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by means of the Surface Integral of Hydrostatic Pressure 
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Summary 
 

In this paper, we prove that “ ship's center of buoyancy is equal to the center of hydrostatic pressure  ”.  

This subject is an unsolved problem in physics and naval architecture, even though the buoyancy taught by 

Archimedes' principle (1) can be obtained clearly by the surface integral of hydrostatic pressure.  Then we 

thought that the reason why the vertical position of the center of pressure could not be determined was that 

the horizontal force would be zero due to equilibrium in the upright state. 
 

As a breakthrough, we dared to assume the left - right asymmetric pressure field by inclining the ship 

with heel angle θ.  In that state, the force and moment due to hydrostatic pressure were calculated correctly 

with respect to the tilted coordinate system fixed to the floating body.  By doing so, we succeeded in 

determining the center of pressure. 
 

Then, by setting the heel angle θ to zero, it was proved that the center of hydrostatic pressure is equal to 

the well-known center of buoyancy, i.e., the centroid of the cross - sectional area under the water surface. 
 

Specifically, the above proof is first shown for a rectangular cross - section, and then for an arbitrary shape 

of floating body by applying Gauss's integral theorem. 
 
 
 
 
 

Keywords : Center of Buoyancy, Hydrostatic Pressure, Inclined Ship, Surface Integral, 

Archimedes' Principle, Rectangular Section, Arbitrary Shape, Gauss’s Integral Theorem 
    
 

1.  Introduction 
 

It is a well-known fact in naval architecture and physics that the position of “ Center of Buoyancy ” acting 

on a ship is equal to the center of the volume of the geometric shape under the water surface. 
 

The buoyancy taught by Archimedes' principle  (1) is clearly obtained by the surface integral of the 

hydrostatic pressure, but the position of the center of buoyancy is described in every textbook (on physics (2), 

fluid dynamics (3),(4), hydraulics (5), and naval architecture (6),(7),(8),(9), nautical mechanics (10)
 etc.), as the center of 

gravity where the volume under the water surface is replaced by water.  There is no explanation as the 

center of pressure due to hydrostatic pressure  (11),(12). 
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Recently, Komatsu (13) raised the issue of “ the center of buoyancy ≠ the center of pressure ? ” at 2007 in 

Japan, and it was actively discussed by Seto  (14),(15), K. Suzuki (16), Yoshimura and Yasukawa (17), Komatsu (18), 

Yabushita and Watanabe (19) and others in the research committee and the academic meeting of the Japan 

Society of Naval Architects and Ocean Engineers ( hereinafter abbreviated as JASNAOE ).  At the same time, 

in Europe, the problem was studied in detail by Mégel and Kliava (20),(21) in terms of potential energy.  

However, no one was able to solve this issue. 
 

On the other hand, it is also an indisputable fact that the well-known center of buoyancy ( i.e. the volume 

center of the underwater portion) is correct from the viewpoint of ship’s stability (22),(23) ( that is to say, positioning 

of the metacenter by calculating the metacentric radius (24),(25)
. BM ). 

 

In response to this unsolved problem, we considered that the reason why the vertical center of pressure 

could not be determined was because the horizontal forces equilibrated to zero in the upright state.  To solve 

this problem, Hori (26),(27) attempted in 2018 to integrate the hydrostatic pressure acting on the ship surface 

at the inclined state with heel angle θ.  Then, the forces and moments acting on the ship were calculated 

with respect to a tilted coordinate system fixed to the ship.  In this case, both orthogonal components of the 

force acting on the ship are not zero.  Therefore, it was shown that the center of pressure at inclined state 

can be determined.  By setting the heel angle θ to zero, we proved that, the center of pressure coincides with 

the center of area under the water surface in the upright state, i.e., the well-known center of buoyancy.  

First, a columnar ship with the rectangular cross section (26) was proved.  And then an arbitrary cross-

sectional shape (27) was proved and published in the Journal “ Navigation ” of Japan Institute of Navigation 

( hereinafter abbreviated as JIN ).  
 

For this problem, Yabushita (28) showed that the center of buoyancy is the center of pressure by tilting the 

direction of gravity from the vertical direction in his text book.  Later, Yabushita et al. (29) showed that the 

same conclusion can be obtained by tilting only the coordinate system, not by tilting the floating body or 

direction of gravity.  Furthermore, K.Suzuki (30) gave a detailed examination of Hori's theory  (26).  On the 

other hand, Komatsu (31) performed an analysis in which only the vertical buoyant component was extracted 

from the hydrostatic pressure acting on the surface of the laterally inclined floating body, as shown by Hori(26).  

As a result, he claimed that the center of action of buoyancy is different from the well-known center of 

buoyancy.  Also, Yabushita (32) et al. attempted an elaborate analysis in terms of the potential energy of 

buoyancy, which is adopted by Mégel and Kliava (20),(21), and showed that the height of the center of buoyancy 

is equal to the conventional position of the center of buoyancy.  In this way, as many researchers are 

studying this issue with various approaches, the discussions have deepened in JASNAOE. 
 

To sublate these discussions, we have illustrated that “ the center of buoyancy is equal to the center of 

pressure ” for semi-submerged cylinders (33), and submerged cylinders (34) which does not change its shape 

under the water even if it is inclined, and for a for triangular prisms (35), using the same method (36).  If you 

are interested, please read them. 
 

In order to put an end to the above discussions, we proved that “ the center of buoyancy ＝ the center of 

pressure ” for a submerged body with arbitrary shape(37) using Gauss's integral theorem in 2021.  



p. 3 / 20 

Proof that the Center of Buoyancy is Equal to the Center of Pressure 

by means of the Surface Integral of Hydrostatic Pressure Acting on the Inclined Ship 

 

Furthermore, it was published in the same journal “ Navigation ” of JIN that it is easier to prove a floating 

body of arbitrary shape (37) than our previous paper (27) by using Gauss's theorem in the same way (38). 
 

In this paper, we summarize the proofs for the case of the rectangular cross-section (26), which is the easiest 

to understand, and for the floating body of arbitrary cross-sectional shape 2nd. half of (37) by applying Gauss's 

integral theorem. 
 
 
 
 
 

2.  Positioning of the center of hydrostatic pressure 

acting on the floating body with an inclined rectangular cross - section 
 

Fig. 1 shows a two-dimensional rectangular cross - section of width 2b  and depth f h  (draft f and 

freeboard h ) with a heel angle   to the starboard side.  The origin o  is set at the center of the bottom 

surface, and the coordinate system fixed to the floating body is o   and the coordinate system fixed to the 

space is o y z .  Here, the z - axis of the latter is directed vertically upwards. 
 

   In the figure, atmospheric pressure is shown as a broken line, hydrostatic pressure as a solid line, each 

pressure as a thin line, and each force as a thick line.  All these vectors act perpendicularly to the surface 

of the floating body. 
 
                                                                                                                                                                                                                                                                                               

Fig. 1  Hydrostatic pressure and center of pressure acting on the inclined rectangular cross - section. 
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2. 1  Forces due to hydrostatic pressure 

 acting on the surface of an inclined rectangular cross - section 
 

   When the floating body is inclined laterally by heel angle  , the left - right asymmetric pressure field is 

created.  Then, as shown in Fig. 1, the water depths 
LZ  and 

RZ  under the still water surface at the bottom 

points of port L  and starboard R  are expressed respectively in the form 
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Let’s calculate the forces LeftP  acting on the port (indicated by the subscript “ Left ”) and RightP  acting on the 

starboard (indicated by the subscript “ Right ”).  LeftP  is calculated by superimposing 
(0)
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by the integrating the uniformly distributed atmospheric pressure acting on the port side, and 
( )
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, which 

is obtained by the integrating the triangularly distributed hydrostatic pressure acting on the submerged 

area.  Similarly, RightP  is calculated by superimposing 
(0)

RightP  and 
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 on the starboard side.  Therefore, 
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The force UpperP  acting on the upper deck (indicated by the subscript “ Upper ”) is obtained only by 
(0)

UpperP  

due to atmospheric pressure.  And the force LowerP  acting on the bottom (indicated by the subscript “ Lower ”) 

is obtained by superimposing 
(0)

LowerP  due to atmospheric pressure and 
( )

LowerP 
 due to hydrostatic pressure of 

trapezoidal distribution.  Therefore, each of UpperP  and LowerP  can be written as follows : 
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2. 2  Forces F   and F  combined in the   and   direction 
 

The combined forces F   and F  acting in the  (in the direction of the negative axis of  ) and   

directions fixed on the floating body can be obtained by using  
LeftP  and 

RightP  in Eq. (2) as follows : 
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Here, it can be seen that F   is to the leftward, and F  is upward.  And for the both forces, the 

atmospheric pressure 
0p  is canceled out. 

 
 
 
 
 

2. 3  Forces yF  and zF  converted in the y  and z  direction 
 

The horizontal component yF  and the vertical component zF  acting on the floating body can be 

calculated by transforming the coordinates of the both forces F   and F  in Eq. (4) as follows :. 
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Here, it can be seen that the horizontal component yF  does not act as a combined force due to pressure 

integration, even when the floating body is laterally inclined and the pressure field is asymmetric.  On the 

other hand, the vertical component zF  can be written as 
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By the above Equation, zF  is the buoyancy exactly as taught by Archimedes' principle (1). 
 
 
 
 
 

2. 4  Moments M  and M  due to hydrostatic pressure in the   and   directions 
 

First, we calculate the moment M   due to the forces in the   direction.  The counterclockwise moment 

M   around the origin o  due to 
(0)

RightP ,
(0)

LeftP  and 
( )

RightP 
,

( )

LeftP 
 can be obtained using Eq. (2).  As shown in Fig. 

1, the former is multiplied by the lever up to the action point of the pressure distributed uniformly, and the 

latter is multiplied by the lever of the pressure distributed triangularly, so that the moment M   is can be 

calculated as follows :  
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Here, the terms for atmospheric pressure 
0p  is canceled out, as in the case of the forces in Eq. (2). 

 

Next, let us consider calculating the moment M   due to the forces in the   direction.  To do this, we 
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Therefore, the counterclockwise moment M   around the origin o  due to the forces 
(0)
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 and 
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UpperP  acting in the   direction can also be calculated as follows : 
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As a result, M   is obtained as the numerator in Eq. (8) and, like M   in Eq. (7), does not depend on 0p . 
 
 
 
 
 

2. 5  Positioning of center of hydrostatic pressure 
P

C  of rectangular cross-section 
 

Consider the determination of the position of the center of hydrostatic pressure PC  acting on the floating 

body with rectangular cross-section.  
 

The counterclockwise moments M   and M   about origin o calculated in the previous section can be 

written by the combined forces F   and F  acting on PC ( , )P P  , based on the hydraulic method used by 

Ohgushi (7), as follows : 
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As shown in the appendix A-1, this result ( , )P P   is coincide with the result ( , )G G   of Eq. (A-5), in 

which the centroid of the trapezoidal region under the water surface was geometrically determined by 

calculating the area moment.  Hence, it is correct and equal to the well-known position of the center of 

buoyancy. 
 

   Then, the specific weight   of water have been cancelled out in the denominator and numerator of Eq. 

(11) respectively.  And, P  is obtained as the force point 
( )  calculated by Eq. (8), on which 
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Here, it should be noted that that the position P  of the center of pressure in the  - direction could be 

determined because the zero factor sin  at the heel angle 0  was offset in the denominator and 

numerator, as shown in the 2nd. part of Eq. (11).  If we start and calculate as an upright state 0  , both 

the denominator F   and the numerator M   are zero in equilibrium, so the fraction will be indeterminate 

forms and P  cannot be determined. 
 

To clarify this result, let's determine the pressure center in the upright state by setting the heel angle to 

0 .  Then, since the  - coordinates tilted and fixed on the floating body coincide with the y z - 

coordinates fixed in space, the Eq. (11) becomes as 
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Here, it can be obtained that the center of pressure is equal to rectangular centroid.  This proves that 

the center of pressure PC  due to hydrostatic pressure coincides with the well-known “ Center of Buoyancy,  

B ”. 
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3.  Positioning of the center of hydrostatic pressure 

Acting on the inclined floating body with an arbitrary form 
 

In this chapter, we apply the same method as used in the previous chapter, in which a rectangular shape 

is inclined laterally, to the floating body with the arbitrary shape.  It is shown that the position of the center 

of pressure can be easily determined by integrating the hydrostatic pressure using Gauss's integral theorem 

than our previous paper (27). 
 

Fig. 2 shows a transverse section of an arbitrarily shaped floating body with a heel angle   to the 

starboard side.  The origin o  is placed in the center of the still water surface, and the coordinate system 

fixed to the floating body and tilted is o  , and the coordinate system fixed to space is o y z .  Here, the 

Fig. 2  Hydrostatic pressure and center of pressure acting on the inclined floating body with arbitrary form. 
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z - axis of the latter is vertically downwards, and the opposite direction to that of Fig. 1.  Also, the outward 

unit normal vector standing on the surface of the floating body is n n  n j k , and n  and n  are the 

directional cosines of the floating body fixed in the   and   directions, respectively. 
 

   In the figure, the atmospheric pressure is shown as a broken line, the hydrostatic pressure as a solid line, 

same as in Fig. 1.  And all of the vectors act in the n  direction perpendicular to the floating body surface. 
 

As shown in Fig. 2, the water depth z  on the surface ( , )   of the floating body is written as follows : 
 

( , ) ( tan ) cos

cos sin

z  

 

     

     ･････････････････････････････････････････････････････(13) 

 

Here, as in Chapter 2, if the atmospheric pressure is written as 0p  and the specific weight of water is 

written as  , the hydrostatic pressure ( , )p    can be obtained as 
 

0( , ) ( , )p p z        ････････････････････････････････････････････････････(14) 

 
 
 
 

3. 1    directional component F   and   directional component F   

of the total force due to hydrostatic pressure acting on the floating body 
 

The   directional component F  and the   directional component F  of the total force acting on 

the floating body surface can be obtained by integrating the   and   components of the hydrostatic 

pressure p  in Eq. (14).  Here, the integral path is written as 
(0)c  for the aerial part of the floating body 

and 
( )c 

 for the underwater part, as shown in Fig. 2.  Then, F  and F  are calculated by the sum of the 

integrals respectively as follows : 

(0) ( )

(0) ( ) ( )

(0) ( )

(0) ( ) ( )

0 0

0

0 0

0

( )

( )

c c

c c c

c c

c c c

F p n d p z n d

p n d z n d

F p n d p z n d

p n d z n d









  



  


  


 


 

 

 

 



 



 
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

 ･･･････････････････････････････････････(15) 

Both results are obtained by summing the line integral over the entire circumference of the floating body 

(0)c +
( )c 

 for 0p  and the line integral over the underwater surface of the floating body 
( )c 

 for z . 
 

Here, since 0z   on the still water surface ( y -axis), the equality relation is not broken even if the 

integral term for the path 
( )WLc  on the still water surface is added to the second term, as shown in Fig. 2.  

As a result, it can be expressed as a contour integral of 
( )c 

+
( )WLc  under the water surface.  Therefore, F  

and F  can be written as the sum of the contour integral of the two paths, respectively, as follows : 
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 ････････････････････････････････････(16) 

 
 

Therefore, the following two-dimensional (   plane) Gauss' integral theorem, in which n  and n  are 

the directional cosines of the outward unit normal vector in   and   directions, can be applied to the 

contour integrals of the above Eq. (16), respectively. 
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Then, both F  and F  can be converted to the area integral, in which the area of the aerial part of the 

floating body is denoted as 
(0)A  and the area of the underwater part as 

( )A 
.  As a result of the calculation, 

both  forces can be expressed only in terms of the area integral of underwater 
( )A  , as follows : 
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 ･･････････････････････････････････････(18) 

 

This is the result of finding that the area integral with respect to 0p  in the 1st. term of the above equation 

vanishes because the integrand becomes zero. 
 

Furthermore, using Eq. (13) for water depth z , the both forces F  and F  in Eq. (18) can be calculated 

as follows.  Then, each of the 1st. term of integrand for 
( )A 

 in the following equation will become to zero 

and vanish. 
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It can be seen that both are determined by the area 
( )A 

 of the floating body under the still water surface 

and the heel angle  , and do not depend on the atmospheric pressure 0p . 
 

In addition, according to the results of Eq. (20) in the next section, F  and F  are obtained as   and 

  directional components of the buoyancy zF  acting vertically upward, respectively. 
 
 
 
 

3. 2  Forces yF  and zF  converted in y  and z  directions 
 

The horizontal component ( y  direction) yF  and the vertical component ( z  direction) zF  acting on the 

floating body can be obtained by transforming the coordinates of the both forces F  and F  in Eq. (19) of 

the previous section, as follows : 
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Here, it can be seen that the horizontal component yF  does not act as a combined force due to pressure 

integration, even when the floating body is laterally inclined and asymmetric.  On the other hand, the 

vertical component is the product of the specific weight   of water and the cross-sectional area 
( )A 

 of the 

floating body under the water surface, and is the buoyancy itself that generates vertically upward, as taught 

by Archimedes' principle (1).  This situation is similar to Eq. (5) for rectangular cross sections in Chapter 2. 
 
 
 
 

3. 3  Moments M  and M  due to hydrostatic pressure in the   and   directions 
 

In this section, we shall calculate the total counterclockwise moment oM  around the origin o  due to 

hydrostatic pressure acting on the surface of the floating body.  It can be calculated by superimposing the 

clockwise moment M   due to the pressure component in the direction   and the counterclockwise moment 

M   due to the pressure component in the direction  , based on the hydraulic method used by Ohgushi (7) 

for an example of the rolling gate, as follows : 
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oM M M     ････････････････････････････････････････････････････････････(21) 

M   and M   can be obtained by multiplying the integrand in Eq. (16) by   or   as the moment lever, 

respectively, in the form 
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 ･･････････････････････････････････(22) 

Now, as in the case of forces F  and F  in Eq. (16), let’s connect the path 
(0)c  and 

( )c 
 with respect to 

0p  and add a term for the path 
( )WLc  on the still water surface with respect to z  where the integral value 

become zero as shown in Fig. 2.  Then, M   and M   can be expressed as the sum of the contour integrals 

of the two paths, respectively, as follows : 
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Therefore, we can apply Gauss's integral theorem in Eq. (17) to the above contour integrals, as in the case 

of forces F  and F  in Section 3.1, and convert them into area integrals.  Furthermore, using Eq. (13) for 

the water depth z , the moments M   and M   in Eq. (23) can be written, respectively, as follows : 
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Here, both moments are proportional to the area moments of the submerged area 
( )A 

 of the floating body 
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about the  - axis or  - axis, respectively.  This is the result that integrands in the terms for 0p  and the 1st. 

term for 
( )A 

 in the above equations became to zero and vanished. 
 
 
 
 

3. 4  Positioning of center of hydrostatic pressure 
P

C  

of the floating body with arbitrary form 
 

Since the forces F   and F   due to the hydrostatic pressure obtained in Section 3.1 act on the pressure 

center PC ( , )P P  , the clockwise moments M   and counterclockwise M   obtained in Section 3.3 can be 

expressed respectively, as follows : 
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Here, the total counterclockwise moment oM  around the origin o  in Eq. (21) can be calculated as 

o P PM F F       ･････････････････････････････････････････････････････(26) 

Then, the moment  
PCM  around the point 

PC at which F   and F   act is computed as follows, and 

becomes to zero. 

0 0 0
PCM F F         ･･･････････････････････････････････････････････(27) 

This correctly indicates that 
PC  is the center of pressure due to hydrostatic pressure.  

 
 
 

Therefore, the coordinate ( , )P P   of this center of pressure PC  can be determined by Eq. (25).  Here, 

the  - coordinate, P , can be determined by using the 2nd. part of Eq. (19) for F   and the 2nd. part of Eq. 

(24) for M  , as follows : 
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Further, the  - coordinate, P , can be determined by using the 1st. part of Eq.(19) for F   and the 1st. 

part of Eq.(24) for M  , as follows : 
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As a result, both the specific weight   of water and the heel angle   have been cancelled out in the 

denominator and numerator respectively, so that P  and P  are obtained in the following simple 

geometrical format.  It divides the area-moment about the  - axis and the area-moment about the  - axis, 

respectively, by the area 
( )A 

 of the submerged portion.  This shows that the center of pressure ( , )P P   of 
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the floating body in the inclined state clearly coincides with the centroid ( , )G G   of the submerged area 

( )A  , that is, the well-known center of buoyancy. 
 

Considering the above, P  of vertical component can be obtained by offsetting the zero factor sin  at 

the heel angle 0  with the denominator and numerator, as shown in Eq. (29).  Here, if we start and 

calculate as the upright state 0  , both the denominator F  and the numerator M   are in equilibrium 

and become zero, so the fraction becomes indeterminate forms and P  cannot be determined.  This is the 

reason why we were able to determine the position of the center of pressure in the    direction as P G   

by inclining the floating body laterally. 
 

On the other hand, in the calculation of 
P  in Eq. (28), even if the heel angle is 0   from the beginning, 

the denominator F  takes a finite value as the cosine component of the buoyancy.  Therefore, the 

horizontal component 
P  can be determined as P G  , if we start and calculate as the upright state. 

 

These situations described above are exactly the same as in Eq. (11) of Section 2.5 for a rectangular cross 

section 
 
 

As a final step, let's find the center of pressure in the upright state by setting the heel angle to 0  , in 

order to make this result clearer.  Then, since the  - coordinates tilted and fixed on the floating body 

coincide with the y z - coordinates fixed in space, the Eq. (28) and Eq. (29) become as 

( ) ( )( ) ( )

1 1
( , ) , ( , )P P G G

A A

P

y z y dA z dA y z
A A

C B

 
   

 


  

     ･･･････････････････(30) 

Therefore, this proves that the center of pressure 
PC  due to hydrostatic pressure coincides with the well-

known “ Center of Buoyancy, B ”. 
 

In addition, the reason why the consequence of Pz  shown in Eq. (30) could be derived more easily than 

the author's previous paper (27) is that Gauss's integral theorem was applied to an inclined o   coordinate 

system fixed to a floating body. 
  
 
 
 

4.  Conclusions  
In this paper, we elucidated an unsolved problem in physics and naval architecture by proving that “ the 

center of hydrostatic pressure is equal to the well-known ship’s center of buoyancy ”. 
 

To solve this problem, we dared to assume the left - right asymmetric pressure field by inclining the ship.   

In that state, the force and moment due to hydrostatic pressure were calculated correctly with respect to the 

tilted coordinate system fixed to the floating body.  By doing so, we succeeded in determining the center of 

hydrostatic pressure.  Finally, by setting the heel angle to zero, the result of the upright state was obtained 

and the proof was clarified. 
 

As for the shape of the floating body, the simplest rectangular cross - section was proved first, and then 

the arbitrary cross - sectional shape was proved by applying Gauss's integral theorem. 
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Appendix 
 

A-1.  Centroid of the trapezoidal area, which is the underwater sectional shape 
 

In this appendix, the centroid of trapezoidal area, which is the cross-sectional shape under the water 

surface when inclined laterally, is geometrically obtained from the area moment.  
 

As shown in Fig. A-1, let's analyze in an inclined o   coordinate system with the origin o  at the center 

of the bottom of the floating body and fixed to the body.  This is the same coordinate system as Fig. 1 in 

Chapter 2.  Here, the draft of upright state is f , the half-width is b , and the heel angle is  . 
 

Then, we consider that the trapezoidal region under the water is divided into a rectangle (centroid 1g ) 

and a triangle (centroid 2g ) by a single dotted line. 
 

If the area of the rectangular part is 1A  and the area of the triangular part is 2A , each of them and their 

sum can be obtained as 

1

2

2

1 2

2 ( tan )

1
2 2 tan 2 tan

2

2

A b f b

A b b b

A A b f

  



    


  




   ･･････････････････････････････････････････････(A-1) 

First, we calculate the area moment 
M  about the  - axis.  Here, dashes are added to distinguish them 
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from the moments caused by forces shown in Chapters 2 and 3.  Then, 
M  can be calculated as 

  

1

2

tan

2

2 tan
( tan )

3

f b
M A

b
A f b


  

 
    

 








 

2 3 21
tan

3
b f b    ･･･････････････････････････････････････････････････････(A-2) 

 

Next, the area moment M 
  about the  - axis can be calculated as 

 

1 2 2

2
0

3 3

b b
M A A b A

 
        

 
  

32
tan

3
b   ････････････････････････････････････････････････････････････(A-3) 

   

If the coordinate of the centroid position G  of the trapezoid is ( , )G G  , the above area moments M 
  

and M 
  can be written as the product of the total area and the lever, respectively, as follows : 
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Fig. A-1  Centroid G  of area of the underwater trapezoid. 
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Therefore, the coordinates G  and G  of the centroid G  of area can be calculated and determined as 

follows : 

2

1 2

2
2

1 2

tan
3

tan
2 6
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 Here, 
1g  , 

2g  and G  in Fig. A-1 are drawn the correct positions in this state, and the three points are on 

the same straight line. 
 
 
  
 

A-2.  Introduction of lecture videos uploaded to YouTube 
 

The content of Chapter 2, which proves that “ Center of Buoyancy = Center of Pressure ” by inclining a 

floating body of rectangular cross-section laterally, is lectured to second-year students of the naval 

architecture course (41) at the “ Stability of the Ship ” of the university where the author works. 
 

With the recent trend of remote lectures, the situation is shot in two parts, the 1st. half (42) and the 2nd. 

half (43), and on-demand teaching materials are created and uploaded as YouTube videos.  The explanation 

is in Japanese, but if you are interested, please have a look. 


