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Abstract

Recently, we have demonstrated that the Dirac equation can be cast
into a form involving higher-order spinors. We have shown that the trans-
formed Dirac equation splits into two equations, describing charged spin
0 and (massless) spin % particles. We apply this result to the problem of
spin-charge separation.

1 Introduction

It was found in a very recent experiment that in a solid-state, under extreme
conditions, the electron behaves as if made of two particles — one spinless particle
carrying a negative charge (known as a holon) and another having spin % (a
spinon) [1]. For a comment on this discovery, see [2]. Kivelson, Rokhsar, and
Sethna proposed existence of such a spin-charge separation [3] in the context of
quantum spin liquids (QSL), predicted by Anderson [4].

Recently, we have demonstrated that the Dirac equation can be cast into
a transformed form involving higher-order spinors [5[6]. Furthermore, we have
demonstrated that such solutions can describe decaying, unstable particles —
the transformed Dirac equation splits into two equations, describing spin 0 and
(massless) spin 1 particles.

We shall examine the possibility that this splitting of the Dirac equation can
correspond to the spin-charge separation of the electron.

In the next Section, we split the Dirac equation in the interacting case,
following approach described in [5|6], obtaining three equations: two spin 0
equations, describing particles with charge ¢ and —¢, and one massless spin %
Weyl equation.

Finally, in Section we apply our results to the problem of spin-charge
separation.
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2 Splitting the Dirac equation

The Dirac equation:

VU =mU, (1)
in spinor notation is [7]:
AP = me! } . (2)
TapST = Mg

In what follows tensor and spinor indices are p = 0,1,2,3 and A = 1,2,
B = 1,2, respectively. Note that m; = 722, 7,5 = —72, Ty = —7'2, 75 = w1
The Minkowski space-time metric tensor is g = diag (1,—1,—1,—1) and we
sum over repeated indices. Four-momentum operators are defined as p* = i%
where natural units are used: ¢ = 1, h = 1. The interaction is introduced via
minimal coupling,

plt —s Tt = pﬂ _ q‘AN7 (3)

with a four-potential A* and a charge q.
We have demonstrated that for a class of longitudinal potentials [8] Eq.
can be written in a covariant form as [5,/6]:
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with higher-order spinors defined as:
1 1 2 2 1 1 2 2
7T1j_§ = m¢1ia 7T2]'_§ = mngv 7T12£ = m¢127 7T2?€ = mw227 (5)

however, some components of the spinor wiB are missing.

The problem of missing components of spinor wg & is quite severe because
the theory is not fully covariant. Therefore, to solve the problem in the spirit
of Ref. |9], we make the following assumptions:

¢ (z) = ot (z) X (), &% (z) = o® () x (Tz), (6)
be (@) =at (@) xpe (), ¥2, (x) =a® (@) xep (),
where . R §
o= (i T ) ™

and o (z) = a4e~ % ktk, = 0, is a two-component neutrino spinor, i.e. it

fulfills the Weyl equation [7]:

pABOéA (z) =0. (8)



Substituting @ into Eq. (), with o () fulfilling , we get Klein-Gordon-
type equations with rescaled four momentum 7, = 7, + k,:

(77" +igE (2°,2°) + qH (z',2%)) x = m®y, (9a)
(7?”7?“ —iqE (xo,xs) —qH (:cl, xz)) x = m2y, (9Db)

where F = 80A3 —831407 H = 8214]_ —81A2 and E = (O, 07 E), H= (O, 0, H)

3 Dual nature of the electron

Recently, quantum oscillations have been observed in the spin-liquid state of
a-RuCly at temperatures T < 0.4 K and in a magnetic field H € (7.3, 11)
Tesla [1]. These observations suggest the existence of spinons in a QSL.

On the theoretical side, we have shown in Section [2 that the Dirac equation
for the electron in longitudinal fields can be transformed into a spin 0 Klein-
Gordon-type equations @, describing particles with charge ¢ and —¢, and a
spin % Weyl equation (§]), describing a neutrino. Therefore, we have achieved,
within the formalism of the Dirac equation, a spin-charge separation into a holon
and antiholon, described by Egs. @, plus a spinon, described by the massless

Weyl equation .
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