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Abstract 

A twin prime is a pair of prime numbers of the form (p, p + 2). The assumption that twin primes 

exist infinitely is called Twin Prime Conjecture(TPC). But, up to date there is no valid proof of TPC. In 

this thesis we devised Twin Prime Model Table(TPMT) and Sieve Functions(SFs). We found that the 

sieve patterns of TPMT are equivalent to phased SFs. By using the periodicity of sinusoidal functions, 

we proved that TPC is true.  

1. Introduction 

TPC [1][2] states that there are infinitely many prime pairs with distance 2, like (3, 5), (11, 

13). Whether there exist infinitely many twin primes has been one of the great questions in 

number theory for many years and still the question is not answered.  

In 2013, Yitang Zhang [3][4] proved that there are infinitely many prime pairs that differ 

by (pn+1 − pn) < 7×107, where pn is the n’th prime. After Zhang’s discovery mathematicians like 

Terence Tao [5] and James Maynard [6][7] reduced the gap to 6 [2]. 

Instead narrowing the prime gaps, we devised Twin Prime Model Table(TPMT) and Sieve 

Functions(SFs), where we found enough sieve patterns to prove TPC. TPMT is a infinitely 

expandable 2-dimensional arrangement of all possible twin prime pairs, from which we could 

see how twin primes are found. SFs are functional representation of the sieve of Eratosthenes. 

By the use of TPMT and SFs, we could clearly see the underlying sieve patterns of TPC that 

became the basis of our proof.  

2. Twin Prime Model Table(TPMT) 

Lemma 2.1. Twin Prime Pairs(TPPs), except (3, 5), have the form (6n - 1, 6n + 1), n = 1, 2, 

3, …. 

Proof. If odd multiples of 3, like 9, 15, 21, exist between two odd numbers, as in 5, 7, 9, 11, 

13, 15, 17, 19, 21, 23, 25, 27, 29, …, the gap of two possible prime numbers will be greater 

than 2, failing to be a TPP. So, by removing multiples of 3 from odd number sequence, we get 

the form (6n - 1, 6n + 1) like (5, 7), (11, 13), (17, 19), (23, 25).                            ■ 



 

 

                           

                                                

- 2 - 

 

TPMT is a 2-dimensional table that shows how twin primes are found. Our idea is that if 

we treat (6n - 1, 6n + 1) as a single vertical entity with a sequence number n, and arrange 

them in a 2-dimensional table, we may see some underlying patterns of TPC.  

Definition 2.2. Twin Prime Model Table(TPMT): TPMT is an infinitely expandable 2-

dimensional table, which arranges all possible twin prime pairs of the form (6n - 1, 6n + 1), n 

= 1, 2, 3, …, horizontally and vertically, and has the following properties. Table 1 shows the 

initial part of TPMT.  

Table 1. Initial part of TPMT. 

n 6n-1 6n+1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65 67 71 73 77 79 83 85 89 91 95 97 101 103 107 109 

1 5 7 1d 1u                                   

2 11 13   1d 1u                                 

3 17 19     1d 1u                               

4 23 25 5u      1d 1u                             

5 29 31         1d 1u                           

6 35 37 7d 5d         1d 1u                         

7 41 43             1d 1u                       

8 47 49  7u             1d 1u                     

9 53 55 11u  5u              1d 1u                   

10 59 61                   1d 1u                 

11 65 67 13d   5d                 1d 1u               

12 71 73                       1d 1u             

13 77 79  11d 7d                      1d 1u           

14 83 85 17u    5u                      1d 1u         

15 89 91  13u  7u                         1d 1u       

16 95 97 19d     5d                         1d 1u     

17 101 103                                 1d 1u   

18 107 109                                   1d 1u 

* For larger TPMT, refer to http://re360.kr/$$$twin-6n.asp. 

 Horizontal arrangement.  

- n: Sequence of possible twin prime pairs. TPPs are marked as red. 

- 6n – 1: Smaller number of a possible TPP. Primes are marked as red. 

- 6n + 1: Larger number of a possible TPP. Primes are marked as red. 

- (5, 7), (11, 13), (17, 19), … : Horizontal arrangement of all possible twin prime pairs. 

 Vertical arrangement.  

- Sets {n, 6n - 1, 6n + 1}, n = 1, 2, 3, … are vertically arranged. If (6n - 1, 6n + 1) is 

a TPP, {n, 6n - 1, 6n + 1} is marked as red.  

http://re360.kr/$$$twin-6n.asp
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 Inner cells.  

- Inner cells are empty or marked as md or mu, where m = 1, 5, 7, 11, … and will be 

explained below. 

Definition 2.3. Seed value: A number in the first row 5, 7, 11, 13, .... is called a seed value 

which is used in sieving out 6n – 1 or 6n + 1. We used s or si as a seed value variable. 

Definition 2.4. Up-number and down-number: In (6n - 1, 6n + 1), 6n – 1 is down-number and 

denoted by d, 6n + 1 is up-number and denoted by u. So, (6n - 1, 6n + 1) can be denoted as 

(down-number, up-number) = (d, u). 

If 6n – 1 or 6n + 1 is divisible by some seed value s, it is sieved out and is marked as md 

or mu, where m = 5, 7, 11, 13, …. If down-number 6n – 1 = ms, it is marked as md. If up-

number 6n + 1 = ms, it is marked as mu. 

If m = 1, it is marked as (1d, 1u) pair, which means that a (6n - 1, 6n + 1) pair is always 

divisible by (6n - 1, 6n + 1) pair itself. So, it does not mean sieved out. If one or two in (6n – 

1, 6n + 1) pair is sieved out, then (6n – 1, 6n + 1) can not be a TPP, because at least one of 

(6n – 1, 6n + 1) can not be prime.  

Definition 2.5. Vertical pair: A pair (6n - 1, 6n + 1) which is vertically arranged and mapped 

to an integer sequence n.  

Definition 2.6. Horizontal pair: A pair (6n - 1, 6n + 1) in horizontal head row which are used 

as seed values.  

From the above definitions, we can see the following sieve out patterns between 

horizontal and vertical pairs.  

 Sieve out patterns between horizontal and vertical pairs.  

- Diagonal (1d, 1u) pair pattern: A horizontal (6n - 1, 6n + 1) pair always divides a 

vertical pair when they are same. So, (1d, 1u) pair appears diagonally.  

- Vertical pattern: For a horizontal pair, the first downward non-empty pair is always 

(1d, 1u). For a seed value s, (u, d) or (d, u) pattern repeats vertically. This is 

because, for m = 1, 5, 7, 11, …, ms = 6n -1 or ms = 6n + 1 match occurs alternately.  

From the above sieve out patterns and divisibility between horizontal and vertical pairs, 

we can derive the following lemma.  

Lemma 2.7. In TPMT, if all cells left side of a diagonal (1d, 1u) pair are empty, then the 

corresponding (6n - 1, 6n + 1) is a TPP. 

Proof. If all cells left side of a diagonal (1d, 1u) pair are empty, the corresponding (6n - 1, 6n 

+ 1) is divisible only by itself, so, it is a TPP.                                           ■ 
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Definition 2.8. Phases: Phases are the values of n where the first downward md or mu 

appears. There are two kinds of phases. One is down-phase pd, the value of n where the first 

md appears. The other is up-phase pu, the value of n where the first mu appears. 

 Phase examples: The phase pair of seed 11 is (pd, pu) = (2, 9). The phase pair of seed 

13 is (pu, pd) = (2, 11). Note that seed s = pd + pu. The phase pair will be used when 

defining phased Sieve Functions(pSFs). Table 2 shows some (pd, pu) or (pu, pd) pairs. 

Table 2. Phase patterns. 

The sieve patterns of TPMT is summarized in Figure 1.  
 

 

 
 
 
 
 

 
 

 

Figure 1. Sieve patterns of TPMT. 

Seed 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 ... 

Phases 1, 4 1, 6 2, 9 2, 11 3, 14 3, 16 4, 19 4, 21 5, 24 5, 26 6, 29 6, 31 7, 34 7, 36 8, 39 8, 41 ... 

20 119 121  17d 11u  7d      ……… 1d 1u 

(6n-1, 6n+1) = (5, 7) is always divisible by (5, 7) itself, so, 
(1d, 1u) pair occurs diagonally. 

 

If left side cells of (1d, 1u) are all empty, it means that (6n-1, 
6n+1) is divisible only by itself, so, it is a TPP(Lemma 2.7). 

Left side cells of (1d, 1u) are not all empty. Down 
value 6n-1=65 is sieved out by seed 5 and 13. 

Left side cells of (1d, 1u) are not all empty. Up value 
6n+1=91 is sieved out by seed 7 and 13. 

n is an ordinary 
integer sequence 
sequence. 

 

Vertical pattern {n, 6n – 1, 6n + 1} is treated as an inseparable single entity. If one of 
(6n – 1, 6n + 1) is sieved out, it is considered that the corresponding n is sieved out. 

When n=20, (6n – 1, 6n + 1)=(119, 121). 6n – 1=119 is sieved out by seed 7 and 17. 6n + 
1=121 is sieved out by seed 11. So, (119, 121) can not be a TPP. 
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3. Sieve View of TPC 

In Table 1, we can see that every vertical pair (6n - 1, 6n + 1) is matched to a number 

sequence n = 1, 2, 3, …. So, we can transform sieving out vertical pairs (6n - 1, 6n + 1) to 

sieving out numbers from n = 1, 2, 3, …, as in Figure 2.  

seeds 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 ... s .... ... 

                    

                    

                    

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15   Ω  

Figure 2. Sieving out numbers from a natural number sequence n. 

In Figure 2, arrows from each seed, sieve out numbers from a natural number sequence 

n = 1, 2, 3, … and the unsieved n represents a TPP. For example, for n = 1, (6n – 1, 6n + 1) 

= (5, 7) is a TPP. For n = 7, (6n – 1, 6n + 1) = (41, 43) is also a TPP. But for n = 6, (6n – 1, 

6n + 1) = (35, 37) can’t be a TPP, because 6 is sieved out by seeds 5 and 7. 

So, TPC is same as whether the seed values 5, 7, 11, 13, … can sieve out all integers 

after some specific number Ω which is marked as red in Figure 2. If such a specific number 

Ω exist, it means that TPPs are finite, and TPC is false.  

In this section, we transformed TPC view to a sieve view of an ordinary integer sequence 

n = 1, 2, 3, …, similar to the sieve of Eratosthenes. 

4. Sieve Functions 

To prove the infinitude of TPPs by using the periodicity of sinusoidal functions, we 

introduce SFs and Composite Sieve Function(CSF). 

Definition 4.1. Sieve Function(SF): A sine function, fi(x) = sin(πx/pi) where pi is the i’th prime 

number, p1 = 2. Examples of SF are shown in Figure 3. 

  

(a) SF for p1 = 2, f1(x) = sin(πx/2). (b) SF for p2 = 3, f2(x) = sin(πx/3). 

Figure 3. Example SFs. 

In Figure 3, the multiples of pi are the zeros of fi(x). So, we can say that numbers N = tpi, 

t = 2, 3, 4, … are sieved out by fi(x) = sin(πx/pi). When, t = 1, N= pi remains unsieved. 
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To show how SFs give functional view of the sieve of Eratosthenes, let’s invoke a well 

known lemma. 

Lemma 4.2. In sieve of Erastothenes of N number, we need to sieve out numbers which are 

the multiples of prime numbers only up to √𝑁. 

Proof. Suppose 𝑥𝑦 = 𝑁 = √𝑁√𝑁. If 𝑥 ≥ √𝑁, then 𝑦 ≤ √𝑁 and vice versa. Thus, if 𝑥𝑦 = 𝑁, 

then one of x or y must be less than or equal to √𝑁. This means that if N can be factored, 

one of the factors which will sieve out N, must be less than or equal to √𝑁.               ■ 

For example, to find out prime numbers between 1 to 50, we sieve out multiples of prime 

numbers between 2 and √50 > 7.07 , i.e., 2, 3, 5, 7. In functional view, four SFs, f1(x) = 

sin(πx/2), f2(x) = sin(πx/3), f3(x) = sin(πx/5), f4(x) = sin(πx/7) are required to sieve out all 

composite numbers between 1 and 51. 

Definition 4.3. Composite Sieve Function(CSF): A product of SFs, 𝐹𝑘(𝑥)  = ∏ 𝑓𝑖(𝑥)𝑘
𝑖=1 . An 

example CSF is depicted in Figure 4. 

 

Figure 4. Example CSF, k = 2, dotted or dashed graphs are SFs. 

Figure 4 depicts an example CSF, 𝐹2(𝑥) = ∏ 𝑓𝑖(𝑥)2
𝑖=1 = 𝑠𝑖𝑛(

𝜋𝑥

2
)𝑠𝑖𝑛(

𝜋𝑥

3
). The dotted or 

dashed graphs are 𝑓1(𝑥)  = 𝑠𝑖𝑛(
𝜋𝑥

2
)  and 𝑓2(𝑥)  = 𝑠𝑖𝑛(

𝜋𝑥

3
) . Numbers 𝑁 = 2𝑡  and  𝑁 =

3𝑡, 𝑡 = 2, 3, 4, … are sieved out by f1(x) and f2(x). The unsieved numbers between 1 and 25 

are all prime numbers, because 3 is the largest prime number less than 5 = √25. 

Definition 4.4. Sieved n: Integers that are sieved out by some sieve function. 

Definition 4.5. Unsieved n: Integers that are not sieved out by some sieve function. 

Lemma 4.6. A CSF 𝐹𝑘(𝑥)  = ∏ 𝑓𝑖(𝑥)𝑘
𝑖=1  is a periodic function with period ∏ 𝑝𝑖

𝑘
𝑖=1 . 

Proof. A CSF 𝐹𝑘(𝑥) is the product of k periodic sine functions with period pi, so, a CSF is also 

a periodic function with period ∏ 𝑝𝑖
𝑘
𝑖=1  [8][9].                                         ■ 

Lemma 4.7. Any CSF 𝐹𝑘(𝑥)  = ∏ 𝑓𝑖(𝑥)𝑘
𝑖=1  can not sieve out all integers after some specific 

number Ω. 

Proof 1. If some CSF 𝐹𝑘(𝑥) can sieve out all integers after a specific number Ω, it means 

that the prime numbers are finite, which contradicts.                                   ■ 

Proof 2. 𝐹𝑘(𝑥) is a finite-period function with unsieved n within its period. So, it will repeats 
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infinitely many times its period, which means that it is impossible to make all integers after 

some specific number Ω as sieved n.                                                ■ 

Lemma 4.7 states that any CSF 𝐹𝑘(𝑥) can not sieve out all integers after some specific 

number Ω, leaving infinite prime numbers, even though 𝑘 → ∞. Only 𝑠𝑖𝑛(𝜋𝑥) can sieve out 

all integers after a specific number Ω = 2. 

We also can prove the infinitude of prime numbers by induction.  

Lemma 4.8. There are infinitely many prime numbers.  

Proof. Let’s prove by induction.  

Step 1: At k = 1, there are infinitely many unsieved n of the sieve function F1(x). 

Step 2: Suppose, at k, there are infinitely many unsieved n of the sieve function Fk(x). 

Step 3: Then, at k + 1, adding a new seed pk+1, can not change that Fk+1(x) is a finite-period 

function, with unsieved n within its period. So, by Lemma 4.7, there are infinitely many 

unsieved n of the sieve function Fk+1(x), leaving infinitely many prime numbers.            ■ 

In this section, we introduced SFs and CSFs and showed that the sieve of Eratosthenes 

can be functionally treated by the sinusoidal sieve functions. The periodic property of 

sinusoidal sieve functions can give visible understanding on how prime numbers are found 

and why the last prime number can not exist.  

5. phased SFs 

In previous section we introduced SFs and CSFs with zero phase. That is to say, the 

phase of fi(x) = sin(πx/pi) is zero. But, the sieve patterns of TPMT have non-zero phases as 

in Definition 2.8. So, we need to define phased SFs. 

Definition 5.1. phased Sieve Function(pSF): A product of two sine functions, hi(x) = di(x)ui(x), 

down-sieve-function di(x) = sin{π(x – pd)/si)} and up-sieve-function ui(x) = sin{(π(x – pu)/si}, 

where si is the i’th seed of sequence s = 5, 7, 11, …, and (pd, pu) is a phase pair of i’th seed. 

The example graphs of hi(x) are depicted in Figure 5 (a) and (b). 

Definition 5.2. Composite phased Sieve Function(CpSF): The product of pSFs, Hk(x) = 

∏ ℎ𝑖(𝑥)𝑘
𝑖=1 , k = 1, 2, 3, …, as in Figure 5 (c). 
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(a) h1(x), s1 = 5. (b) h2(x), s2 = 7. 

- red: h1(x) = sin{π(x - 1)/5}sin{π(x - 4)/5}, period=5. 

- dotted: d1(x) = sin{π(x - 1)/5}, pd = 1. 

- dashed: u1(x) = sin{π(x - 4)/5}, pu = 4. 

- red: h2(x) = sin{π(x - 1)/7)sin(π(x - 6)/7)}, period=7. 

- dotted: u2(x) = sin{π(x - 1)/7}, pu = 1. 

- dashed: d2(x) = sin{π(x - 6)/7}, pd = 6. 

 

(c) H2(x) = 5h1(x)h2(x) (5 is multiplied for visual effect), period Q = 5*7 = 35. 

Figure 5. pSF and CpSF examples. 

Following Figure 6 shows how the sieve patterns of TPMT can be functionally 

implemented for s1 = 5, as in Figure 5 (a). 

 
 
 

 
 

Figure 6. Functional implementation of the sieve patterns of TPMT, s1 = 5. 
  

Down phase for seed s1=5 is pd=n=1. So, d1(x) = sin{π(x - 1)/5}. 

n=1, 2, 3, … is sieved by 
di(x) or ui(x). 

Up phase for seed s1=5 is pu=n=4. So, u1(x) = sin{π(x - 4)/5}. 

Graphs for seed s1 = 5. x-axis is n=1, 2, 3, … 
 

seed s1=5 
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Following Figure 7 shows how the sieve patterns of TPMT can be functionally 

implemented for s2 = 7, as in Figure 5 (b).  

 
 

 

Figure 7. Functional implementation of the sieve patterns of TPMT, s2 = 7.  
 

Like SFs and CSFs, pSFs and CpSFs are also periodic functions. Figure 8 depicts pSFs 

and CpSF with adjusted amplitude for visual effect. (a) depicts the graphs of di(x) and ui(x) 

for 18 seeds si = 5, 7, 11, …, 55, 1 ≤ i ≤ 18. (b) depicts H18(x) = h1(x)…h18(x). (c) depicts 

enlarged view of some zeros of (a). (d) depicts enlarged view of two concentration points 

inside the rectangle of (a). 

Figure 8. Graphs of pSFs and CpSF for the first 18 seeds.  

  

(a) di(x) and ui(x), 1≤i≤18. (b) CpSF H18(x). 

  

(c) Enlarged view of some zeros of (a). (d) Enlarged box in (a). 

B(1/6, -1/2) A(-1/6, -1/2) 

Up phase for seed s2=7 is pu=n=1. So, u2(x) = sin{π(x - 1)/7}. 

n=1, 2, 3, … is sieved by 
di(x) or ui(x). 

Down phase for seed s2=6 is pd=n=6. So, d2(x) = sin{π(x - 6)/7}. 

seed s2=7 

Graphs for seed s2 = 7. x-axis is n=1, 2, 3, … 
 



 

 

                           

                                                

- 10 - 

 

In Figure 8 (c), at least two graphs will cross n = 1, 2, 3, …, which stands for diagonal (1d, 

1u) pair in Table 1. Extra crosses stand for md or mu in Table 1, m ≠ 1. For example, for n = 

6, all the left side cells of (1d, 1u) are not empty. There are two non-empty cells with 7d and 

5d, So, 4 graphs cross 6, and (6n – 1, 6n + 1) = (35, 37) can’t be a TPP.  

 Meaning of zeros: Figure 8 (c) is enlarged view of some zeros of (a). Two graphs 

cross 3, 5 and 7, meaning that all cells left side of (1d, 1u) in Table 1 are empty for n 

= 3, 5, 7, resulting TPPs. For n = 4, 6, more than two graphs cross them, meaning that 

in Table 1, left side cells of (1d, 1u) are not all empty for n = 4, 6, failing to be TPPs. 

So, in view of phased SFs, sieved n are integers that are crossed more than twice by 

graphs of di(x) and ui(x), and let’s call it sieved n of the sieve function Hk(x). Likewise, unsieved 

n are integers that are crossed twice by the graphs of di(x) and ui(x), and let’s call it unsieved 

n of the sieve function Hk(x). 

Each graphs of (a) crosses one of the two points, we call them concentration points.  

 Concentration points: Figure 8 (d) shows two concentration points where all graphs 

of (a) should pass. Which point to pass is determined by the following rules.  

- Rule 1: For ui(x) = sin{π(x - pu)/si)}, where pu is up-phase of seed si and si = 6i + 1, 

ui(-1/6) = sin{-π/6(6· pu + 1)/(6i + 1)}. So, when i = pu it will be sin(-π/6) = -1/2. This 

means that graphs with up-phase will pass A(-1/6, -1/2). For example, for seed 

value 5, (pd, pu) = (1, 4), sin{π(x - 4)/5} = sin{π(-1/6 - 4)/5} = sin(-π5/6) = sin(-π/6).  

- Rule 2: For di(x) = sin{π(x - pd)/si)}, where pd is down-phase of seed si and si = 6i 

- 1, di(1/6) = sin{-π/6(6· pd - 1)/(6i - 1)}. So, when i = pd it will be sin(-π/6) = -1/2. 

This means that graphs with down-phase will pass B(1/6, -1/2). For example, for 

seed value 5, (pd, pu) = (1, 4), sin{π(x - 1)/5} = sin{π(1/6 - 1)/5} = sin(-π/6).  

In this section, we introduced pSFs and related functions with non-zero phases. The 

periodic properties of pSFs and CpSFs are similar to those of SFs and CSFs, because they all 

inherit the properties of sinusoidal functions. By doing so, the sieve patterns of TPMT can be 

implemented as the pSFs and CpSFs, and we are ready to prove TPC. 
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6. Proof of TPC 

Lemma 6.1. A CpSF Hk(x) is periodic with period 𝑄 = ∏ 𝑠𝑖
𝑘
𝑖=1 . 

Proof. Hk(x) is the product of k periodic pSFs hi(x) with period si, so, it is also periodic with 

period 𝑄 = 𝑠1𝑠2 … 𝑠𝑘 = ∏ 𝑠𝑖
𝑘
𝑖=1 .                                                     ■ 

Lemma 6.2. A CpSF Hk(x) can’t make all integers after some specific number Ω as sieved n.  

Proof. Hk(x) is a finite-period function with non-sieved n within its period. So, it will repeats 

infinitely many times its period, which means that it is impossible to make all integers after a 

specific number Ω as sieved n.                                                     ■ 

Lemma 6.3. There are infinitely many TPPs.  

Proof. Let’s prove by induction.  

Step 1: At k = 1, there are infinitely many unsieved n of the sieve function H1(x). 

Step 2: Suppose, at k, there are infinitely many unsieved n of the sieve function Hk(x). 

Step 3: Then, at k + 1, adding a new seed sk+1, can not change that Hk+1(x) is a finite-period 

function, with unsieved n within its period. So, by Lemma 6.2, there are infinitely many 

unsieved n of the sieve function Hk+1(x), leaving infinitely many corresponding TPPs.       ■ 

7. Conclusion 

In this thesis, we devised TPMT and SFs to prove TPC. In TPMT a TPP is found where all 

left cells of (1d, 1u) are empty. We also transformed TPC view to the sieving out of a natural 

number sequence n = 1, 2, 3, …. By introducing SFs and CSFs, we can have functionally 

equivalent representations of the sieve of Eratosthenes. We showed that the proof of Euclid for 

the infinitude of prime numbers, is equivalent to the fact that the CSFs can not sieve out all 

integers after some specific number Ω. To functionally implement the sieve patterns of TPMT, 

we introduced pSFs and CpSFs, where the phase values are not all zeros. The periodic 

properties of pSFs and CpSFs are similar to those of SFs and CSFs, even though phase values 

are not all zeros. A periodic function repeats values within a period infinitely many times. If the 

values within a period are TPPs, they will also repeat infinitely many times, proving that TPPs 

can not be finite.  
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