (ii) Completeness: to analyze a physical system, we include every

relevant element of physical reality; ie, every relevant Bell beable, as we understand him.

1.5. Then, again after Einstein, via Bell (1964:196), ‘in a complete physical theory,

the variables [λ ] have dynamical significance and related laws of motion.’ We therefore

allow the initial (pre-interaction) values of λ to be pairwise anti-correlated [λ ,−λ ] via

the pairwise conservation of total angular momentum.

1.6. Further. Under what we call true realism, we allow subsequent changes via local

interactions. We therefore seek laws that associate the local transformation of one twin

with that of the spatially-separated other. We also seek laws that relate polarizer inputs to

outputs, commutation laws, etc. It follows that such searches take place in the context of
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the Bohm-Aharonov experiment [β ] that Bell (1964) studied. So, in our terms, here’s β :

±1 = A±⇐A � p(a±)�Φ±a � p(λ )�•� p(−λ )�Φ
±
b � p(b∓)�B⇒B∓ =∓1 (1)

... Alice’s locale c bSourcec b Bob’s locale ... (2)

1.7. p(λ ) and p(−λ ) are paired [twinned] spin-half [spin s = 1
2 ] particles with vari-

ables λ . Arrows [�,�] denote the flights of the particles from source • to interaction

with their respective 2-channel linear-polarizers
[
Φ±a ,Φ

±
b

]
, and beyond. Unit-vector a [b]

denotes the principal-axis direction; freely and independently chosen by Alice [Bob].

1.8. Alice’s [Bob’s] polarizer transforms an input particle p(λ ) [p(−λ )] to an output

particle p(a±) [p(b∓)], polarized either parallel or antiparallel to the related principal axis.

Analyzer A [B] faithfully identifies each polarized output. An arrow⇐ [⇒] shows that

Alice’s [Bob’s] analyzer prints a single result from A± =±1 [B∓ =∓1].

1.9. Since the particles are pairwise anti-correlated via λ [p(λ ), p(−λ )], it is a feature

of β , (1), that if a = b, then A±B∓ =−1. That is, as the results are here anti–correlated,

A+B+ and A−B− do not then occur. Hence the mnemonic sign convention [±,∓] in (1).

2. Analysis

2.1. Introduced to Bell’s theorem by Mermin (1988), we offer this heuristic in the con-

text of (1)-(2): ‘Without mystery, correlated tests on correlated things produce correlated

results: so Bell’s theorem is [most certainly] false,’ author to David Mermin, 3 June 1989.

2.2. For, under locality, via (1)-(2) by observation, and taking mathematics to be the

best logic: Alice’s [Bob’s] results A± [B∓] are functions of (a, λ ) [(b,−λ )] alone. So now,

in the same instance [see the line before Bell 1964:(1)], and after Bell 1964:(1)&(13), we

can compare paired-results under a common polarizer-analyzer function A;

A± = A(a,λ ) =±1, B∓ = B(b,λ ) =−A(b,λ ) = A(b,−λ ) =∓1. (3)

2.3. Now, from (1)-(3): A± [B∓] are directly related to polarizer outputs p(a±) [p(b∓)].

So, given the heuristic in §2.1, we seek the transformation laws that match such correla-

tions. To that end, via (1): on the elements p(λ ) of Φ±a ’s domain [each paired with its

twin p(−λ ) in Φ
±
b ’s domain], let a∼

[
b∼
]

denote the equivalence relation has the same

output under Φ±a
[
Φ
±
b

]
. Then, in the same instance, by way of example:

If p(λ )→Φ±a → p(a+) then p(λ )
a∼ p(a+) for p(a+)→Φ±a → p(a+). (4)

If p(−λ )→Φ
±
b → p(b+) then p(−λ )

b∼ p(b+) for p(b+)→Φ
±
b → p(b+). (5)

2.4. So the laws we seek are similar to relations between polarized particles. Thus, for

us, the heuristics now include: (i) The relation in §1.9. (ii) Malus’ cos2 Law for polarized
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light [s = 1], adjusted for s = 1
2 . (iii) From (3), A± and B∓ are causally independent [the

cause of one is not the cause of the other], and logically [thus law-like] anti-correlated via

their λ -relations under the common function A. (iv) So the general product rule (for the

probability of paired outcomes), applies: P(XY ) = P(X)P(Y |X).

2.5. Thus, for (4)-(5)’s particle-pair, via P(Y |X) and the heuristics: here’s a law that

associates the local transformation of one twin with that of the spatially-separated other:

P
[

p(λ )
a∼ p(a+) | p(−λ )

b∼ p(b+)
]
= P(A+ |B+) = sin2 1

2(a,b); etc. (6)

∴ P
[

p(λ )
a∼ p(a−) | p(−λ )

b∼ p(b+)
]
= P(A− |B+) = cos2 1

2(a,b); etc. (7)

2.6. In passing, (3) is satisfied adequately (for now) by functions A, B:

A± = A(a,λ ) = a·
(

λ
a∼ a±

)
=±1, B∓ = B(b,λ ) = b·

(
(−λ )

b∼ b∓
)
=∓1; with,

via Bell 1964:(3): 〈a ·σ1 b ·σ2〉=
〈

a·
(

λ
a∼ a±

)
b·
(
(−λ )

b∼ b∓
)〉

=−a·b; etc. (8)

2.7. Then, given the probabilistic relations, over discrete results, in (6)-(7): we now

axiomatize the concept of expectation. Under β and after Whittle (1976), we use a

probability-based definition of the expectation E(AB). Thus, from (1):

{A+B+, A+B−, A−B+, A−B−} is the set of paired results. (9)

∴ P(A+B+)+P(A+B−)+P(A−B+)+P(A−B−) = 1. So, with the (10)

value [±1] of each paired result weighted according to its probability:

E(AB)≡ P(A+B+)−P(A+B−)−P(A−B+)+P(A−B−); (11)

with P(A+B+) = P(A+)P(B+ |A+), etc, holding under §2.4(iv). (12)

Then, via LHS Bell 1964:(2) and RHS Bell 1964:(3), with

the "not possible" line thereunder, we have a Bell-certain inequality

that is also Bell’s theorem: E(AB) 6=−a·b, the QM expectation under β . (13)

3. Bell’s theorem refuted

E(AB) = P
(
A+
)
P
(
B+ |A+

)
−P
(
A+
)
P
(
B− |A+

)
−P
(
A−
)
P
(
B+ |A−

)
+

P
(
A−
)
P
(
B− |A−

)
, via (11)-(12). (14)

= 1
2

[
P
(
B+ |A+

)
−P
(
B− |A+

)
−P
(
B+ |A−

)
+P
(
B− |A−

)]
, since

λ is a random variable, the marginals P(A±) = 1
2 in (14). (15)

= 1
2

[
sin2 1

2(a,b)− cos2 1
2(a,b)− cos2 1

2(a,b)+ sin2 1
2(a,b)

]
via (6)-(7). (16)

= −cos(a,b) =−a·b; etc. So Bell’s theorem, (13), is refuted. QED. (17)

3.1. Our local hidden-variable theory produces the quantum mechanical result exactly.

Without mystery, correlated tests on correlated things do produce correlated results.
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4. Bell’s inequality refuted

4.1. Bell’s proof of his theorem, (13), relies on his famous inequality, Bell 1964:(15):

which we now reformat as BI for easy comparison with our similarly formatted (but

irrefutable), WI. In this way, since BI and WI will have the same LHS, departure of RHS

BI from RHS WI will signal a BI error. This, in turn will signal that Bell 1964:(15) is

erroneous, and refuted. Thus, in preparation for comparison with WI:

BI≡ |E(AB)−E(AC)|−1≤ E(BC) from Bell 1964:(15). (18)

4.2. Then, given the limits in (3), we see these expectations in (18):

−1≤ E(AB)≤ 1,−1≤ E(AC)≤ 1,−1≤ E(BC)≤ 1. (19)

∴ E(AB[1+E(AC]≤ 1+E(AC); for, if V ≤ 1, and 0≤W, then VW ≤W. (20)

∴ E(AB)−E(AC)−1≤−E(AB)E(AC) from (20). (21)

Similarly: E(AC)−E(AB)−1≤−E(AB)E(AC). (22)

So: irrefutably via (21)-(22), here’s our never-false inequality WI: (23)

WI ≡ |E(AB)−E(AC)|−1≤−E(AB)E(AC). So BI-(18) is refuted. QED. (24)

4.3. For BI-(18) and irrefutable WI-(24) have the same LHS. So with RHS BI differing

from RHS WI almost everywhere: BI, and thus Bell 1964:(15), is false and refuted.

4.4. Then, to gauge the extent of Bell’s error, here’s a false (and low), Bell-bound. Let

a,b,c be co-planar, not necessarily orthogonal to the particles’ line of flight; with angles

(a,b), (b,c), (a,c). Then, via (17) with (a,c) = π

2 ,(a,b) = (b,c) = (a,c)
2 :

RHS WI-(24)=−E(AB)E(AC)=0. RHS BI-(18)=E(BC)=−
√

2
2 . QED. (25)

5. Bell’s error identified
5.1. False BI flows truly from Bell’s (14b), so (14b) is false. So Bell’s error is the false

commutation from true (14a) to false (14b): using 1964:(1), as he says; which is our (3).

5.2. For, from either, in the same instance: pairwise correlated by the conservation

of total angular momentum, (§1.5), paired results commute within instances; and not

otherwise. (A commutation law, as foreshadowed in §1.6.) Thus, in our terms: E(AB) =

E(BA), and E(AB)E(BA) 6= E(AA)E(BB) = 1; using E(AA) = E(BB) = −1, from §1.9

or from Bell 1964:(8). So with ‘6=’ prevailing, we demonstrate Bell’s commutation error:

From false (14b): E(AB)E(BC) 6= E(BB)E(AC) =−E(AC) in true (14a). (26)

True RHS WI =−E(AB)E(AC) 6=−E(AA)E(BC) = E(BC) = false RHS BI. (27)
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6. Conclusion
6.1. Bell’s 1964 theorem and inequality are refuted; his error found and explained. Via

independent locally-causal chains in Alice’s and Bob’s locales, see (1), our local hidden-

variable Lorentz-invariant theory reproduces exactly the quantum mechanical predictions.

6.2. And it is unsurprising that experiments breach Bell inequalities that misstate

irrefutably-valid bounds. Crucially, Bell’s error has nothing to do with locality; a claim

supported via similar analysis of other β -like experiments, including GHZ (1989).

6.3. Thus, via a notation consistent with Bell’s, but avoiding error, we resolve Bell’s

(1990:84) locality dilemma, ‘that in somehow distant things are connected, or at least

not disconnected.’ We show that Einstein was right: the physical world is local, with no

spooky actions; we advance Einstein’s argument for an intelligible quantum theory.

6.4. For further development under Einstein’s classicality, via detour (8) and its direct

links to QM, we have: (i) The second expectation therein is, via (9), E(AB) as in (11). (ii)

Interesting anti-parallels in Bob’s locale: σ2 =−(σ1),−λ =−(λ ). (iii) Related laws.

6.5. Finally. Rejecting naive realism, we rely on true realism: some elements of

physical reality change under local interactions; see (1) and §1.5. (For polarizers are not

passive filters.) In this way, probability theory enters our analysis quite naturally. See

Fröhner (1998) for its extension, and the consequent demystification of QM to ‘quite

some extent’.
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