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The Theorem on the Magnetic Field of Rotating Charged Bodies

Sergey G. Fedosin*

Abstract—The method of retarded potentials is used to derive the Biot-Savart law, taking into account
the correction that describes the chaotic motion of charged particles in rectilinear currents. Then this
method is used for circular currents, and the following theorem is proved: The magnetic field on the
rotation axis of an axisymmetric charged body or charge distribution has only one component directed
along the rotation axis, and the magnetic field is expressed through the surface integral, which does not
require integration over the azimuthal angle φ. In the general case, for arbitrary charge distribution
and for any location of the rotation axis, the magnetic field is expressed through the volume integral, in
which the integrand does not depend on the angle φ. The obtained simple formulas in cylindrical and
spherical coordinates allow us to quickly find the external and central magnetic field of rotating bodies
on the rotation axis.

1. INTRODUCTION

In the general case, stationary motion of a charged particle consists of rectilinear motion at a constant
velocity and rotational motion at a constant angular velocity. Each of these motions in its own way
leads to appearance of the corresponding magnetic field vector, so that the total magnetic field of a
particle can be found by adding these two magnetic field vectors. If we consider the stationary motion of
a set of particles or motion of a charged body, then the total magnetic field of the system can be found
based on the superposition principle as the sum of the magnetic field vectors of individual particles.

The result of flow of a rectilinear current of charged particles has been studied quite well, and for
this case there is an experimentally derived Biot-Savart law, which can be written in a simplified form
as follows [1]:

B(1) =
µ0

4π

∫

2

[j × r12] dV

r3
12

(1)

where B(1) is the magnetic field induction at a certain fixed point 1, calculated using the integral over
the volume of area 2 occupied by the currents flowing in it; µ0 is the vacuum permeability; j is the
electric current density vector inside area 2, depending on the coordinates, but not on the time; r12 is
the vector from the point with the current inside area 2 to point 1; the quantity [j × r12] is the vector
product of j and r12.

There are various possible approaches, in which Equation (1) is found. As shown in [2], within
the framework of the special theory of relativity, the magnetic field corresponding to Eq. (1) can be
calculated as a consequence of the Lorentz transformations for the electromagnetic force, acting from
one charged particle on another particle. Just as well, we can use the Lorentz transformation of the
components of the electromagnetic tensor Fµν from the moving reference frame K ′, where there is only
the electric field E′, into the stationary reference frame K.
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Indeed, by definition, Fµν = ∂µAν − ∂vAµ, where ∂µ = ∂
∂xµ = ( ∂

c∂t ,
∂
∂x , ∂

∂y , ∂
∂z ) is a four-gradient;

Aµ = (ϕ
c ,−A) is a four-potential, expressed in terms of the scalar electric potential ϕ, the speed of light

c, and the vector potential A = (Ax, Ay, Az). Given that Aµ is a four-vector, and the same is true for
∂µ in the special theory of relativity, the Lorentz transformations can be applied both to Aµ and to ∂µ.
In this case, the components of any four-vector aµ are transformed in the same way as the components
of the four-dimensional quantity xµ = (cdt,−x,−y,−z) that defines the location of a point in space and
time. All this leads to the Lorentz transformations for the electromagnetic tensor components, so that
in the coordinate notation we have

Fµν = Λ ρ
µ Λ σ

ν F ′

ρσ ,

where the four-dimensional quantities Λ ρ
µ define the corresponding Lorentz transformation.

Since the nonzero tensor components equal F01 = −F10 = Ex

c , F02 = −F20 =
Ey

c , F03 = −F30 = Ez

c ,
F32 = −F23 = Bx, F13 = −F31 = By, F21 = −F12 = Bz, then for the electromagnetic field components
in K we obtain the following:

Ex = E′

x, Ey = γ
(

E′

y + V0B
′

z

)

, Ez = γ
(

E′

z − V0B
′

y

)

Bx = B′

x, By = γ
(

B′

y − V0E
′

z/c
2
)

, Bz = γ
(

B′

z + V0E
′

y/c
2
)

.
(2)

In expressions (2) we set B′ = (B′

x, B′

y, B
′

z) = 0, then the magnetic field in K will equal

B = (0,−γV0E
′

z/c
2, γV0E

′

y/c
2), where V0 is the velocity of motion of the reference frame K ′ in K

along the axis OX, the Lorentz factor γ = 1√
1−V 2

0
/c2

. Let us suppose that the electric field in K ′ arises

from the static charge distribution with the constant charge density ρ0q. This can be written as follows

E′ =
ρ0q

4πε0

∫

(R′ − r′) dV ′

|R′ − r′|3

where R′ is a vector from the distribution center to the observation point; r′ is a vector from the
distribution center to an arbitrary point in the volume of the charge distribution; the integration is
performed over the volume V ′ of the charge distribution, which is fixed in K ′. Then the magnetic field
in K, in view of the relations c2µ0ε0 = 1, j = γρ0qV0, can be represented by the formula

B =
µ0

4π

∫

[j × (R′ − r′)] dV ′

|R′ − r′|3

where primed quantities are specified in K ′.
Let us suppose now that a certain volume V is uniformly filled with a set of moving charge

distributions, so that V =
∫

dV ′, dV = dV ′, and we need to find the total magnetic field outside
the volume V . In this case, we can use the superposition principle for the magnetic fields. Instead
of R′ − r′ now we should use r12 = R − r2, where R is a vector from the center of the volume V to
observation point 1, and r2 is a vector from the center of the volume V to point 2 with the current
density j in the volume V . This gives

B(1) =
µ0

4π

∫

2

[j × r12] dV

r3
12

which coincides with Eq. (1). Expression (1) is also obtained from the general solution of the wave
equation for the vector potential in case of constant currents [3].

Formula (1) is one of the main formulas in magnetostatics to calculate in the first approximation
the magnetic field of constant distributed currents. As for the case of rotational motion of charged
particles, this situation is more complex, since rotation is not described by an inertial reference frame.
When a charged body rotates, the charged particles of this body also rotate, which leads to the current
density j, while the vector j is usually directed tangentially to the curves along which the charges rotate.
The non-rectilinearity of the vector j inside the rotating charged body markedly affects the resulting
magnetic field, and therefore a different formula is required instead of Eq. (1).

In [4, 5] it was shown that the stationary magnetic field of axisymmetric rotating charge distribution,
in principle, can be expressed in terms of the strength E and the scalar potential ϕ of the electric field of
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this distribution. If the motion of charged particles is rectilinear, the magnetic field is expressed only in
terms of E in full accordance with the Lorentz transformations for the components of the electromagnetic
field tensor in inertial reference frames. This once again underlines the difference between rectilinear
motion and rotational motion and the need for different formulas for the magnetic field, depending on
the type of motion.

In this regard, our goal will be to derive relativistic formulas for magnetic fields arising from a
system of constant currents and from a stationary rotating charge distribution. In contrast to the above
approaches, the magnetic field will be calculated taking into account the intrinsic chaotic motion of
charges. In the next section, we will briefly present the relativistic expression for the Biot-Savart law
and estimate its accuracy, and in Section 3 we will pass on to the analysis of rotational motion of charges
and currents and to the proof of the theorem on the magnetic field for this case.

2. RECTILINEAR MOTION OF CHARGES

In order to estimate the accuracy of formula (1) for the magnetic field of stationary currents, it is
necessary to proceed from the basis of the electromagnetic theory. As a starting point, we will use the
method of retarded potentials [6, 7], according to which the scalar and vector potentials outside of an
arbitrarily moving charged point particle with the number n are expressed by the formulas:

ϕn =
qn

4πε0

(

R̂P − v̂ · R̂P /c
) , An =

µ0qnv̂

4π
(

R̂P − v̂ · R̂P /c
) =

ϕnv̂

c2
(3)

where qn is the particle charge; ε0 = 1
µ0c2

is the vacuum permittivity; v̂ is the particle velocity at an

early time point t̂; R̂P is the vector from the charged particle to the point P at which the potentials
ϕn and An are calculated; the vector R̂P has the length R̂P and is calculated at an early time point t̂;
c is the speed of light.

The early time point is defined by the formula:

t̂ = t − R̂P

c
. (4)

The meaning of this equality lies in the fact that during the time t − t̂ the electromagnetic action
from the charge qn must travel the distance R̂P at the speed c to the point P with the radius-vector
R = (x, y, z) in order for the potentials ϕn and An to appear at this point.

In the four-dimensional formalism of Minkowski spacetime, the characteristic of the electromagnetic
field is the four-potential, which for the particle under consideration has the form:

Aµ =
(ϕn

c
,−An

)

=
ϕ′

n

c2
uµ =

ϕ′

n

c2
(γvc,−γvv) (5)

All the unprimed quantities in Eq. (5), including ϕn, An, γv, and v, are measured at the time t in
the reference frame K in which the particle is moving. The subscript µ runs over the values 0, 1, 2, 3, so
that the four-potential component with the subscript µ = 0 is related to the scalar potential: A0 = ϕn

c .
In Cartesian coordinates An = (Anx, Any, Anz), therefore, according to Eq. (5), four-potential

components A1 = −Anx, A2 = −Any, A3 = −Anz. The quantity ϕ′

n is the scalar potential of the
particle in the reference frame K ′ associated with the particle; uµ is the four-velocity of the particle.
From Eq. (5) it follows that ϕn = γvϕ

′

n, where γv = 1√
1−v2/c2

is the Lorentz factor of the particle,

besides, An = ϕ′

nγvv

c2
= ϕnv

c2
, according to Eq. (3), at v = v̂. The equality v = v̂ means that the

special theory of relativity in four-dimensional formalism is correct for point particles,either for inertial
reference frames and in the absence of particle acceleration, or with the proviso that values in retarded
time should be used. If these conditions are not met, then it is better to return to the original principles
of the theory in the form of Eq. (3). For comparison, in [3] the formulas for retarded potentials are
obtained based on the solutions of the wave equations for the potentials using the Lorentz gauge. Thus,
it is shown that Maxwell equations and retarded potentials are consistent with each other.



118 Fedosin

Let us express the coordinates of the point P in K ′ in terms of the coordinates of this point in
K using the Poincaré transformations, taking into account that in K the point P is defined by the
radius-vector Rn = (x, y, z):

R′

n = Rn − v t γv +
(γv − 1) v (v ·Rn)

v2
(6)

It is assumed here that at t = 0 the origin of the coordinate systems in K and K ′ coincide, and
the clock in K ′ shows the time t′ = 0.

When the charge qn is at the origin in K ′, the potential ϕ′

n at the point P is expressed in terms of
R′

n and the coordinates in K ′ in a standard way:

ϕ′

n =
qn

4πε0R′

n

=
qn

4πε0

√

x′2 + y′2 + z′2

Let us substitute Eq. (6) here and express ϕ′

n in terms of the coordinates x, y, z. To do this, it
suffices to find the square of the length of the vector R′

n = (x′, y′, z′) in terms of the vectors Rn and
v:

R′2
n = R2

n + v2t2 γ2
v +

γ2
v(v · Rn)2

c2
− 2t γ2

v (v · Rn) (7)

This allows us to express the scalar potential in K ′ and the vector potential in K:

ϕ′

n =
qn

4πε0

√

R2
n + v2t2γ2

v +
γ2

v (v · Rn)2

c2
− 2tγ2

v (v ·Rn)

An =
ϕ′

nγvv

c2
=

µ0qnγvv

4π

√

R2
n + v2t2γ2

v +
γ2

v(v · Rn)2

c2
− 2tγ2

v (v · Rn)

The time t is present under the root sign, which leads to the dependence of the scalar and vector
potentials on time. This is a consequence of the coordinates’ transformation Eq. (6) and can be
considered as a result of the terminal velocity of the electromagnetic effect propagation and the need
to take into account its retardation in the Lienard-Wichert potentials of Eq. (3). As a rule, the vector
potential and the magnetic field of a moving charge are searched for at the time point t = 0, which
allows us to simplify the expression for An. In most cases, the magnitude of the velocity v is much less

than the speed of light, which makes it possible to neglect the term γ2
v(v·Rn)2

c2
in comparison with R2

n.
With this in mind, we have:

An ≈ µ0qnγvv

4πRn

The distance Rn from the observer’s viewpoint in K is the distance from the charge qn to the point
P where the vector potential An is sought.

Now let us assume that there is a set of closely spaced particles, forming compact spatial
distribution, moving as a whole at the velocity v. The total vector potential from the set of charged
particles is obtained by integrating over the volume Vd of the charge distribution, for which the relation
dqn = ρqdV is used, where ρq is the density of the moving charge, dV denotes the differential of
the moving volume, corresponding to the volume of one particle. Let us also consider the reference
frame K ′′ associated with the center of this charge distribution. If we denote the vector from the
charge distribution center to the point P by RdP = (x, y, z), and the vector from the charge
distribution center to the charge qn by rdn = (xdn, ydn, zdn), then we will obtain Rn = RdP − rdn,

Rn =
√

(x − xdn)2 + (y − ydn)2 + (z − zdn)2. Taking all this into account, for the vector potential of
the charge distribution we find:

Ad ≈ µ0

4π

∫

Vd

γvρqvdV
√

(x − xdn)2 + (y − ydn)2 + (z − zdn)2

Let us now assume that there is a certain set of charge distributions, moving at different constant
velocities in a sufficiently large space volume VΣ, which is fixed relative to the reference frame K. In
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the limit of the currents continuously distributed over the volume, we can assume that VΣ is equal to
the sum of all moving volumes of individual charge distributions: VΣ =

∑

Vd.
In order to find the total vector potential, we need to sum up the vector potentials Ad of each charge

distribution. Let us assume that rΣd = (xΣd, yΣd, zΣd) is the vector from the center of the volume VΣ

to the center of an arbitrary charge distribution, and R = (x, y, z) is the vector from the center of the
volume VΣ to the point P so that Rn = R − rΣd − rdn. Denoting rΣd + rdn = rΣ = (xΣ, yΣ, zΣ), we

obtain Rn = R − rΣ, Rn =
√

(x − xΣ)2 + (y − yΣ)2 + (z − zΣ)2. Now the sum of the vector potentials
of charge distributions reduces to the integral over the fixed volume VΣ:

A ≈ µ0

4π

∫

VΣ

γvρqvdV
√

(x − xΣ)2 + (y − yΣ)2 + (z − zΣ)2
. (8)

The quantities xΣ, yΣ, and zΣ denote the coordinates of the points of the volume VΣ and are
specified relative to the center of the volume VΣ.

Inside each individual charge distribution in the comoving reference frame K ′′ the particles have
their own chaotic motion at a certain velocity v′. In this case, using the vector rule of relativistic
addition of velocities, for the absolute velocity vK and the Lorentz factor γK of an arbitrary particle in
the reference frame K we find:

vK =
v′ +

(γv − 1) (v′v)

v2
v + γvv

γv

(

1 +
v′v

c2

) , γK = γ′γv

(

1 +
v′v

c2

)

, (9)

where γv = 1√
1−v2/c2

is the Lorentz factor for the velocity v; γ′ = 1√
1−v′2/c2

is the Lorentz factor for

the velocity v′; and γK = 1√
1−v2

K
/c2

is the Lorentz factor for the velocity vK .

Taking into account the chaotic velocity v′ in Eq. (9) leads to some change in the velocities of the
particles in K, and in Eq. (8) the velocity vK should be substituted instead of the velocity v. But if
we use the condition of chaotic motion of the charged particles in K ′′ and take into account a great
number of these particles, we can simplify the problem by determining the average values for vK and
γK . With such averaging at a selected point inside the distribution of particles we should take a small
volume adjacent to the point, containing a sufficient number of particles, and perform averaging over
time and volume. In the first approximation, according to Eq. (9), we obtain v̄K ≈ v, γ̄K ≈ γ′γv.
Then, instead of γv in Eq. (8)we should substitute γ̄K ≈ γ′γv and take into account the definition for
the current density j = ρqv:

A ≈ µ0

4π

∫

VΣ

γ′γvjdV
√

(x − xΣ)2 + (y − yΣ)2 + (z − zΣ)2
. (10)

In order to find the components of the vector potential A, we need to take three integrals in
Eq. (10), separately for each component of the current density j = (jx, jy, jz). The quantities γ′, γv and
j are functions of the coordinates xΣ, yΣ, zΣ inside the fixed volume VΣ. However, only the radius-vector
R = (x, y, z) that defines the position of the point P relative to the center of the volume VΣ depends
on the coordinates x, y, z of the point P . Therefore, when calculating the magnetic field by the formula
B = ∇× A, the curl operation must be only applied to the quantity R.

Introducing the curl under the integral sign in Eq. (10) and taking into account the equality
√

(x − xΣ)2 + (y − yΣ)2 + (z − zΣ)2 = |R − rΣ|, we obtain:

B = ∇× A ≈ µ0

4π

∫

V

γ′γv [j × (R − rΣ)] dV

|R − rΣ|3
(11)

Expressions (11) and (1) coincide in appearance, taking into account that R − rΣ = r12. Also,
in Eq. (11) we set γ′ = 1, γv = 1, without taking into account the proper chaotic motion of the
charged particles inside the matter and assuming that the velocity v of the charged particles is small
in comparison with the speed of light c, then Eq. (11) turns into Eq. (1). Thus, the magnetic field in
the Biot-Savart law of Eq. (1) is determined with relative inaccuracy, equal in the order of magnitude
to v2/c2.
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3. ROTATIONAL MOTION OF CHARGES

Let the charge qn rotate about a certain axis at the constant angular velocity ω = dφ
dt at a constant

distance from this axis, equal to ρ. At the time point t, the linear rotational velocity is equal to

vr = vr(t) =
drq

dt
= (−ωρ sin φ, ωρ cos φ, 0)

where the vector

rq = (ρ cos φ, ρ sin φ, zd) = [ρ cos (ωt + φ0) , ρ sin (ωt + φ0) , zd]

defines the position of the charge qn as a function of cylindrical coordinates ρ, φ, zq , and also as a
function of time. The quantity φ0 denotes the initial phase, specifying the components rq at t = 0.

Let us assume that the vector R = (x, y, z) connects the origin of coordinates and the point P at
which we need to find the magnetic field. Then the vector

RP = R − rq = [x − ρ cos (ωt + φ0) , y − ρ sin (ωt + φ0) , z − zd]

will be a vector from the charged particle to the point P at the time point t. The length of this vector
equals:

RP =

√

(x − ρ cos φ)2 + (y − ρ sin φ)2 + (z − zd)
2

=
√

R2 + z2
d − 2zzd + ρ2 − 2ρx cos φ − 2ρy sinφ.

According to Eq. (4), the early time point t̂ = t− R̂P

c depends on the length R̂P of the vector R̂P ,

which is the vector RP , but taken at the early time point t̂. Since φ = ωt + φ0, φ̂ = ωt̂ + φ0 then for
the quantities at the early time point t̂ we find:

r̂q = (ρ cos φ̂, ρ sin φ̂, zq) =
[

ρ cos
(

ωt̂ + φ0

)

, ρ sin
(

ωt̂ + φ0

)

, zd

]

v̂r = vr(t̂) =
dr̂qq

dt̂
= (−ωρ sin φ̂, ωρ cos φ̂, 0) (12)

R̂P = R − r̂q =
[

x − ρ cos φ̂, y − ρ sin φ̂, z − zd

]

R̂P =

√

(

x − ρ cos φ̂
)2

+
(

y − ρ sin φ̂
)2

+ (z − zd)
2

=

√

R2 + z2
d − 2zzd + ρ2 − 2ρx cos φ̂ − 2ρy sin φ̂. (13)

Let us substitute into the Lienard-Wiechert formula (3) for the vector potential outside the
moving point charged particle the rotational velocity v̂r instead of v̂, and take into account that
v̂r · R̂P = ωρy cos φ̂ − ωρx sin φ̂:

An =
µ0qn

4π









v̂r

R̂P +
ωρx sin φ̂

c
− ωρy cos φ̂

c









n

Now we need to sum up the vector potentials An of individual charged particles. Let there be some
rotating body, containing a great number of closely spaced charged particles. These particles can also
move chaotically at the velocity v′ in the reference frame K ′, which is fixed relative to the body.

For the case of rotation, the Lorentz factor γv in Eq. (9) should be replaced with γr, and the
velocity v̂ should be replaced with the rotational velocity v̂r. After averaging of the Lorentz factor
γK , its average value γ̄K ≈ γ′γr appears. The charge dqn of the rotating point particle in cylindrical
coordinates can be expressed in terms of the invariant charge density ρ0q, the Lorentz factors γ̄K and
γr, and in terms of the moving volume dV :

dqn = ρqdV ≈ γ′ρ0qdVΣ
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Here ρq = γ̄Kρ0q ≈ γ′γrρ0q is the charge density of the charged matter moving with the Lorentz factor

γ̄K ; due to the Lorentz contraction we will obtain dV = dVΣ

γr
, where dVΣ = ρdρdφdzd is the volume

element of a non-rotating body in cylindrical coordinates. Taking this into account, the sum of the
vector potentials of individual particles is transformed into an integral over the body’s volume:

A =
µ0ρ0q

4π

∫

VΣ

γ′v̂rρdρdφdzd

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂

If we take into account Eq. (12), then the vector potential A of the rotating body has two non-zero
components:

Ax = −µ0ωρ0q

4π

∫

VΣ

γ′ sin φ̂ρ2dρdφdzd

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂

Ay =
µ0ωρ0q

4π

∫

VΣ

γ′ cos φ̂ρ2dρdφdzd

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂

(14)

The magnetic field is found by the formula B = ∇ × A. Taking into account Eq. (14), we will
calculate the component Bz of the magnetic field:

Bz =
∂Ay

∂x
− ∂Ax

∂y
=

µ0ωρ0q

4π

∫

VΣ

∂

∂x





cos φ̂

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂



 γ′ρ2dρdφdzd

+
µ0ωρ0q

4π

∫

VΣ

∂

∂y





sin φ̂

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂



 γ′ρ2dρdφdzd.

Taking the partial derivatives, we find:

Bz =
µ0ωρ0q

4π

∫

VΣ





















R̂P
∂ cos φ̂

∂x
+ R̂P

∂ sin φ̂

∂y
+

ωρx

c
sin φ̂

∂ cos φ̂

∂x

−ωρy

c
cos φ̂

∂ sin φ̂

∂y
− ∂R̂P

∂x
cos φ̂ − ∂R̂P

∂y
sin φ̂

−ωρx

c
cos φ̂

∂ sin φ̂

∂x
+

ωρy

c
sin φ̂

∂ cos φ̂

∂y





















(

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂

)2 γ′ρ2dρdφdzd. (15)

From the relations φ = ωt + φ0, φ̂ = ωt̂ + φ0, t̂ = t − R̂P

c it follows:

φ̂ = φ + ω
(

t̂ − t
)

= φ − ωR̂P

c

cos φ̂ = cos φ cos
ωR̂P

c
+ sin φ sin

ωR̂P

c
,

sin φ̂ = sin φ cos
ωR̂P

c
− cos φ sin

ωR̂P

c

(16)

Therefore, for the partial derivatives we can write:

∂ cos φ̂

∂x
=

ω

c

∂R̂P

∂x

(

sin φ cos
ωR̂P

c
− cos φ sin

ωR̂P

c

)

=
ω

c

∂R̂P

∂x
sin φ̂

∂ cos φ̂

∂y
=

ω

c

∂R̂P

∂y

(

sin φ cos
ωR̂P

c
− cos φ sin

ωR̂P

c

)

=
ω

c

∂R̂P

∂y
sin φ̂
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∂ cos φ̂

∂z
=

ω

c

∂R̂P

∂z

(

sin φ cos
ωR̂P

c
− cos φ sin

ωR̂P

c

)

=
ω

c

∂R̂P

∂z
sin φ̂

∂ sin φ̂

∂x
= −ω

c

∂R̂P

∂x

(

sin φ sin
ωR̂P

c
+ cos φ cos

ωR̂P

c

)

= −ω

c

∂R̂P

∂x
cos φ̂ (17)

∂ sin φ̂

∂y
= −ω

c

∂R̂P

∂y

(

sin φ sin
ωR̂P

c
+ cos φ cos

ωR̂P

c

)

= −ω

c

∂R̂P

∂y
cos φ̂

∂ sin φ̂

∂z
= −ω

c

∂R̂P

∂z

(

sin φ sin
ωR̂P

c
+ cos φ cos

ωR̂P

c

)

= −ω

c

∂R̂P

∂z
cos φ̂.

Let us substitute Eq. (17) into Eq. (15):

Bz =
µ0ωρ0q

4π

∫

VΣ













∂R̂P

∂x

(

ωR̂P

c
sin φ̂ − cos φ̂ +

ω2ρx

c2

)

+
∂R̂P

∂y

(

−ωR̂P

c
cos φ̂ − sin φ̂ + ω2ρy

c2

)













(

R̂P + ωρx
c sin φ̂ − ωρy

c cos φ̂
)2 γ′ρ2dρdφdzd.

From Eqs. (13) and (17) we find:

∂R̂P

∂x
=

x − ρ cos φ̂

R̂P

− ωρx

cR̂P

∂R̂P

∂x
sin φ̂ +

ωρy

cR̂P

∂R̂P

∂x
cos φ̂

∂R̂P

∂y
=

y − ρ sin φ̂

R̂P

− ωρx

cR̂P

∂R̂P

∂y
sin φ̂ +

ωρy

cR̂P

∂R̂P

∂y
cos φ̂

∂R̂P

∂z
=

z − zd

R̂P

− ωρx

cR̂P

∂R̂P

∂z
sin φ̂ +

ωρy

cR̂P

∂R̂P

∂z
cos φ̂

From here we express ∂R̂P

∂x , ∂R̂P

∂y and ∂R̂P

∂z , and then substitute ∂R̂P

∂x and ∂R̂P

∂y into the expression

for Bz:

∂R̂P

∂x
=

x − ρ cos φ̂

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂

∂R̂P

∂y
=

y − ρ sin φ̂

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂

(18)

∂R̂P

∂z
=

z − zd

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂

.

Bz =
µ0ωρ0q

4π

∫

VΣ









ρ − x cos φ̂ − y sin φ̂ +
ωR̂P x

c
sin φ̂ − ωR̂P y

c
cos φ̂

+
ω2ρ

(

x2 + y2
)

c2
− ω2ρ2x

c2
cos φ̂ − ω2ρ2y

c2
sin φ̂









(

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂

)3 γ′ρ2dρdφdzd. (19)
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Calculation of the components Bx and By turns out to be easier, since Az = 0:

Bx =
∂Az

∂y
− ∂Ay

∂z
= −µ0ωρ0q

4π

∫

VΣ

∂

∂z





cos φ̂

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂



 γ′ρ2dρdφdzd.

By =
∂Ax

∂z
− ∂Az

∂x
= −µ0ωρ0q

4π

∫

VΣ

∂

∂z





sin φ̂

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂



 γ′ρ2dρdφdzd.

Using Eqs. (17) and (18), we find:

Bx = −µ0ωρ0q

4π

∫

VΣ

(z − zd)

(

ωR̂P

c
sin φ̂ − cos φ̂ +

ω2ρx

c2

)

(

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂

)3 γ′ρ2dρdφdzd

By =
µ0ωρ0q

4π

∫

VΣ

(z − zd)

(

ωR̂P

c
cos φ̂ + sin φ̂ − ω2ρy

c2

)

(

R̂P +
ωρx

c
sin φ̂ − ωρy

c
cos φ̂

)3 γ′ρ2dρdφdzd.

(20)

Let us place the origin of the coordinate system on the rotation axis, so that the axis OZ would
coincide with the rotation axis. Suppose now that the point P where the magnetic field is sought, lies on
the rotation axis. Then the vector from the origin of coordinates to the point P will equal R = (0, 0, z),

and, according to Eq. (13), will be R̂P =
√

(z − zd)2 + ρ2. In view of Eq. (16), for the magnetic field
components in Eq. (20) at x = y = 0 we find:

Bx (OZ) = −µ0ωρ0q

4π

∫

VΣ

(z − zd)









ωR̂P

c
sin φ cos

ωR̂P

c
− ωR̂P

c
cos φ sin

ωR̂P

c

− cos φ cos
ωR̂P

c
− sinφ sin

ωR̂P

c









[

(z − zd)
2 + ρ2

]3/2
γ′ρ2dρdφdzd.

By (OZ) =
µ0ωρ0q

4π

∫

VΣ

(z − zd)









ωR̂P

c
cos φ cos

ωR̂P

c
+

ωR̂P

c
sinφ sin

ωR̂P

c

+ sin φ cos
ωR̂P

c
− cos φ sin

ωR̂P

c









[

(z − zd)
2 + ρ2

]3/2
γ′ρ2dρdφdzd.

If the coordinate z of the point P is small, then the same could be said about the quantity

R̂P =
√

(z − zd)2 + ρ2. Then we can assume that ωR̂P

c << 1 and expand sin ωR̂P

c and cos ωR̂P

c to
the second-order terms. This simplifies the expressions for Bx(OZ) and By(OZ):

Bx (OZ) ≈ µ0ωρ0q

4π

∫

VΣ

(z − zd)

(

cos φ +
ω2R̂2

P

2c2
cos φ +

ω3R̂3
P

3c3
sin φ − ω4R̂4

P

6c4
cos φ

)

[

(z − zd)
2 + ρ2

]3/2
γ′ρ2dρdφdzd.

By (OZ) ≈ µ0ωρ0q

4π

∫

VΣ

(z − zd)

(

sinφ +
ω2R̂2

P

2c2
sin φ − ω3R̂3

P

3c3
cos φ − ω4R̂4

P

6c4
sin φ

)

[

(z − zd)
2 + ρ2

]3/2
γ′ρ2dρdφdzd.

(21)
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Suppose now that the rotating charged body is axisymmetric relative to the axis OZ. Then, in
Eq. (21) integration over the coordinates ρ and zd will be independent of the coordinate φ. In this
case, integration in Eq. (21) over the coordinate φ in the range from 0 to 2π will give zero, so that the
components Bx(OZ) and By(OZ) on the rotation axis OZ will become equal to zero.

Let us now consider the component Bz in Eq. (19) on the axis OZ, where x and y are equal to

zero, while R̂P =
√

z − zd)2 + ρ2:

Bz (OZ) =
µ0ωρ0q

4π

∫

VΣ

γ′ρ3dρdφdzd
[

(z − zd)
2 + ρ2

]3/2
. (22)

We see that the integrand in formula (22) for Bz does not contain any explicit function of the
variable φ, except for dφ in case of any choice of the rotation axis. In particular, the rotation axis can
also be outside the rotating charged body.

For the body axisymmetric relative to the axis OZ, integration over the cylindrical variables ρ and
zd turns out to be independent of φ. In this case, integration over the variable φ in the range from 0 to
2π will give just 2π. Then, for Eq. (22) we obtain the following:

Bz (OZ) =
µ0ωρ0q

2

∫

VΣ

γ′ρ3dρdzd
[

(z − zd)
2 + ρ2

]3/2
. (23)

Thus, we have proved the following theorem: The magnetic field on the rotation axis of an
axisymmetric charged body or charge distribution has only one component directed along the rotation
axis, and the magnetic field is expressed through the surface integral, which does not require integration
over the azimuthal angle φ. In the general case, for arbitrary charge distribution and for any location
of the rotation axis, the magnetic field is expressed through the volume integral, in which the integrand
does not depend on the angle φ.

Expression (23) can be rewritten in spherical coordinates, taking into account that the volume
element is dV = ρdρdzddφ = r2dr sin θdθdφ, and also ρ = r sin θ, zd = r cos θ:

Bz (OZ) =
µ0ωρ0q

2

∫

VΣ

γ′r4dr sin3 θdθ

(z2 − 2zr cos θ + r2)3/2
. (24)

The absence of the need for integration over the variable φ in Eqs. (23)–(24) simplifies calculation
of the magnetic field on the rotation axis of the axisymmetric charge distribution.

4. MAGNETIC FIELD ON THE CYLINDER’S AXIS

Let us use Eq. (23) to calculate the magnetic field on the axis of a long solid cylinder, which has the
length L, the radius a and rotates at the angular velocity ω. It is assumed that before the onset of
rotation, this cylinder was uniformly charged over the entire volume with the charge density ρ0q, and
rotation does not lead to the charge shift due to the centrifugal force. For the solid cylinder we can also
set the Lorentz factor γ′ = 1 and thus neglect the proper chaotic motion of charged particles.

Placing the origin of the coordinate system at the center of the cylinder, from Eq. (23) we find:

Bz (OZ) =
µ0ωρ0q

2

L/2
∫

−L/2







a
∫

0

ρ3dρ
[

(z − zd)
2 + ρ2

]3/2






dzd. (25)

In Eq. (25), the inner integral defines the field from the thin rotating charged disk with the radius
a located at the distance zd from the center of the cylinder, and the integral over the variable zd sums
up the fields from all the thin disks located in the range from −L/2 to L/2 perpendicularly to the axis
OZ.
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Outside the cylinder at z ≥ L/2 and at z ≤ −L/2, the result of integration in Eq. (25) will be as
follows:

a
∫

0

ρ3dρ
[

(z − zd)
2 + ρ2

]3/2
=

√

(z − zd)
2 + a2 +

(z − zd)
2

√

(z − zd)
2 + a2

− 2 (z − zd)

Bz (z ≥ L/2) =
µ0ωρ0q

2





(

z +
L

2

)

√

(

z +
L

2

)2

+ a2

−
(

z − L

2

)

√

(

z − L

2

)2

+ a2 +

(

z − L

2

)2

−
(

z +
L

2

)2


 . (26)

Bz (z ≤ −L/2) =
µ0ωρ0q

2





(

L

2
− z

)

√

(

L

2
− z

)2

+ a2

+

(

L

2
+ z

)

√

(

L

2
+ z

)2

+ a2 +

(

L

2
+ z

)2

−
(

L

2
− z

)2


 (27)

Formula (27 is obtained from Eq. (26) by replacing z with −z. From Eqs. (26)–(27) it follows that
at the ends of the cylinder, where z = L/2 or z = −L/2, the magnetic field on the axis OZ is the same
and is equal in value to

Bz (z = L/2) = Bz (z = −L/2) =
µ0ωρ0q

2

(

L
√

L2 + a2 − L2
)

≈ µ0ωρ0qa
2

4
(28)

The approximate value in Eq. (28) corresponds to the case of a long cylinder, for which L >> a.
Let us now find the magnetic field inside the cylinder. For example, let 0 ≤ z ≤ L/2. We will cut

the cylinder at such z with a plane perpendicular to the axis OZ, and we will obtain two new cylinders,
whose lengths will be equal to L/2 + z and L/2 − z, respectively. The magnetic field at the point
0 ≤ z ≤ L/2 on the axis of the original cylinder will be equal to the sum of the magnetic fields at the
ends of the two new cylinders. In Eq. (28), substituting instead of L the lengths L/2 + z and L/2 − z,
respectively, and summing up the results, we find:

Bz (0 ≤ z ≤ L/2) = Bz (−L/2 ≤ z ≤ 0) =
µ0ωρ0q

2





(

L

2
+ z

)

√

(

L

2
+ z

)2

+ a2 −
(

L

2
+ z

)2




+
µ0ωρ0q

2





(

L

2
− z

)

√

(

L

2
− z

)2

+ a2 −
(

L

2
− z

)2


 . (29)

At z = ±L/2 the magnetic field in Eq. (29) coincides with the field in Eq. (28) at the end of the
cylinder.

At z = 0 from Eq. (29) we find the following magnetic field at the center of the cylinder:

Bz (z = 0) =
µ0ωρ0q

2

(

L

√

L2

4
+ a2 − L2

2

)

≈ µ0ωρ0qa
2

2

Comparison with Eq. (28) shows that the field at the center of a long cylinder is almost twice as
large as the field on the axis OZ at the ends of this cylinder. This difference is due to the increase in
the field non-uniformity at the ends of the cylinder.

At large z, when z >> L/2, it is possible to expand the roots in Eq. (26) to the second-order terms.
As a result, we obtain:

Bz (z >> L/2) ≈ µ0ωρ0qa
4L

8z3
(30)
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so that the field on the cylinder’s axis at large distances decreases in inverse proportion to the cube of
the distance z to the center of the cylinder.

5. MAGNETIC FIELD ON THE BALL’S AXIS

Let us assume that there is a uniformly charged ball with the radius a, the invariant volume charge
density ρ0q, and rotating at the angular velocity ω about the axis OZ. For a solid ball, we can assume
that the Lorentz factor of the charged particles is γ′ = 1 in the reference frame rigidly associated with
the ball.

We will first calculate the magnetic field outside the ball on the axis OZ. If the origin of the
coordinate system is at the center of the ball, then for the field at z ≥ a and at z ≤ −a, according to
Eq. (24), we can write:

Bz (OZ) =
µ0ωρ0q

2

a
∫

0





π
∫

0

sin3 θdθ

(z2 − 2zr cos θ + r2)3/2



 r4dr. (31)

From Eq. (31) it follows:

π
∫

0

sin3 θdθ

(z2 − 2zr cos θ + r2)3/2
=

4

3z3

Bz (z ≥ a) =
2µ0ωρ0qa

5

15z3
, Bz (z ≤ −a) = −2µ0ωρ0qa

5

15z3
.

(32)

In contrast to the field far from the rotating long cylinder in Eq. (30), the external field on the
ball’s rotation axis in Eq. (32) starts decreasing in inverse proportion to z3 immediately outside the

ball’s the limits. At the pole of the ball at z = a the magnetic field will equal Bz(z = a) =
2µ0ωρ0qa2

15 .
If we set z = 0 in Eq. (31), the field at the center of the ball is found:

Bz (z = 0) =
µ0ωρ0q

2

a
∫

0





π
∫

0

sin3 θdθ



 rdr =
µ0ωρ0qa

2

3

The obtained estimates of the magnetic field correspond exactly to the values in [8].

6. CONCLUSION

Based on the Lienard-Wiechert expressions for retarded potentials in Eq. (3), we derive the Biot-Savart
law for the magnetic field in the form of Eq. (11). The peculiarity of the obtained expression is that
it takes into account the proper chaotic motion of the charged particles inside the matter. This allows
us to use Eq. (11) to analyze the electromagnetic field in the relativistic uniform system with freely
moving charged particles.

The simplifications made in the derivation of Eq. (11) show that the Biot-Savart law has relative
inaccuracy, equal in the order of magnitude to v2/c2. Here c is the speed of light, v the average velocity
of the charged particles in the current density j = ρqv, and ρq the charge density of the moving matter.

From rectilinear currents we pass on to stationary circular currents created by rotation of the charge
distributions, and again use the Lienard-Wichert potentials. As a result, we arrive at the theorem on
the magnetic field of rotating charged bodies. By exactly calculating the partial derivatives of the
vector potential with respect to the coordinates, taking into account the retardation effect, we derive
formulas (22)–(24) for the magnetic field on the rotation axis. According to the proven theorem, the
magnetic field with any position of the rotation axis is defined by the integral over the charge distribution
volume, while the integrand does not depend on the angular coordinate φ. For axisymmetric bodies,
the magnetic field on the rotation axis is always directed only along this axis, while the field does not
depend on φ, in accordance with the symmetry of these bodies.
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In order to illustrate how the theorem works, we apply it first to a solid cylinder, and then to a
ball, taking into account the fact that both bodies rotate and are uniformly charged over their volume.
Formula (23) in cylindrical coordinates and formula (24) in spherical coordinates allow us to quickly
and accurately determine the external magnetic field of rotating charged axisymmetric bodies, as well
as the field at their center. In other cases, general formulas (21)–(22) should be used.

The proven theorem can also be used as an additional tool to determine electromagnetic fields
when solving wave equations, which allows to determine the integration constants more precisely and
to simplify gauging the obtained solutions for potentials and fields.
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