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Abstract 

Creating a universe out of nothing seems an impossible task. A closer 

investigation shows that some difficult steps pose problems, but most 

steps are feasible and realistic. This document explains the realistic 

steps and analyses the steps that pose problems. 

The analysis intensively applies the concept of vector space and the 

extensions of this concept, such as number systems, the Hilbert space, 

and the Hilbert repository. Set theory plays an important role in the 

exploration of the behavior of the universe. The paper shows that it is 

impossible to comprehend physical reality without comprehending 

these parts of mathematics. The paper also shows that the mentioned 

mathematical concepts are not yet fully explored and might reveal 

more of the secrets of physical reality. 

For comprehending physical reality, it is crucial to be able to grasp the 

change in behavior of a set of numbers when the irrational numbers are 

added to the rational numbers. This occurs in the one-dimensional real 

numbers and in the one-dimensional or three-dimensional spatial 

numbers. 

1 Introduction 

1.1 Abridgement 

This paper will be kept compact and sufficiently comprehensive. More 

details and citations were published in a previous paper. They will not 

be repeated here, but the referred paper offers all information that 

cannot easily be find online in free accessible publications. Further, the 



2 
 

paper refers to most applied concepts that are accessible free online. 

The author advises to get familiar with the results of great 

mathematicians that contributed to set theory, number theory, vector 

spaces and Hilbert spaces. This paper builds on their results. The paper 

will not offer a foundation to currently accepted theoretical physical 

theories. For example, the paper does not explain the least action 

principle that leads to the Laplacian equations and Hamiltonian 

equations. Instead, the paper explains the field equations that describe 

the behavior of the objects that exist in the universe. 

1.2 Plan 

We start from complete nothingness. A candidate for complete 

nothingness is empty space. Empty space contains nothing to which can 

be referred. On the other hand, if it is possible to consider space as a 

container from which everything that it contains can be stripped, then is 

empty space a realistic concept. So, if space exists, then we turn it into 

empty space and after that we start by turning the empty space into a 

vector space by adding two point-like objects that are connected by a 

direction line. One of the point-like objects is the base point of the 

vector. The other point-like object is the pointer of the vector. If the 

vector is shifted such that it does not change its length and its direction, 

then the integrity of the vector is conserved. With the help of such 

vectors every location in the vector space can be reached.   
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2 Number systems 

Our intention is to apply the vector space to cover empty space with 

one or more number systems that become the base of a coordinate 

system that helps us to navigate in the vector space. The coordinate 

markers will be point-like objects that will be identified with the 

corresponding element of the number system. After finishing the 

construction of the number system, the point-like coordinate markers 

will be detached from the numbers, but these markers will keep their 

identification with the number. In this way, the life story of the 

coordinate marker can be followed via this identifier. For 

multidimensional numbers, the real part of the number will act as 

progression. 

With the currently available ingredients it is possible to shift the vector 

along the direction line until the base point locates at the old location of 

the pointer. This action creates two new vectors. One of them is the 

vector that consists of the old base point and the new pointer.  Now 

three point-like objects, two lengths of vectors, and the direction line 

are involved. Repeating the shift adds another point-like object. The 

shifts introduce the procedures of counting and addition. The point-like 

objects are members of an ordered set. An ongoing shift generates the 

set of the natural numbers. It is obvious that this set is countable. We 

shall call a set countable when every member of the set can be labeled 

with a natural number. Reversing the shift introduces the subtraction 

procedure. If counting is reversed, then the point will be reached that 

the space is empty again. This is reason to give the first base point a 

special identifier. It will be called point zero. If subtraction is proceeded 

past point zero, then the negative integer numbers are introduced. 

Together with zero and the natural numbers the negative numbers form 

the set of the integer numbers. 
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We can add multiple shifts in one action or shifts that involve longer 

vectors. This does not introduce new integer numbers. It introduces a 

procedure that in arithmetic is called multiplication. The reverse 

procedure is called division. Division can introduce new numbers that 

can be interpreted as ratios. Numbers that can be interpreted as ratios 

are called rational numbers. Rational numbers form classes of numbers 

that in addition and multiplication feature the same value. Scientists 

have proven that every rational number class can be labeled with a 

natural number. Thus, the set of rational number classes is countable. 

All rational numbers appear to be surrounded by empty space. On the 

applied direction line still, abundant empty space is left to insert other 

numbers. It is possible to add a coordinate marker to each rational 

number class. The coordinate marker links the identity of the rational 

number class to an actual point-like object. Via their values, the rational 

number classes form an ordered set. Chapter 3 will show the arithmetic 

in formulas. 

2.1 Superseding countability 

Rational numbers can be squared. The result is again a rational number 

that results when the number is multiplied by itself. The reverse 

procedure is called square root. The square root need not result in a 

rational number. However, a converging sequence of rational numbers 

can approach the result arbitrarily close. If the converging series does 

not result in an existing rational number, then the result is called an 

irrational number. For many situations, a converging series of rational 

numbers does not result in a rational number. The missing number 

belongs to the irrational numbers. The set of the irrational numbers 

cannot be counted. This set is uncountable.  If all irrational numbers are 

added to the selected direction line, then none of the numbers on this 

line is surrounded by empty space. This fact causes a significant change 

in several aspects of the coverage of the direction line. The combination 
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of the rational numbers and the irrational numbers forms the set of 

what will be called the real numbers. Like the rational numbers, the real 

numbers form classes that in arithmetic feature the same value. The 

real number classes form an ordered set. The direction line together 

with the real numbers acts as a mathematical continuum. The 

continuum enables differentiation. Differentiation shows that the 

continuum can change. To be able to show this change we apply the 

possibility to detach the locations of the coordinate markers from the 

virtual location of the original real number class. This means that the 

coordinate markers can describe deformations, vibrations, and 

expansions of the coverage of the direction line. The coordinate 

markers act as the target values of a function that uses the original 

coverage of the direction line as its parameter space.  Differential 

calculus uses this function to describe in detail the deformation, 

vibration, and expansion of the current state of the coverage of the 

direction line. The function relates to its parameter space in the same 

way as the coordinate system relates to the generated real number 

system.  

The description of the dynamic behavior applies an independent 

progression indicator that runs monotone with the undeformed natural 

numbers. This indicator is represented in the vector space by the 

generated natural numbers. 

2.2 Spatial numbers 

The construction of the universe now proceeds from the condition that 

the selected direction line is fully covered by real numbers. This 

situation does not allow the insertion of large sets of new numbers to 

that same direction line.  

In the example, the square root of a positive rational number was 

added. If the square roots of negative rational numbers must be 
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represented, then this extra set of numbers must be placed on an 

independent direction line. The new numbers show a different 

arithmetic because their squares result in a negative real number, while 

the square of a real number always results in zero or a positive real 

number. We call these new numbers spatial numbers. The two involved 

direction lines may cross at point zero. This choice enables the 

introduction of the addition of a real number and a spatial number. The 

mixed numbers then span a plane in a two-dimensional vector space. 

Mathematicians call these mixed numbers complex numbers. 

It is possible to add an extra independent direction line that is also 

covered with spatial numbers. The spatial arithmetic immediately 

introduces a fourth independent direction line that also is covered with 

spatial numbers. The resulting number system is known as the 

quaternionic number system. It consists of a one-dimensional real 

number subspace and an isotropic three-dimensional spatial subspace. 

Squaring a spatial number still results in a negative real number. 

Multiplication of a spatial number by a real number results in a spatial 

number with the same or opposite direction. Multiplication of two 

spatial numbers results in a combination of a real number and a new 

spatial number. The direction of the new spatial number is independent 

of the directions of the two factors. The real part of the result is called 

the inner product and the spatial part of the result of the multiplication 

is called the outer product. 

Like real numbers, spatial numbers can be integer, rational or irrational. 

In the spatial numbers, the insertion of the irrational numbers has 

drastic effects on the behavior of the coverage of space. Like vibrations 

will deformations and expansions still be possible, but deformations will 

be removed as quickly as possible by sending them in the form of shock 

fronts away into all available directions until they vanish at infinity. 
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Because the deformation vanishes at infinity, sudden deformations will 

be removed quickly and finally turn into expansion of the spatial part of 

the space coverage. This means that expansion evolves slowly and 

gradually. If the causes of deformations are spatially randomly 

distributed, then expansion is an isotropic effect. 

The introduction of the irrational numbers not only turns the space 

coverage into a continuum. It also makes that continuum differentiable 

and attributes to the space coverage a very special behavior. This very 

special behavior will explain the origin of gravity. 

2.3 Freedom of choice 

In creating the number systems. we made several choices. This started 

with the location and direction of the first vector. Also, on the direction 

line we could have shifted up or down. This means that number systems 

exist in several versions that distinguish in their symmetry. We will use 

coordinate systems to establish the symmetry of the version. The 

selected coordinate system removes all selection freedom. 

2.4 Dynamics 

It is possible to interpret the multidimensional numbers as a 

combination of a scalar timestamp and a one-dimensional or three-

dimensional spatial location. The progression indicator runs monotonic 

with the natural numbers on the real number direction line. In this way 

the deformation, vibration and expansion of the corresponding 

coordinate system become dynamic behaviors where the timestamps 

play the role of the progression indicator. 
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3 Mixed arithmetic 

The real number arithmetic and the spatial number arithmetic can be 

mixed. Spatial numbers that reside on different spatial direction lines 

can be added and multiplied. This will make the spatial number space of 

the quaternions isotropic. The coordinate markers will capture the 

geometric symmetry and the location of the geometric center. This 

means that the coordinate system removes all selection freedom from 

the chosen number system. In this way, the coordinate system 

substantiates the version of the number system until the number 

system and the coordinate markers are detached. Real numbers can be 

added and multiplied by spatial numbers. 

We will use a vector cap to indicate the spatial part and we will indicate 

the scalar part with suffix ᵣ.  

Thus, the number a  will be represented by the sum 
ra a a= + . This 

means that the product c ab=  of two numbers a  and b  will split into 

several terms 

 
( )( )r r r

r r r r

c c c ab a a b b

a b a b ab ab

= + = = + +

= + + +

  (3.1.1) 

The product d of two spatial numbers a and b results in a real scalar part 

rd  and a new spatial part d  

 rd d d ab= + =   (3.1.2) 

,rd a b= −  is the inner product of a and b  

For the inner product and the norm a holds 
2

,a a a=  

 , cos( )a b a b =
  (3.1.3) 
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d a b=  is the outer product of a and b  

The spatial vector d is independent of a and independent of b . This means 

that , 0a d = and , 0b d =  

 sin( )a b a b  =
  (3.1.4) 

 

Mathematics often treats spatial numbers as vectors. Mathematics 

defines the inner product of vectors that represent spatial numbers as 

the above geometric scalar vector product. It is also called the dot 

product of two vectors. Hilbert spaces define a different kind of inner 

product.  It is important to distinguish between the inner product in 

spatial number systems and the inner product in Hilbert spaces. Hilbert 

spaces will be treated in a later chapter. 

Only three mutually independent spatial number parts can be involved 

in the outer product. 

These formulas still do not determine the sign of the outer product. 

Apart from that sign, the outer product is fixed. 

Quaternionic multiplication obeys the equation  

 

( )( )
,

r r r

r r r r

c c c ab a a b b

a b a b a b ab a b

= + = = + +

= − + +  
  (3.1.5) 

The   sign indicates the freedom of choice of the handedness of the 

product rule that exists when selecting a version of the quaternionic 

number system. The version must be selected before it can be used in 

calculations. 



10 
 

Two quaternions that are each other’s inverse can rotate the spatial 

part of another quaternion. 

 /c ab a=   (3.1.6) 

The construct rotates the spatial part of b  that is perpendicular to a  

over an angle that is twice the angular phase   of ia a e =  where 

/i a a=  . 

Cartesian quaternionic functions apply a quaternionic parameter space 

that is sequenced by a Cartesian coordinate system. In the parameter 

space, the real scalar parts of quaternions are often interpreted as 

instances of (proper) time, and the spatial parts are often interpreted as 

spatial locations. The real scalar parts of quaternionic functions 

represent dynamic scalar fields. The spatial parts of quaternionic 

functions represent dynamic vector fields. 
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4 Symmetries 

During the generation of each of the number systems, the selected 

coordinate system substantiated several choices that beforehand were 

free. An important choice is the location of point zero. The coordinate 

system takes this location as its geometric center. The first direction line 

has no spatial direction but the shift on this direction line can be 

upwards or downwards. The third choice concerns the spatial direction 

of the first spatial direction line. That choice is free. A related selection 

concerns the direction of the shift inside this direction line. The 

direction of the second direction line must be spatially perpendicular to 

the first spatial direction line and reduces the angular choice to two pi 

radians. Inside this direction line the direction of the shift has two 

choices. In the resulting spatial dimension, the choice of a direction line 

leaves a range of pi radians. The independent direction line can be 

oriented right-handed or left-handed. Inside that independent direction 

line, the shift has again two choices. 
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5 Hilbert spaces 

Hilbert spaces are ideally suited for modelling multidimensional 

functions that apply number systems as their natural parameter space. 

Hilbert spaces can only cope with number systems that are associative 

division rings. This limits the choice to the real numbers, the complex 

numbers, and the quaternions. Number systems exist in multiple 

versions. The version is captured by a selected coordinate system. Each 

Hilbert space chooses a suitable number system and selects a single 

version of that number system. 

Hilbert spaces support operators that manage eigenspaces that are 

constituted of the members of the selected version of the number 

system. Separate Hilbert spaces own operators that have countable 

eigenspaces. Non-separable Hilbert spaces also own operators that 

have uncountable eigenspaces. These eigenspaces are differentiable. 

A dedicated operator, called the reference operator, manages the 

selected version of the chosen number system in its eigenspace. A 

category of operators shares the eigenvectors of the reference operator 

and use the target values of a selected function that belong to the 

parameter value that equals the eigenvalue of the reference operator 

as the new eigenvalue of the new operator. This turns the Hilbert space 

into a function space and turns the eigenspace of the reference 

operator into the natural parameter space of the Hilbert space. The 

reference operator is a normal operator, and its eigenvectors span the 

whole Hilbert space.  

A quaternionic Hilbert space includes a series of complex-number-based 

Hilbert spaces as its subspaces. This can be seen by selecting all 

eigenvectors of the reference operator that belong to a given direction 

line of the selected version of the chosen number system and construct 

a new Hilbert space from these vectors and the vectors that belong to 
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the real numbers. This also shows that a real-number-based Hilbert 

space is a subspace of a complex-number-based Hilbert space and of a 

quaternionic Hilbert space. 
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6 Change 

Along a direction line, change can be described by a partial differential. 

If in a region of the space coverage inside this direction line all 

converging series of coordinate markers result in a limit that is a 

coordinate marker, then the partial change of the space coverage along 

the direction of r is defined as the limit  

 
( )

0

( )
lim
r

r r r

r r

  

→

+ −
=


  (6.1.1) 

  

If the region is covered by all irrational numbers, then this limit exists. If 

the spatial part of the neighborhood is isotropic and the limit also exists 

in the real number space, then the total differential change df of field 

f equals 

 
f f f f

df d idx jdy kdz
x y z




   
= + + +

   
  (6.1.2) 

In this equation, the partial differentials , , ,
f f f f

x y y

   

   
  behave like 

quaternionic differential operators. 

The quaternionic nabla   assumes the special condition that partial 

differentials direct along the axes of the Cartesian coordinate system in 

a natural parameter space of a non-separable Hilbert space. Thus, 

 
4

0

i

i i

e i j k
x x y z=

    
 = = + + +

    
   (6.1.3) 

This will be applied in the next section by splitting both the quaternionic 

nabla and the function in a scalar part and a vector part. 
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The first-order partial differential equations divide the first-order 

change of a quaternionic field into five different parts that each 

represent a new field. We will represent the quaternionic field change 

operator by a quaternionic nabla operator. This operator behaves like a 

quaternionic multiplier. 

The first order partial differential follows from 

 , , , r
x y z

    
 = =  +  

    
  (6.1.4) 

The spatial nabla is well-known as the del operator and is treated in 

detail in Wikipedia.  The partial derivatives in the change operator only 

use parameters that are taken from the natural parameter space. 

 
( )

,

r

r r r r

   


    

 
=  = +  + 

 

=  −  +  +   

  (6.1.5) 

In a selected version of the quaternionic number system, only the 

corresponding version of the quaternionic nabla is active. In a selected 

Hilbert space, this version is always and everywhere the same. 

The differential   describes the change of field  . The five separate 

terms in the first-order partial differential have a separate physical 

meaning. All basic fields feature this decomposition. The terms may 

represent new fields. 

 ,r r r  =  −    (6.1.6) 

 
r r   =  +      (6.1.7) 

f is the gradient of f . 

https://en.wikipedia.org/wiki/Del


16 
 

, f is the divergence of f . 

f  is the curl of f . 

Important properties of the del operator are 

 ( ) 2,     =  =    (6.1.8) 

 ( ), 0   =   (6.1.9) 

 ( ) 0r   =   (6.1.10) 

 ( ) ( ) ( ), ,      =   −     (6.1.11) 

Sometimes parts of the change get new symbols 

 
r rE  = − −   (6.1.12) 

 B =    (6.1.13) 

The formula (6.1.5) does not leave room for gauges. In Maxwell 

equations, the equation (6.1.6) is treated as a gauge. 

 ( ), 0B =   (6.1.14) 

 
r r rE B  = −  − = −   (6.1.15) 

 ( ) ( ) ( ), , ,r rE   = −  −     (6.1.16) 

 

 

The conjugate of the quaternionic nabla operator defines another type 

of field change. 
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 *

r =  −   (6.1.17) 

 
( )*

,

r

r r r r

   


    

 
=  = −  + 

 

=  +  +  −  

  (6.1.18) 

All dynamic quaternionic fields obey the same first-order partial 

differential equations (6.1.5) and (6.1.18).  

 † * † *

r r r =  =  − =  +  =  +    (6.1.19) 

In the Hilbert space, the quaternionic nabla is a normal operator. The 

operators 

 † † * * ,r r  =  =   =  =   +     (6.1.20) 

are normal operators who are also Hermitian operators. 

The separate operators
r r   and ,   are also Hermitian operators.  

,  is known as the Laplace operator.  

The two operators can also be combined as ,r r=   −    . This is 

the d’Alembert operator.  

The solutions of , 0r r  +   =  and , 0r r  −   =  differ. These 

two equations offer different solutions and for that reason, they deliver 

different dynamic behavior of the field. The equations control the 

behavior of the embedding field that physicists call their universe. This 

dynamic field exists everywhere in the reach of the parameter space of 

the function. Both equations also control the behavior of the symmetry-

related fields. The homogeneous d’Alembert equation is known as the 

wave equation and offers waves and wave packages as its solutions. 



18 
 

Both equations offer shock fronts as solutions but only the operators in 

(6.1.20) deliver shock fronts that feature a spin or polarization vector. 

Integration over the time domain turns both equations in the Poisson 

equation and removes the spin or polarization vector. Shock fronts 

require a corresponding actuator and occur only in odd numbers of 

participating dimensions. Spherical shock fronts require an isotropic 

actuator. 

6.1 Continuity equations 

Continuity equations are partial quaternionic differential equations. 

The dynamic changes of the field are interpreted as field excitations or 

as field deformations or field expansions.  

The field excitations that will be discussed here are solutions of 

mentioned second-order partial differential equations. Without a 

corresponding actuator the field will not react. It appears that spherical 

pulses are the only actuators that deform the field. The field reacts to 

these pulses by quickly removing the deformation by sending the 

deformation away in all directions in the form of shock fronts until 

these fronts vanish at infinity. 

One of the second-order partial differential equations results from 

combining the two first-order partial differential equations  =  and 
* =  . 

 
( )( )( )

( )

* * *

,

r r r

r r

     



=  =   =  =  +   −  +

=   +  
  (6.2.1) 

All other terms vanish. ,   is known as the Laplace operator. 

Integration over the time domain results in the Poisson equation 
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 , =    (6.2.2) 

Under isotropic conditions, a very special solution of the Poisson 

equation is the Green’s function
1

4 'q q −
  of the affected field. This 

solution is the spatial Dirac ( )q   pulse response of the field under strict 

isotropic conditions. 

 
( )

3

'1

' '

q q

q q q q

−
 = −

− −
  (6.2.3) 

 

( )
( )3

1 1
, ,

' '

'
, 4 '

'

q q q q

q q
q q

q q


    
− −

−
= −  = −

−

  (6.2.4) 

This solution corresponds with an ongoing source or sink that exists in 

the field.  

Change can take place in one spatial dimension or combined in two or 

three spatial dimensions. 

Under the proper conditions, the dynamic pulse response of the field is 

a solution of a special form of the equation (6.2.1)  

 ( ) ( ) ( ), 4 ' 'r r q q      +   = −    (6.2.5) 

Here ( )   is a step function and ( )q  is a Dirac pulse response. For the 

spherical pulse response, the pulse must be isotropic. 
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After the instant ' , the equation turns into a homogeneous equation.  

A remarkably simple solution is the shock front in one dimension along 

the line 'q q− . 

 ( )( )' 'f q q c n  = −  −   (6.2.6) 

Here n  is a normed spatial quaternion. This spatial quaternion has an 

arbitrary direction that does not vary in time. Here, the normalized 

vector n  can be interpreted as the polarization of the solution. We 

intentionally placed the spatial vector n  close to speed c. 

In isotropic conditions, we better switch to spherical coordinates. Then 

the equation gets the form 

 

( )

2 2

2 2

2 2

2 2

2

0

r r r

r
r







   
+ + 

   

  
= + = 

  

  (6.2.7) 

 

The second line describes the second-order change of r  in one 

dimension along the radius r. That solution is described above. A 

solution of this equation is 

 ( )r f r c n =    (6.2.8) 

 

The solution of (6.2.7) is described by 

 
( )( )' '

'

f q q c n

q q

 


−  −
=

−
  (6.2.9) 
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The normalized vector n  can be interpreted as the spin of the solution.  

It might be related to the direction that is selected when the 

quaternion-based Hilbert space is temporary reduced to a subspace 

that contains a complex-number based Hilbert space. The spherical 

pulse response acts either as an expanding or as a contracting spherical 

shock front. Over time this pulse response integrates into the Green’s 

function. This means that the isotropic pulse injects the volume of the 

Green’s function into the field. Subsequently, the front spreads this 

volume over the field. The contracting shock front collects the volume 

of the Green’s function and sucks it out of the field. The ± sign in the 

equation (6.2.5) selects between injection and subtraction. 

Shock fronts only occur in one and three dimensions. A pulse response 

can also occur in two dimensions, but in that case, the pulse response is 

a complicated vibration that looks like the result of a throw of a stone in 

the middle of a pond. 

Equations (6.2.1) and (6.2.2) show that the operators 
2

2




and ,   

are valid second-order partial differential operators. These operators 

combine in the quaternionic equivalent of the wave equation. 

 
2

2
,  



 
= −   = 

 
   (6.2.10) 

This equation also offers one-dimensional and three-dimensional shock 

fronts as its solutions. 

 
( )( )' '

'

f q q c

q q

 


−  −
=

−
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 ( )( )' 'f q q c  = −  −   (6.2.12) 

https://en.wikipedia.org/wiki/Wave_equation
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These pulse responses do not contain the normed vector n . Apart from 

pulse responses, the wave equation offers waves as its solutions. 

If locally the field can be split into a time-dependent part ( )T  and a 

location-dependent part ( )A q , then the homogeneous version of the 

wave equation can be transformed into the Helmholtz equation. 
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
  
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   (6.2.13) 

 ( , ) ( ) ( )q A q T  =    (6.2.14) 
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 2, 0A A  + =    (6.2.16) 
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   (6.2.17) 

  acts as quantum coupling between(6.2.16) and (6.2.17). 

The time-dependent part ( )T   depends on initial conditions, or it 

indicates the switch of the oscillation mode.  

During the switch, the quaternionic Hilbert space temporarily switches 

to a complex-number-based Hilbert space that is subspace of the 

Hilbert space. The switch takes a corresponding interval and during that 

interval the subspace emits or absorbs a sequence of equidistant shock 

fronts. Together, these shock fronts constitute a photon. The switch of 

the oscillation mode means that temporarily the oscillation is stopped 

and instead an object is emitted or absorbed that compensates for the 

difference in potential energy. The location-dependent part of the field 

( )A q  describes the possible oscillation modes of the field and depends 

https://en.wikipedia.org/wiki/Helmholtz_equation
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on boundary conditions.  The oscillations have a binding effect. They 

keep moving objects within a bounded region.  

For three-dimensional isotropic spherical conditions, the solutions have 

the form 

 ( ) ( )( ) ( ) 
0

, , ,
l

m

lm l lm l

l m l

A r a j kr b Y   


= =−

= +    (6.2.18) 

Here 
lj  and 

ly  are the spherical Bessel functions, and m

lY  are 

the spherical harmonics. These solutions play a role in the spectra 

of atomic modules. 

Planar and spherical waves are the simpler wave solutions 
of the equation (6.2.13) 

  

 ( ) ( ) 0, exp ,q n k q q   = − − +   (6.2.19) 

 ( )
( ) 0

0

exp ,
,

n k q q
q

q q

 
 

− − +
=

−
  (6.2.20) 

A more general solution is a superposition of these basic types. 

Two quite similar homogeneous second-order partial differential 

equations exist. They are the homogeneous versions of equations 

(6.2.5) and (6.2.10). The equation (6.2.5) has spherical shock-front 

solutions with a spin vector that behaves like the spin of elementary 

particles. Obviously, the field only reacts dynamically when it gets 

triggered by corresponding actuators. Pulses may cause shock fronts 

that after the trigger keep traveling. Oscillations of type (6.2.19) and 

(6.2.20) must be triggered by periodic actuators.  

The inhomogeneous pulse activated equations are 

https://en.wikipedia.org/wiki/Spherical_Bessel_Function
https://en.wikipedia.org/wiki/Spherical_Harmonics
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 ( ) ( ) ( ), 4 ' 'r r q q         = −    (6.2.21) 

Without the interaction with actuators, all vibrations and deformations 

of the field vanish until the affected field locally resembles a flat field. 

Only an ongoing stream of actuators can generate a more persistently 

deformed field. This is provided by an ongoing embedding of the 

actuators into the eigenspaces of operators that archive the dynamic 

fields. 

6.2 Isotropic conditions 

The two shock-front solutions show an interesting property of the 
Laplace operator. In isotropic conditions, the Poisson equation can be 
rewritten as 

 ( )
2 2

2 2

2 1
, r

r r r r r
   

   
=   = + = 

   
   (6.3.1) 

The product ( )r = is a solution of a one-dimensional equation in 

which r plays the variable.  

The same thing holds for all differential equations that contain the 

Laplace operator ,    

So, spherical solutions of the second-order differential equations / r

can be obtained from the solutions ξ of one-dimensional second-order 
differential equations by dividing   with the distance r  to the center. 

It looks as if in isotropic conditions the quaternionic differential calculus 
can be scaled down to complex-number-based differential calculus. This 
already works at local scales. If on larger scales the isotropic condition is 
violated, then the coordinates of the complex-number-based 
abstraction must be adapted to the possibly deformed Cartesian 
coordinates of the quaternionic platform. This makes sense in the 
presence of moderate deformations of the quaternionic field. After 
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adaptation, the map of each complex-number-based coordinate line 
becomes a geodesic. 

These tricks are possible because complex-number-based Hilbert spaces 
can be considered subspaces of quaternionic Hilbert spaces. 

If the dimension of the quaternionic Hilbert space is reduced to the 
dimension of a subspace that contains a complex-number-based Hilbert 
space, then it might become important whether the selected direction 
involves a polar angle or an azimuth angle. In mathematics, the range of 
the polar angle is twice the range of the azimuth angle. In physics the 
two ranges are swept. 
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7 Functions and coordinate systems 

This elucidates the sense of introducing the coordinate system. Humans 

can more easily imagine the dynamic life of coordinate markers than 

that they can visualize what happens to the target values of a 

multidimensional function that uses a borderless multidimensional 

parameter space. If the differential equations that describe the 

behavior of coordinate markers are everywhere the same, then these 

equations hold at all scales. Even if spatial expansion plays a role, then 

its effects can easily be separated from spatial deformation and spatial 

vibration. 

Without triggering by an actuator, the space coverage does not deform 

or vibrate.  This does not exclude the possibility that an encapsulated 

spatially coherent countable subset of coordinate markers deforms the 

space coverage in a static way. This happens for a phenomenon that is 

called a black hole. 
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8 Other features of Hilbert spaces 

It is already indicated that complex-number-based Hilbert spaces 

appear as subspaces of quaternionic Hilbert spaces and that real-

number based Hilbert spaces appear as subspaces of complex-number-

based Hilbert spaces. 

8.1 Position space and change space 

This will be used to introduce other orthogonal bases than the natural 

parameter base. First, we separate the subspace that relates to the real 

numbers. What is left we call the position space. Next, we introduce the 

change base, which is an alternative orthogonal base of the position 

space and that is constituted by the eigenvectors that belong to the 

change operator. To be able to represent this in formula we first limit to 

eigenvectors that belong to a selected direction line. This reduces 

position space to a single direction. For example, we select the direction 

i along the x coordinate. The change 
xp of a field   along that direction 

is xp
x





=


. The suffix x  indicates the relation with coordinate x . 

8.2 Fourier transform 

x  and 
xp  are related via a Fourier transform.  In this section we do not 

indicate in the exponentials the spatial direction number i  with a vector 

cap. Instead, we use the convention that is applied in complex number 

versions of the exponential function. 

The Fourier transform in a separable complex-number-based Hilbert 

space is given by the relation between ( )x  and ( )xnp  in the sum 

 ( ) ( ) ,2

, , 1 ,( ) x nixp

x n x n x n

n

x p e p p


 


+

=−

= −   (8.2.1) 

In the limit where ( ), 1 , 0x x n x np p p+ = − →  the sum becomes an integral 
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 ( ) 2
( ) xixp

x xx p e dp
 



−
=    (8.2.2) 

The reverse Fourier transform runs as 

 ( ) 2
( ) xixp

xp x e dx
 


−

−
=    (8.2.3) 

In these formulas, the symbol i  represents a normalized spatial number 

part of a complex number. i  corresponds to the spatial direction that 

was selected for constructing the complex-number-based Hilbert space. 

The function 2 xixp
e

 is an eigenfunction of the operator xp i
x


=


 which is 

recognizable as part of the change operator (6.1.4). 

 2 2
2x xixp ixp

xi e p e
x

 


=


  (8.2.4) 

The eigenvalue xp represents the eigenfunction and the eigenvector xp

in the change space. In the same sense, the function 2 xixp
e

−  is an 

eigenfunction of the position operator 
x

i
p


−


and corresponds with the 

eigenvalue x  of that operator. 

 2 2
2x xixp ixp

x

i e xe
p

 − −
− =


  (8.2.5) 

The eigenvalue x represents the eigenfunction and the eigenvector x in 

the position space. 

The Fourier transform of a Dirac delta function is 

 ( ) 2
( ) 1xixp

xp x e dx
 


−

−
= =   (8.2.6) 

The inverse transform tells 
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=    (8.2.7) 
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The operator xp i
x


=


 is often called the momentum operator for the 

spatial direction i  of the coordinate x . p differs from the classical 

momentum that is defined as the product of velocity v and mass m . 

8.3 Uncertainty principle 

The uncertainty principle states  

 ( )
2

22 2

0 ,0 2

1
( ) ( ) ( ) ( )

16
x x x xx x x dx p p p dp 



 

− −

 
− −  

 
   

 (8.3.1) 

For a Gaussian distribution, the equality sign holds. The Fourier 

transform of a Gaussian distribution is again a Gaussian distribution that 

has a different standard deviation. 

If ( )x  spreads, then ( )xp  shrinks and vice versa. 

8.4 Stochastic processes 

In this way, the characteristic function of a stochastic process that 

resides in change space can control the spread of the location density 

distribution of the produced location swarm that resides in position 

space. 

The stochastic process consists of a Poisson process that regulates the 

distribution in the real-number-based Hilbert space that is subspace of 
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the quaternionic Hilbert space and a binomial process that regulates the 

distribution in position space. This distribution is described by a location 

density distribution. 

The production of the stochastic process is archived in the eigenspace 

of a dedicated footprint operator that stores its eigenvalues in 

quaternionic storage bins that consists of a real number valued 

timestamp and a three-dimensional spatial number value that 

represents a hop landing location. After sequencing the timestamps, the 

hop landing locations represent a hopping path of a point-like object. 

The hopping path regularly regenerates a coherent hop landing location 

swarm. The location density distribution describes this swarm. 

If this location density distribution is a Gaussian distribution, then its 

Fourier transform determines exactly the location density distribution 

of the swarm. 

The described stochastic process can deliver the actuators that 

generate the pulse responses that may deform the dynamic universe 

field. In some way an ongoing embedding process must map the 

eigenspace of the footprint operator onto the embedding field.  

The stochastic processes that own a characteristic function which are 

described here, are in common use in the qualification of imaging 

quality via the Optical Transfer Function of an imaging process or 

imaging equipment. The Optical Transfer Function is the Fourier 

transform of the point spread function. For point-like objects the PSF 

acts as a location density distribution.  

A system of Hilbert spaces that share the same underlying vector space 

can perform the job of the imaging platform. In this system the imaging 

process will be called embedding process. 
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8.4.1 Gravity and the universe 

If the hop landings of a particle cause a spherical shock front, then the 

deformation that is caused by the footprint is roughly defined by the 

convolution of the location density distribution that describes the 

footprint and the Green’s function of the embedding field. This 

formulation is not exact because each spherical shock front quickly 

fades away. The pulses occur in a sequence and not in a single instant. 

This effect weakens the deformation. Still, due to the huge amount of 

hops that constitute the swarm, the spherical pulse response will blur 

the hop landing location swarm such that its image becomes a smooth 

function. This smooth function describes the local gravitational 

potential of the considered particle. Far from the geometric center at 

distance r from the particle, the particle looks point-like, and the 

gravitational potential ( )V r can be described by  

 ( ) /V r MG r=  (4.1) 

Here M is the mass of the particle. G  is a constant.  

The embedding field is a superposition of gravitational potentials. A 

formula like (4.1) does not directly show that gravity leads to attraction 

between massive objects. The gravitational potential does not own a 

point of engagement. Or that point must be given by the geometrical 

center of local gravity.  

9 Hilbert repository 

A system of Hilbert spaces that all share the same underlying vector 

space can act as a modeling platform that not only supports dynamic 

fields that obey quaternionic differential equations. It also supports the 

containers of footprints that can map into the quaternionic fields. 

The Hilbert repository applies the structured storage capacity of the 

Hilbert spaces that are members of the system. The requirement that 
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all member Hilbert spaces must share the same underlying vector space 

restricts the types of Hilbert spaces that can be a member of the Hilbert 

repository. It appears that the coordinate systems that determine the 

symmetry type of the Hilbert spaces must have the Cartesian 

coordinate axes in parallel. Only the sequence along the axis can be 

freely selected up or down. This means that only a small set of 

symmetry types will be tolerated. One of the Hilbert spaces will act as 

the background platform and its symmetry will act as background 

symmetry. Its natural parameter space will act as background 

parameter space. All other members of the system will float with the 

geometric center of their parameter space over the background 

parameter space. This already generates a dynamic system. The 

symmetry differences generate symmetry related sources or sinks that 

will locate at the geometric center of the natural parameter space of 

the corresponding floating Hilbert space. The sources and sinks 

correspond to symmetry related charges that generate symmetry 

related fields. 

Not the symmetries of the floating Hilbert spaces are important. 

Instead, the differences between the symmetry of the floating member 

and the background symmetry is important for establishing the type of 

the member Hilbert space. All floating Hilbert spaces are separable. The 

background Hilbert space is an infinite dimensional separable Hilbert 

space. It owns a non-separable companion Hilbert space that embeds 

its separable partner. 

All member Hilbert spaces are quaternionic Hilbert spaces and own a 

dedicated footprint operator. An ongoing embedding process maps the 

eigenspaces of these footprint operators onto the uncountable 

eigenspace of a dedicated operator that resides in the background non-

separable Hilbert space. In this way a huge amount of ongoing hopping 
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paths are mapped onto the embedding field. The hopping paths are 

closed on the floating platforms. The movement of the floating 

platforms breaks the closure of the images of the hopping paths. 

9.1 Standard Model 

The structure and behavior of the purely mathematical Hilbert 

repository shows a striking resemblance with the structure of the 

Standard Model of the elementary fermions. The Standard Model of the 

elementary fermions is part of the Standard Model of particle physics 

that experimental particle physicists treat as their workbook. This does 

not include the physical theories that are often considered as part of 

the Standard Model of particle physics. These theories are Quantum 

Field Theory, Quantum Electro Dynamics, and Quantum Chromo 

Dynamics. QFT, QED, and QCD seek their foundation in the Lagrangian 

that is derived from the least action principle.  The author considers this 

principle a high-level concept that follows from the behavior of the 

coverage of space by an uncountable set of point-like objects. 

The first-order change equations (6.1.5) and (6.1.18) already reflect this 

typical behavior. 

The least action principle does not imply the ongoing recurrent 

regeneration of the elementary fermions. Chapter 11 shows how the 

Lagrangian relates to the embedded hopping path of the elementary 

fermion. 

9.2 Conglomerates 

Elementary fermions appear to behave as elementary modules. The 

conglomerates of these elementary modules populate the dynamic field 

that we call our universe. 

A private stochastic process determines the complete local life story of 

each elementary fermion. That stochastic process is defined in the 

change space of its private Hilbert space. 

https://en.wikipedia.org/wiki/Stationary_Action_Principle
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This invites the idea that conglomerates of elementary fermions are 

defined by stochastic processes whose characteristic functions are 

define in the change space of the background platform. In this change 

space, the characteristic function of a stochastic process that defines a 

conglomerate is a superposition of the characteristic functions of the 

components of the conglomerate. The dynamic superposition 

coefficients act as displacement generators. This means that these 

displacement generators define the internal oscillations of the 

components within the conglomerates. 

Since in change space, position is not defined, the fact that a 

component belongs to a conglomerate does not restrict the distance 

between the components. This way of defining membership of a 

conglomerate introduces entanglement. Independent of their mutual 

distance, components of a conglomerate must still obey the Pauli 

exclusion principle. 

9.3 Hadrons 

Hadrons can be mesons or baryons. They are conglomerates of quarks.  

Quarks can only bind via oscillations and via the attraction that is 

induced by their electric charges. Since the symmetry of quarks does 

not differ from the background symmetry in an isotropic way, the 

footprint of quarks does not deform the embedding field. So, mass does 

not help to bind the quarks until they reach an isotropic symmetry 

difference. This phenomenon is called color confinement. Hadrons 

feature mass. Thus, these conglomerates are sufficiently isotropic to 

deform the embedding field. Once configured, the mutual binding of 

baryons is very strong. The nuclei of atoms are constituted by baryons. 

9.4 Atoms 

Compound modules are composite modules for which the images of the 

geometric centers of the platforms of the components coincide in the 
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background platform. The charges of the platforms of the elementary 

modules establish the binding of the corresponding platforms. 

Physicists and chemists call these compound modules atoms or atomic 

ions. 

In free compound modules, the geometric symmetry-related charges do 

not take part in the oscillations. The targets of the private stochastic 

processes of the elementary modules oscillate. This means that the 

hopping path of the elementary module folds around the oscillation 

path and the hop landing location swarm gets smeared along the 

oscillation path. The oscillation path is a solution to the Helmholtz 

equation. Each fermion must use a different oscillation mode. A change 

of the oscillation mode goes together with the emission or absorption 

of a photon. As suggested earlier the emission or absorption of a 

photon involves a switch from the quaternionic Hilbert space to a 

subspace that is represented by a complex-number-based Hilbert space. 

The duration of the switch lasts a full particle regeneration cycle. During 

that cycle the stochastic mechanism does not produce a swarm of hop 

landing locations that produce pulses which generate spherical shock 

fronts, but instead it produces a one-dimensional string of pulse 

responses that cause one-dimensional shock fronts.  The center of 

emission coincides with the geometrical center of the compound 

module. This ensures that the emitted photon does not lose its 

integrity. All photons will share the same emission duration, and that 

duration will coincide with the regeneration cycle of the hop landing 

location swarm. Absorption cannot be interpreted so easily. In fact, it 

can only be comprehended as a time-reversed emission act. Otherwise, 

the absorption would require an incredible aiming precision for the 

photon. The number of one-dimensional pulses in the string 

corresponds to the step in energy of the Helmholtz oscillation. 
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The type of stochastic process that controls the binding of components 

appears to be responsible for the absorption and emission of photons 

and the change of oscillation modes. If photons arrive with too low 

energy, then the energy is spent on the kinetic energy of the common 

platform. If photons arrive with too high energy, then the energy is 

distributed over the available oscillation modes, and the rest is spent on 

the kinetic energy of the common platform, or it escapes into free 

space. The process must somehow archive the modes of the 

components. It can apply the private platform of the components for 

that purpose. Most probably, the current value of the dynamic 

superposition coefficient is stored in the eigenspace of a special 

superposition operator. 

9.5 Molecules 

Molecules are conglomerates of compound modules that each keep 

their private geometrical center. However, electron oscillations are 

shared among the compound modules. Together with the geometric 

symmetry-related charges, this binds the compound modules into the 

molecule. 

10 Dynamics in the Hilbert repository 

10.1 Embedding in the background platform 

The differences in the symmetry between the platforms only become 

apparent when a floating platform is embedded into the background 

platform or more specific when eigenvalues of a dedicated selection 

operator are mapped to corresponding eigenvectors in the background 

platform. A special operator in the non-separable Hilbert space of the 

background platform manages in its eigenspace the dynamic field that 

embeds discrete eigenvalues that originate from the eigenspace of the 

selection operator that resides in the floating platform. The eigenspace 

of the selection operator is filled in advance by a stochastic preselection 

process. The selector of the stochastic preselection process hops 
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around in the eigenspace of the reference operator such that after 

sequencing the timestamps, an ongoing hopping path results that 

recurrently regenerates a hop landing location swarm that can be 

described by a stable location density distribution. The Fourier 

transform of this location density distribution equals the characteristic 

function of the stochastic selection mechanism. The hop landing 

location swarm generates the footprint of the floating platform in the 

eigenspace of the operator that manages the embedding field in the 

background platform. The coverage of the embedding field lets the field 

act as a sticky medium. The sticky medium resists the embedding of 

objects that break the symmetry of the embedding field. It appears that 

only isotropic symmetry breaks can deform the embedding field. The 

sticky medium reacts to the deformation by moving the deformation in 

all directions away from the embedding location until it vanishes at 

infinity. Differential calculus shows that the sticky medium reacts with a 

spherical pulse response that behaves as a spherical shock front that 

diminishes its amplitude with increasing distance from the location of 

the pulse. The pulse responses can superpose and join into a more 

persistent and more smoothed local deformation. This occurs when 

large amounts of nearby point-like actuators cooperate during a long 

enough time interval. 

The hop landing locations were created before the start of running time 

by a stochastic process that filled the eigenspaces of the selection 

operator. We will use the name footprint operator for the selection 

operator of the floating platforms, and we will use the name universe 

field for the dynamic field that embeds the footprints of the floating 

platforms. The eigenvalues of the footprint operator are archived in 

quaternionic storage bins that contain a timestamp and a three-

dimensional spatial number. After sequencing the timestamps, the 

eigenspace of the footprint operator contains an ongoing hopping path 
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that recurrently regenerates a coherent hop landing location swarm 

that is described by a stable location density distribution. The ongoing 

embedding process maps the hopping path into the embedding field. 

Apart from this streaming mechanism, the symmetry related charges 

also represent sources or sinks that generate streams which embed 

symmetry related fields into the embedding field. The charges are not 

spread over the root geometry of the floating platform. Instead, they 

locate in the geometric center of the floating platform. Thus, the map of 

the footprint spreads around the image of the symmetry-related 

charge.  

Without these streaming processes, not many dynamics would occur in 

the embedding field. 

10.2 Footprint 

An ongoing embedding of a stream of symmetry-disturbing eigenvalues 

will cause a persistent deformation of the embedding field. The 

eigenspace of the footprint operator can archive a cord of quaternionic 

storage bins that contain the timestamps and the landing locations that 

will be embedded. After sequencing the timestamps, the archive shows 

an ongoing hopping path that translates into an ongoing embedding 

process. This embedding process runs during the running episode of the 

Hilbert repository and acts as an imaging process in which the image 

quality is characterized by an Optical Transfer Function. This function is 

the Fourier transfer of the Point Spread Function. The Point Spread 

Function can be interpreted as a hop landing location density 

distribution. Its Fourier transform is the Optical Transfer Function of the 

embedding of the footprint of the considered object. 

10.2.1 Footprint mechanism 

The mechanism that generates the content of the eigenspace of the 

footprint operator did its work in the creation episode of the Hilbert 



39 
 

repository. The private natural parameter space of the Hilbert space 

already exists in this creation episode. The timestamps and the hopping 

locations of the hopping path were taken from this private parameter 

space. The footprint mechanism owns a characteristic function that 

ensures that the hopping path recurrently regenerates a hop landing 

location swarm that features a stable location density distribution 

which is the Fourier transform of the characteristic function of the 

footprint mechanism. The location density distribution equals the 

mentioned Point Spread Function, and the characteristic function 

equals the corresponding Optical Transfer Function. 

The hopping path, the hop landing location swarm, the location density 

distribution, and the Point Spread Function reside in the position space 

of the Hilbert space. The location density distribution equals the Point 

Spread Function and describes the hop landing location swarm. 

The Optical Transfer Function equals the characteristic function of the 

footprint mechanism, and both reside in the change space. 

Nothing is said about the distribution of the timestamps. In imaging 

processes, the distribution of discrete objects in the imaging beam can 

often be characterized as the result of a combination of a Poisson 

process and a binomial process, where the binomial process is 

implemented by a spatial point spread function. In that case, the 

Poisson process handles the distribution of the timestamps.  

10.2.2 Footprint characteristics 

The footprint generates a nearly constant stream of potential point-like 

actuators in the form of a swarm that features a constant location 

density distribution. The actuators that originate from the same floating 

separable Hilbert space have a constant symmetry. Some of these 

actuator symmetries can disturb the symmetry of the embedding field 

and therefore they can generate pulse responses that at least 
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temporarily deform this field. A symmetry disturbance that generates a 

spherical pulse response must represent an isotropic difference 

between the two symmetries. A sufficiently constant and sufficiently 

dense and coherent stream of such actuators can generate a persistent 

deformation. 

10.3 Resisting change 

The Green’s function, the shock fronts, and the oscillations also 

demonstrate the stickiness of dynamic quaternionic fields. Discrete sets 

of quaternions do not show this stickiness. 

The stickiness of the field tends to flatten the field and it resists 

permanent deformations of the field. 

10.3.1 Potential 

In physics, potential energy is the energy held by an object because of 

its position relative to other objects.  

The gravitational potential at a location is equal to the work (energy 

transferred) per unit mass that would be needed to move an object to 

that location from a fixed reference location. 

The spherical shock fronts integrate over time into the Green’s function 

of the field. Thus, the shock front injects the content of the Green’s 

function into the affected field. All spherical shock fronts spread the 

contents of the front over the full field.  

We consider the gravitational potential to be zero at infinity. Thus, if 

infinity is selected as a reference location, then the gravitational 

potential at a considered location is equal to the work (energy 

transferred) per unit mass that would be needed to move an object 

from infinity to that location. Thus, the potential at a location 

represents the reverse action of the combined spherical shock fronts 

that act at that location. 

https://en.wikipedia.org/wiki/Energy
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10.3.2 Center of deformation 

The deformation potential ( )V r  describes the effect of a local response 

to an isotropic point-like actuator and reflects the work that must be 

done by an agent to bring a unit amount of the injected stuff from 

infinity back to the considered location. 

 ( ) /pV r m G r=    (10.3.1) 

Here 
pm  represents the mass that corresponds to the full pulse 

response. G  takes care for adaptation to physical units. r is the distance 

to the location of the pulse.  

A stream of footprint actuators recurrently regenerates a coherent 

swarm of embedding locations in the dynamic universe field. That 

swarm generates a potential 

 ( ) /V r MG r=    (10.3.2) 

Here M  represents the mass that corresponds to the considered 

swarm of pulse responses. r is the distance to the center of the 

deformation. This formula is valid at sufficiently large values of r  such 

that the whole swarm can be considered as a point-like object. 

In a coherent swarm of massive objects , 1,2,3,...ip i n= , each with static 

mass 
im  at locations 

ir , the center of mass R  follows from  

 ( )
1

0
n

i i

i

m r R
=

− =  (10.3.3) 

Thus 

 
1

1 n

i i

i

R m r
M =

=   (10.3.4) 

Where 
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1

n

i

i

M m
=

=   (10.3.5) 

In the following, we will consider an ensemble of massive objects that 

own a center of mass R  and a fixed combined mass M as a single 

massive object that locates at R . The separate masses 
im may differ 

because, at the instant of summation, the corresponding deformation 

might have partly faded away.  

R  can be a dynamic location. In that case, the ensemble must move as 

one unit. The problem with the treatise in this paragraph is that in 

physical reality, point-like objects that possess a static mass do not 

exist. Only pulse responses that temporarily deform the field exist. 

Except for black holes, these pulse responses constitute all massive 

objects that exist in the universe. 

10.4 Pulse location density distribution 

It is false to treat a pulse location density distribution as a set of point-

like masses as is done in formulas (10.3.3) and (10.3.4). Instead, the 

gravitational potential follows from the convolution of the location 

density distribution and the Green’s function. This calculation is still not 

correct, because the exact result depends on the fact that the 

deformation that is due to a pulse response quickly fades away and the 

result also depends on the density of the distribution. If these effects 

can be ignored, then the resulting gravitational potential of a Gaussian 

density distribution would be given by 

 
( )

( )
ERF r

g r GM
r

  (10.4.1) 

Where ( )ERF r  is the well-known error function. Here the gravitational 

potential is a perfectly smooth function that at some distance from the 

center equals the approximated gravitational potential that was 
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described above in the equation (10.3.2). As indicated above, the 

convolution only offers an approximation because this computation 

does not account for the influence of the density of the swarm, and it 

does not compensate for the fact that the deformation by the individual 

pulse responses quickly fades away. Thus, the exact result depends on 

the duration of the recurrence cycle of the swarm. 

In the example, we apply a normalized location density distribution, but 

the actual location density distribution might have a higher amplitude. 

This might explain why some elementary module types exist in multiple 

generations. These generations appear to have their own mass. For 

example, elementary fermions exist in three generations. The two more 

massive generations usually get the name muon or tau generation. 

 

This might also explain why different first-generation elementary 

particle types show different masses. Due to the convolution, and the 

coherence of the location density distribution, the blue curve does not 

show any sign of the singularity that is contained in the red curve, which 

shows the Green’s function. 

In physical reality, no point-like static mass object exists. The most 

important lesson of this investigation is that far from the gravitational 

center of the distribution the deformation of the field is characterized 

by the here shown simplified form of the gravitation potential   
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 ( )
GM

r
r

   (10.4.2) 

Warning: This simplified form shares its shape with the Green’s 

function of the deformed field. This does not mean that the Green’s 

function owns a mass that equals 
1

GM
G

= . The functions only share the 

form of their tail. 

10.5 Rest mass 

The weakness in the definition of the gravitation potential is the 

definition of the unit of mass and the fact that shock fronts move with a 

fixed finite speed. Thus, the definition of the gravitation potential only 

works properly if the geometric center location of the swarm of injected 

spherical pulses is at rest in the affected embedding field. The 

consequence is that the mass that follows from the definition of the 

gravitation potential is the rest mass of the considered swarm. We will 

call the mass that is corrected for the motion of the observer relative to 

the observed scene the inertial mass. 

10.6 Observer 

The inspected location is the location of a hypothetical test object that 

owns an amount of mass. It can represent an elementary particle or a 

conglomerate of such particles. This location is the target location in the 

embedding field. The embedding field is supposed to be deformed by 

the embedded objects.  

Observers can access information that is retrieved from storage 

locations that for them have a historic timestamp. That information is 

transferred to them via the dynamic universe field. This dynamic field 

embeds both the observer and the observed event. The dynamic 

geometric data of point-like objects are archived in Euclidean format as 

a combination of a timestamp and a three-dimensional spatial location. 
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The embedding field affects the format of the transferred information. 

The observers perceive in spacetime format. A hyperbolic Lorentz 

transform converts the Euclidean coordinates of the background 

parameter space into the spacetime coordinates that are perceived by 

the observer.   

10.6.1 Lorentz transform 

In dynamic fields, shock fronts move with speed c . In the quaternionic 

setting, this speed is unity.  

 2 2 2 2 2x y z c + + =   (10.6.1) 

In flat dynamic fields, swarms of triggers of spherical pulse responses 

move with lower speed v. 

For the geometric centers of these swarms still holds: 

 2 2 2 2 2 2 2 2 2 2' ' ' 'x y z c x y z c + + − = + + −   (10.6.2) 

  

If the locations  , ,x y z and  ', ', 'x y z  move with uniform relative speed v, 

then 

 ( ) ( )' cosh sinhct ct x = −   (10.6.3) 

 ( ) ( )' cosh sinhx x ct = −   (10.6.4) 

 ( )
( ) ( )

2 2

exp exp
cosh

2

c

c v

 


+ −
= =

−
  (10.6.5) 

 ( )
( ) ( )

2 2

exp exp
sinh

2

v

c v

 


− −
= =

−
  (10.6.6) 

 ( ) ( )
2 2

cosh sinh 1 − =   (10.6.7) 

This is a hyperbolic transformation that relates two coordinate systems, 

which is known as a Lorentz boost . 

https://en.wikipedia.org/wiki/Lorentz_transformation#Physical_formulation_of_Lorentz_boosts
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This transformation can concern two platforms P  and 'P  on which 

swarms reside and that move with uniform relative speed. 

However, it can also concern the storage location P  that contains a 

timestamp t and spatial location  , ,x y z and platform 'P  that has 

coordinate time t  and location  ', ', 'x y z  . 

In this way, the hyperbolic transform relates two platforms that move 

with uniform relative speed. One of them may be a floating Hilbert 

space on which the observer resides. Or it may be a cluster of such 

platforms that cling together and move as one unit. The other may be 

the background platform on which the embedding process produces 

the image of the footprint. 

The Lorentz transform converts a Euclidean coordinate system 

consisting of a location  , ,x y z and proper timestamps   into the 

perceived coordinate system that consists of the spacetime coordinates 

 ', ', ', 'x y z ct in which 't  plays the role of coordinate time. The uniform 

velocity v  causes time dilation 
2

2

'

1

t
v

c


 =

−

 and length contraction 

2

2
' 1

v
L L

c
 =  −   

10.6.2 Minkowski metric 

Spacetime is ruled by the Minkowski metric. 

In flat field conditions, proper time τ is defined by 

 
2 2 2 2 2c t x y z

c


− − −
=    (10.6.8) 

And in deformed fields, still 

 2 2 2 2 2 2 2 2ds c d c dt dx dy dz= = − − −   (10.6.9) 
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Here ds  is the spacetime interval and d is the proper time interval. dt  

is the coordinate time interval 

10.6.3 Schwarzschild metric 

Polar coordinates convert the Minkowski metric to the Schwarzschild 

metric. The proper time interval d obeys 

 ( )
1

2 2 2 2 2 2 2 2 21 1 sins sr r
c d c dt dr r d d

r r
  

−

   
= − − − − +   

   
  (10.6.10) 

Under pure isotropic conditions, the last term on the right side 

vanishes.  

According to mainstream physics, in the environment of a black hole, 

the symbol sr  stands for the Schwarzschild radius. 

 
2

2
s

GM
r

c
=  (10.6.11) 

 

The variable r equals the distance to the center of mass of the massive 

object with mass M . 

The Hilbert Book model finds a different value for the boundary of a 

spherical black hole. That radius is a factor of two smaller. 

10.6.4 Event horizon 

The gravitational potential energy ( )U r   

 ( )
mMG

U r
r

=  (10.6.12) 

at the event horizon 
ehr r=  of a black hole is supposed to be equal to 

the mass-energy equivalent of an object that has unit mass 1m =  and is 

brought by an agent from infinity to that event horizon. Dark energy 
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objects are energy packages in the form of one-dimensional shock 

fronts that are a candidate for this role. Photons are strings of 

equidistant samples of these energy packages. The energy equivalent of 

the unit mass objects is  

 2

eh

mMG
E mc

r
= =  (10.6.13) 

Or  

 
2eh

MG
r

c
=  (10.6.14) 

At the event horizon, all energy of the dark energy object is consumed 

to compensate for the gravitational potential energy at that location. 

No field excitation and in particular no shock front can pass the event 

horizon. 

10.7 Inertial mass 

The Lorentz transform also gives the transform of the rest mass to the 

mass that is relevant when the embedding field moves relative to the 

floating platform of the observed object with uniform speedv . 

In that case, the inertial mass M relates to the test mass M0 as 

 0
0 2

2
1

M
M M

v

c

= =

−

 (10.7.1) 

This indicates that the formula Fout! Verwijzingsbron niet gevonden. 

for the gravitational potential at distance r must be changed to 

 0

2

2

( )

1

M G
V r

v
r

c

=

−

   (10.7.2) 
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10.8 Inertia 

The relation between inertia and mass is complicated. We apply an 

artificial field that resists its changing. The condition that for each type 

of massive object, the gravitational potential is a static function, and the 

condition that in free space, the massive object moves uniformly, 

establish that inertia rules the dynamics of the situation. These 

conditions define an artificial quaternionic field that resists change. The 

scalar part of the artificial field is represented by the gravitational 

potential, and the uniform speed of the massive object represents the 

imaginary (vector) part of the field. 

The first-order change of the quaternionic field can be divided into five 

separate partial changes. Some of these parts can compensate for each 

other.  

Mathematically, the statement that in the first approximation nothing 

in the field  changes indicates that locally, the first-order partial 

differential   will be equal to zero. 

 , 0r r r r      =  =  −  +  +    =  (10.8.1) 

Thus 

 , 0r r r  =  −  =  (10.8.2) 

 0r r   =  +    =  (10.8.3) 

These formulas can be interpreted independently. For example, 

according to the equation (10.8.2), the variation in time of r  can 

compensate the divergence of  . The terms that are still eligible for 

change must together be equal to zero. For our purpose, the curl 

of the vector field   is expected to be zero. The resulting terms of the 

equation (10.8.3) are 
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 0r r  +  =  (10.8.4) 

In the following text plays  the role of the vector field and r plays the 

role of the scalar gravitational potential of the considered object. For 

elementary modules, this special field concerns the effect of the hop 

landing location swarm that resides on the floating platform on its 

image in the embedding field. It reflects the activity of the stochastic 

process and the uniform movement in the free space of the floating 

platform over the background platform. It is characterized by a mass 

value and by the uniform velocity of the floating platform with respect 

to the background platform. The real (scalar) part conforms to the 

deformation that the stochastic process causes. The imaginary (vector) 

part conforms to the speed of movement of the floating platform. The 

main characteristic of this field is that it tries to keep its overall change 

zero. The author calls   the conservation field. 

At a large distance r , we approximate this potential by using the 

formula 

 ( )r

GM
r

r
   (10.8.5) 

Here M is the inertial mass of the object that causes the deformation. 

The new artificial field ,
GM

v
r


 

=  
 

considers a uniformly moving mass 

as a normal situation. It is a combination of scalar potential 
GM

r
 and 

speed v . This speed of movement is the relative speed between the 

floating platform and the background platform. At rest this speed is 

uniform. 

If this object accelerates, then the new field ,
GM

v
r

 
 
 

 tries to counteract 

the changev of the vector field v  by compensating this with an 
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equivalent change of the scalar part 
GM

r
 of the new field  . According 

to the equation (10.8.4), this equivalent change is the gradient of the 

real part of the field. 

 
3

GM GM r
a v

r r

 
= = − = 

 

 
 (10.8.6) 

This generated vector field acts on masses that appear in its realm. 

Thus, if two uniformly moving masses m  and M  exist in each other’s 

neighborhood, then any disturbance of the situation will cause the 

gravitational force 

 ( )
( ) ( )0 1 2 0 0 1 2

1 2 0 3 3

1 2 1 2

Gm M r r Gm M r r
F r r m a

r r r r


− −
− = = =

− −
 (10.8.7) 

Here 0M M=  is the inertial mass of the object that causes the 

deformation. 
0m is the rest mass of the observer. 

The inertial mass M relates to its rest mass 0M  as 

 0
0 2

2
1

M
M M

v

c

= =

−

 (10.8.8) 

This formula holds for all elementary particles except for quarks.  

The problem with quarks is that these particles do not provide an 

isotropic symmetry difference. They must first combine into hadrons to 

be able to generate an isotropic symmetry difference. This 

phenomenon is known as color confinement. 

10.9 Momentum 

In the formula (10.8.7) that relates mass to force the factor  that 

corrects for the relative speed can be attached to 0m  or to 0M  
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 ( )
( )0 0 1 2

1 2 3

1 2

Gm M r r
F r r

r r


−
− =

−
 (10.9.1) 

The force relates to the temporal change of the momentum vector P of 

the observer 

  
dP

F P
dt

= =  (10.9.2) 

The momentum vector P  is part of a quaternionic momentum P . The 

momentum depends on the relative speed of the moving object that 

causes the deformation which defines the mass. The speed is 

determined relative to the field that embeds the object and that gets 

deformed by the investigated object. For free elementary particles, the 

speed equals the floating speed of the platform on which the particle 

resides. 

 
rP P P= +  (10.9.3) 

 
22 2

rP P P= +  (10.9.4) 

 
0P m v=  (10.9.5) 

 
2 22 2

0P m v=  (10.9.6) 

 
2 22 2 2 2 2 2

0 0rP m c P m v = = +  (10.9.7) 

 
0 /P m c E c= =  (10.9.8) 

 2

0E m c=  (10.9.9) 

 
( )

22 2 2 2 2 2

0 0

2
22 2 2 2 2 2 2 2

0 0 01

rP m c m v

v
m c v m c m c

c

 

 

= −

 
= − = − =  

 

 (10.9.10) 
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0r

E
P m c

c
= =  (10.9.11) 

 
0P m v=  (10.9.12) 

 

 
0 0 0r

E
P P P m c m v m v

c
 


= + = + = +  (10.9.13)

  

If 0v =  then 0P =  and 0rP P P m c= = =  

Here Einstein’s famous mass-energy equivalence is involved. 

 2 2

0E m c mc= =  (10.9.14) 

The disturbance by the ongoing expansion of the embedding field 

suffices to put the gravitational force into action. The description also 

holds when the field  describes a conglomerate of platforms and 2M

represents the mass of the conglomerate. 

The artificial field  represents the habits of the underlying model that 

ensures the constancy of the gravitational potential and the uniform 

floating of the considered massive objects in free space. 

Inertia ensures that the third-order differential (the third-order change) 

of the deformed field is minimized. It does that by varying the speed of 

the platforms on which the massive objects reside. 

Inertia bases mainly on the definition of mass that applies to the region 

outside the sphere where the gravitational potential behaves like the 

Green’s function of the field. There, the formula r

GM

r
 = applies. 

Further, it bases on the intention of modules to keep the gravitational 

potential inside the mentioned sphere constant. At least that holds 
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when this potential is averaged over the regeneration period. In that 

case, the overall change    in the conservation field  equals zero. Next, 

the definition of the conservation field supposes that the swarm which 

causes the deformation moves as one unit. Further, the fact is used that 

the solutions of the homogeneous second-order partial differential 

equation can superpose in new solutions of that same equation. 

The popular sketch in which the deformation of our living space is 

presented by smooth dips is obviously false. The story that is 

represented in this paper shows the deformations as local extensions of 

the field, which represents the universe. In both sketches, the 

deformations elongate the information path, but none of the sketches 

explain why two masses attract each other. The above explanation 

founds on the habit of the stochastic process to recurrently regenerate 

the same time average of the gravitational potential, even when that 

averaged potential moves uniformly. Without the described habit of the 

stochastic processes, inertia would not exist. 

The applied artificial field also explains the gravitational attraction by 

black holes. 

The artificial field that implements mass inertia also plays a role in other 

fields. Similar tricks can be used to explain the electrical force from the 

fact that the electrical field is produced by sources and sinks that can be 

described with the Green’s function.  

10.9.1 Forces 

In the Hilbert repository, all symmetry-related charges are located at 

the geometric center of an elementary particle and all these particles 

own a footprint that for isotropic symmetry differences can deform the 

embedding field. In that case, the particle features mass and forces 

might be coupled to acceleration via  
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 F ma=  (10.9.15) 

Or to momentum via F P=  (10.9.16) 

11 From hopping path to Lagrangian 

We restrict our view to a complex-number-based Hilbert space that 

orients along direction n  of the current displacement generator p  

The hopping path is a series of hop landing locations { }ia  We divide 

each hop in steps. 

1. Change to Fourier space. This involves inner product
ia p  

2. Evolve during an infinitesimal progression step into the future.  

a. Multiply with the corresponding displacement generator
p  

b. The generated step in configuration space is ( )1i ia a+ − . 

c. The action contribution in Fourier space is 1, i ip a a+ − . 

d. This combines in a unitary factor ( )1exp , i in p a a+ −    

3. Change back to configuration space. This involves inner 

product
1ip a +

 

a. The combined term contributes a factor

( )1 1exp ,i i i ia p n p a a p a+ +− . 

 

Two subsequent steps give: 

 ( ) ( ) 211 1 2exp , exp ,i ii i i i i ip a aa p n p a a n p a a p ap++ ++ +− −  

 (11.1.1) 

The terms in the middle turn into unity. The other terms also join. 

 
( ) ( )

( )

1 2 1 2

2 2

exp , exp ,

exp ,

i i i i i i

i i i i

a p n p a a n p a a p a

a p n p a a p a

+ + + +

+ +

− −

= −
  (11.1.2) 
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Over a full particle generation cycle with N steps this results in: 

 

( )

( )

( )

1

1 1

1

1 1

1 1

2

1

exp ,

exp ,

exp ,

exp

N

i i i i

i

N N

N

i i N

i

N

a p n p a a p a

a p n p a a p a

a p n p a a p a

a p nL p a

−

+ +

=

+

=

−

= −

 
= − 

 

=





  (11.1.3) 

 
1

2

, ,
N

i i

i

Ld p a a p dq +

=

= − =   (11.1.4) 

 ,L p q=   (11.1.5) 

 

L is known as the Lagrangian. p  is the displacement generator. q is 

the speed of the platform on which the particle resides. The image of 

the particle moves over the embedding field. 

The equation (11.1.5) holds for the special condition in which p  is 

constant. If p  is not constant, then the Hamiltonian H varies with 

location. 

 
i

i

H
p

q


= −


  (11.1.6) 

 
i

i

H
q

p


=


  (11.1.7) 

 
i

i

L
p

q


=


  (11.1.8) 

 
i

i

L
p

q


= −


  (11.1.9) 

 
H L

 

 
= −

 
  (11.1.10) 
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i i

d L L

d q q

 
=

 
  (11.1.11) 

 
3

1

i i

i

H L q p
=

+ =    (11.1.12) 

Here we used proper time 𝜏 rather than coordinate time 𝑡. 
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