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Chapter

Geometry of The Ellipse and The
Ellipsoid

1.1 GEOMETRY OF THE ELLIPSE

1.1.1 Definitions

Definition 1.1 The ellipse is the locus of the points whose sum of the distances to two distinct fixed points

(foci) is constant:

’ MF + MF' = constant = 2a ‘ (1.1)

where a is called the semi-major axis of the ellipse (Fig.[I.1).

Definition 1.2 An ellipse is the transform by affinity of a circle in the ratio b/a where b is the semi-minor

axis (Fig. [I.2).

To the point M’ € circle = M € ellipse with :
by
HM = -HM (1.2)
a

Let y be the angle HOM' , W is called the parametric latitude or reduced latitude, then the coordinates of
M

x = OH = OM'cosy
y = OL = OM'siny
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Fig. 1.1 Definition of the ellipse

o
=

Ml

= il

Fig. 1.2 The affinity transformation
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Hence, the coordinates of M on the ellipse are:

x = OH = acosy

b b 1.3
y=O0L= EHMI = ;asinl]/ = bsiny (13

In the system of axes Ox, Oy, the equation of the ellipse is written:

2 2
S+l =i
a?  b?

We call respectively the flattening, the square of the first eccentricity and the square of the second
eccentricity the quantities:

—_b 2_b2 2_b2
a=2"b p_4- 6/2:"1772 (1.4)

1.2 PARAMETRIC EQUATIONS OF AN ELLIPSE

The equations (I.3) represent the parametric equations of an ellipse in function of the latitude y. We will
express these equations as a function of the angle ¢ of the normal at M with the axis Ox.

Let TM’ be the tangent at M’ on the circle of radius a, the point T is the intersection of this tangent with
the axis Ox. The transform of this tangent by affinity of ratio b/a of this tangent is the line tangent to the
ellipse at the point M and it goes through T (Fig.[1.3).

In the triangle MHT, we have:

_HT
189 = MH
and in the triangle M'HT:
gy = il
M'H
$0:

tgy HT MH MH
tgo M'HHT MH

b
= ratio of the affinity = —
a

It follows:

b
gy = 189 (1.5)

From (1.3)), we write cosy and siny in function of the angle ¢, then:

2.2 2.2
+ b-sin” @

141y =1+ (b/a) gt = L0

cos?y tigy =1+ (b/a)g’e a’cos?@

and :
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Ll

Fig. 1.3 The relation between ¢ and v

costu — a*cos’
V= a’cos?Q + bxsin? @

Let: 5 —

blsi

Wi LOSRTIIIG 2 (1.6)
a

then:

_ cosQ a7

cosy '
We calculate in the same way siny:
a*cos @

sinzl//: 1 fcoszl// =1

" ad%cos>Q + b2sin? @

we obtain: S
b-sin~ @
2
= 1.8
sy a’cos? @ + bxsin? @ (1.8)
Let: , )
blsi
y2 = Lo ‘p; P 1 —eos?o (1.9)
where ¢’ is the second eccentricity, then:
sing a
V = - W 1.10
siny b ( )
It follows the parametric equations of the ellipse as functions of ¢ as:
X:acosl[/:aws‘p =a cose (1.11)

w 1 — e2sin @
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Y = bsiny = 2o _ P _g(1-) (1.12)
4 a\/1—ée2sin?@ V1 —é2sin?p
let:
X = e CUS;P_ -
—e%sin® @
; (1.13)
Y =a(l—é?) Sing
1 —eZsin?@
1.2.1 Differential Relations between ¢ and v
From the relation (T.3)), we obtain:
d bd d bcos®
‘é’ — ‘f Y _ “’SZ"’ (1.14)
cos*y  acos*Q do  acos*@
and using (1.7)), we have:
d b b
v_ 2o - : (1.15)
dp aW?  a(1—e%sin?Q)
1.3 THE EXPRESSION OF THE CALCULATION OF THE GREAT NORMAL
. . JM
We call the great normal the lenght of JM. The vector JM is normal to the ellipse at M, let I = m, its
components are: (cos@,sin@) (Fig.[L4).
Then the Cartesian equation of the normal is:
X —-X Y Y,
o M (1.16)

cosQ sin@
We obtain the ordinate of J in taking X = 0 in (I.T6), then:

Xy Y—-Yy
cosQ  sing

=Yy =Yy —Xutg@

It follows the expression of the distance MJ equal to :

Xy X
MI =/ (Y~ Y2+ X3 = \ /X180 + X3 = Xo/1 1870 = L M

cosQ cosQ

But:

acosQ acosQ a a
= — = =

Xm = == = -
Weosp W 1 —eZsin?@

Let:
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J
Fig. 1.4 The great normal
N(p) =MJ = ——— (1.17)
V1 —exsin '
N is called the great normal.
The parametric equations of an ellipse (I.3) become:
cosQ cosQ
X =acosy =a =a = N(@)cos
v w 1 — e2sin2¢ (¢)cosg
Y = bsiny = bSiL(p =a(l- 2)% = (1—e*)N(@)sing
14 V1 —e2sin@
Finally:
X=a—2¢ _ _ N(@)cos@
1 —eZsin?@
R sing 5 (1.18)
Y=a(l—¢)——===(1—¢")N(@)sing
1 —eZsinZ@

1.3.1 Elementary arc ds and Radius of Curvature of an Ellipse

The elementary arc ds of an ellipse is determined from the parametric equations as:

ds? = dX* +dy? = dsin®ydy? + b*.cos> ydy?
or ds® = (a®sin®y + b*.cos®y)d y?
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Using the equations (I.7) and (I.I0), we obtain:

b
ds=—.d
N W Yy

Replacing dy using (I.15)), we find:

de

ds=a(l—e?)— 20 _____
s =al e)(l—ezsinz(p)3/2

The length of the meridian arc counted from the equator is:

4 ¢ dt
= —a(l—¢? / .
S((p) /O ds Cl( 4 ) 0 (1 7€2Sin2t)3/2

The integration is obtained from a limited development of (1 — ezsinzt)’y 2 (Voir plus loin). The radius of

(1.19)

curvature of an ellipse p is given from ds as:

_ds _ > a(l-é%)
p= do  aW? (1 —esin2g)3/2

(1.20)

1.4 GEOMETRY OF THE ELLIPSOID OF REVOLUTION

We will study the properties of the ellipsoid of revolution obtained by the rotation of an ellipse around the
semi-minor axis as shown in the figure below (Fig. [I.5):

1.4.1 The Geographic Coordinates

The geographic coordinates defined on the ellipsoid of revolution are:

- the longitude A: angle of the meridian plane of point M with the origin meridian plane, in our case, the
origin plane is the XOZ plane, - the latitude ¢: angle of the direction of the normal at point M with the
equatorial plane;

- the ellipsoid altitude he, if the point is on the ellipsoid, then he = 0.

In the plane ROZ (Fig. @), with r and k the unit vectors of the axis OR and OZ, we can write:

OM = acosyr + bsinyk
and r = cosAi + sinAj

Then:
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Fig. 1.5 The Ellipsoid of revolution: Reference ellipsoid

Fig. 1.6 Geodetic coordinates
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OM = acosycosAi+ acosysinj + bsinyk
It follows the parametric equations of the point M are :
X = acosycosA

Y = acosysini

Z = bsiny

Replacing y in function of ¢, we obtain:

acosQ

X = acosycosh = cosh = Ncos@cosA

Y = acosysind = Ncos@sinA
b*sing

av/1— e%sin? @

Z = bsiny = = N(1—e?)sing

Let:

X = Ncos@cosA
Y = Ncos@sinA
Z = N(1—¢é*)sing

If he # 0, then the coordinates of M are:

X = (N + he)cos@cosA
Y = (N + he)cos@sin
Z = (N(1—e*) + he)sing

(1.21)

(1.22)

1.4.2 Passage from three-dimensional coordinates (X,Y,Z) to (¢, A,he) coordinates

From the first two equations of (1.22) and ignoring the special case (X = 0), we get:

Y Y
tgh = e = 1 =Arctg§

We denote :

r=+vX2+Y?= (N+he)cosp
From (T.22), can write:
Z = (N + he)sing — Ne*sing
or:

Z =7 —Né*sing

with:
Z' = (N + he)sing

(1.23)

(1.24)

(1.25)
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The calculation of ¢ is done by iterations:

- 1% jteration: ) )

7' =Z=1tg0p= Z7 = @ :ArcthT (1.26)
- 2" jteration: N = a(1 — e%sin’ ¢, )’1/2, 7' = Z+Né?.sing
and : @ = Arctg(Z'/r).
- 3" iteration: N = a(1 — e*sin®@,)~'/? 7' = Z+ Neé>.sing,
and : @3 = Arctg(Z'/r). In general, 3 to 4 iterations are sufficient and we obtain:

Q=3 (1.27)

As a result, we can determine the geodetic altitude e :

r

he =

—~N(o) (1.28)

cosQ

1.5 CALCULATION OF THE GEODESIC LINES OF THE ELLIPSOID OF
REVOLUTION

" Alongside the main difficulty, that which lies at the very bottom of things, there are a host
of secondary difficulties which further complicate the task of the researcher. It would
therefore be advantageous to study first a problem where one would encounter this main
difficulty, but where one would be freed from all the secondary difficulties. This problem
is obvious, it is that of the geodesic lines of a surface; it is still a problem of dynamics,
so that the main difficulty remains; but it is the simplest of all dynamic problems. "

(H. Poincard'] 1905)

We define the geodesic lines of a surface then we establish the geodesic equations for a given surface. As
an application, we detail those of the ellipsoid of revolution. We will integrate these equations.

1.5.1 Introduction and Notations

Let (S) be one surface defined by the parameters (u,v) with (1,v) € 2 one domain C IR?. One point M € (S)

verifies :

! Henri Poincaré (1854-1912): French mathematician, among the greatest of the 19th century.
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x(u,v)
OM = OM (u,v) | y(u,v)
z2(u,v)
We introduce the usual notations :
_IM oM _ || om|*
© Ju du
oM oM
Ou’ dv

F=

oM oM ||oM |
T ovidv
From the equations (I.30), we obtain the equations :

o _,om
du ou ou?

o _ oM o*m
dv du dudv

oF _ ’M aM+ oM I*M
du  du? v Ju " udv

OF _o’M oM oM *M
dv v du ' 9v Judv

26 _,om o
du ~ dv dudv

96 _ oM oM
dv T v o2

Let n be the unit vector at M (u,v) on the surface (S), n is given by :

oM om
n— du__du
H
with:
HaM 8MH
then :

ds> = E.du® +2.F du.dv+ G.dv*

The equation (T-34) represents the square of the infinitesimal length of the arc.

Let (') be a curve traced on (S) and N is the unit vector of the principal normal along (T').

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)
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Definition 1.3 A curve (T') is a geodesic line on the surface (S) if and only if the vectors n and N are

collinear.

We prove by the calculation of variations that the geodesic line between two points of a surface (S) when it

exists is the curve of minimum length joining the two points.

1.5.2 Differential Equations of Geodesic Lines

We calculate N, we get :

dT
N=R—
ds
but:
’ p_dM _OMdu oM dv
ds  duds Jvds
then:

dT _ M (du\® M dudy oM d*u  OMdPu M (dv\®
ds  Ju? \ ds dudvdsds Ju ds? dvds? ov? \ds

The condition n // N can be written as :

NAn=0
S0:
BM/\aM
T il el
Rd—/\ du__du | _
ds H

Using the formula of the cross product:

AA(BAC) = (A.C)B— (A.B)C

we obtain:
4T OM\ OM _ (dT oM\ oM _
ds dv ) du ds du ) dv
oM . . o
But M and N form a base of the tangent plane in M, it follows the two conditions:
dT oM dT oM

It gives two differential equations of second order:

*M oM <du>2 d*u _ 9*M IMdudv _9*M oM (dv)z v _ .

22 oy \ds a2 TP ouav oy dsds T v ov \ds a2

and:

(1.35)

(1.36)

(1.37)

(1.38)
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°M OM (dv\> v M IMdudv M M ( du ? du _, (1.39)
ov?  du \ ds ds? dudv du dsds  Ju? du \ ds ds® '

We denote:

JE JoE JoF
E/ =—; E =—; Fl=—-
“ du Vo dv “ du
JoF G G
Fl=—: G,==: G,=— 1.40
Yoo dv “ Ju Voo dv (1.40)
and we use the equations (T.3T)), (T.38)) et[T.39)), these last 2 equations can be written :
E, . [(du\? d’u dudv G, [dv\? d*v
Fl_Zv oau F— 4+ =224 2 [ 22 G— =0 1.41
(7, 2)<ds> + ds2+ "dsds+2 (ds) + ds? (1.41)
G, [(dv\* _d* dvdu E, (du\* d’u
Fl_Zu av F_— 4 g2y 2w (28 E—=0 1.42
(7, 2)(ds> e e T (ds) tEe (142)
1.5.3 Determination of the Geodesic Lines of the Ellipsoid of Revolution
We now consider as surface the ellipsoid of revolution which we parametrize as follows:
X = N.cospcosiA
Y = Ncos@sinA (1.43)
Z=N(1—é*)sing
then :
N = S aw /2
1 — e2sin2¢
is the radius of curvature of the great normal with:
W=1- ezsinz(p
Let:
r = Ncos@
be the radius of the parallel of latitude ¢ and p the radius of curvature of the meridian given by :
1— 2
p= a(l—e’) :a(l—ez)W_3/2
(1 —e%sin?@)+/1 — e%sin?@
Then, the first fundamental form is written as :
ds* = p*de* + rPdA? (1.44)
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Considering as variables u = @ and v = A, we obtain:

E=E(p)=p> F=0, G=r (1.45)
Efp =2pp' E; =0, Fé, =F, =0, G;, =2rr' = =2rpsing, G, =0 (1.46)

Then, the equations (T.41) and (T.42) become :

. dedr  ,d*A
aa\? | (de\?  ,d%
) — — — =0 1.48
”PSZ”(P<dS) +pp (ds) +p 452 ( )
We write the first equation as:
d ( ,dA
£ ) = 1.4
ds (r ds ) 0 (149)
its integration gives :
r-— = C = constant (1.50)
ds
Then, we find Clairaut’s relation E|
’ r.sinAz = constant = C = a.sinAze (1.51)

where Az is the azimuth of the geodesic line at the point M and Aze its initial azimuth at the point My on the
equator.

The equation (T.48) is written:

_(dAN? (do\* d*¢
p(rsmq) (ds) +p <ds) —I—pﬁ =0 (1.52)

It gives:

- p = 0 the point M is on the equator: ¢ = 0 and r = a the semi-major axis of the ellipsoid and the equation

(T:47) becomes:

d’*A
— = 1.53
75 (1.53)
its integration gives:
A—2=1(s—s0) (1.54)

the point M describe the equator and the geodesic line is the great circle of radius a.

- p # 0, the point M is not on the equator, the equation is written as :

e, (de\® . [dA\*
pﬁ—l-p (ds) +rsing@ <ds> =0 (1.55)

To integrate (I.35)), we will use a new function, let :

2 Alexis Claude de Clairaut (1713-1765): French mathematician, astronome and geophysist.



1.5. CALCULATION OF THE GEODESIC LINES OF THE ELLIPSOID OF REVOLUTION 15

,_dA

= % (1.56)
be the new function. From (T:30), we obtain :
do _dpdr _Cdp_ C
ds dAds r*dA  rZ
SO : J c
7(5 = = (1.57)
We calculate now the second derivative d2q) /ds?
o _d (dp\_ d (dg\dp _1d (dg)’ (1.5%
ds?  ds\ds) do\ds)ds 2de\ds '
Using (I.50) and (T.58)), the equation (I.53) is written :
2 2 2
pd |(de (4o . c
Ll I B = - | = 1.
2 do [(ds) ]+p s + sin@ 3 0 (1.59)
Let: s
d
U= (C;f) (1.60)
The equation (T.59) becomes:
du C2sin
g%er’U:— - ¢ (1.61)

The equation (T.61) is a first order linear differential equation with second member. Its resolution without a

second member gives :
k

U= E (1.62)
Using the second member of @) we consider that k is a function of ¢, then we obtain :
1 C? kor? — C?
v=1, (ko _ r2> S (1.63)

with kg the constant of integration. U is a positive function, we must obtain :

kor* —C?>0 (1.64)
The equation (T.60) becomes :
do\*  kor® —C?
_(de\" _ 1.65
v= (%) =" e
We use the equations (T.57) and (T.63), we obtain :
do\' _kr’-C*_(C\'_C _C (do)’ (166)
ds) — pxr  \2z) AZ2 A \dA ’

it gives :
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> p* ¢?
(d(p) e (1.67)

dA
To determine the value of kg, we write Is using the equations (1.50)) and (1.67). The term ds? is :
s

kor* —C*)
d2: 2d 2 2d2,2 (07d12 ZdAZ
sT=pideT+r 2
soit: ) ,
r k() dA C
ds* = —d\V = — ) = —; 1.68
MG (ds> kor® (1.68)
But from (T.50) :
ay_e
ds ) r*
then ky = 1, it follows :
a?  p?
ary _ P (1.69)
do r2 r2 —C?
To be able to integrate the preceding equation, we express r> — C2, then :
P —C? :Nzcosz(pr2 = M —C? =
1 —e2sin ¢
(=) (1- 255 sin*p)
(1.70)
w
Let: s 5 5
a-—C<e
K= — (1.71)
then :
r’—C =(a — —k“sincQ) /W .
2_c? 2 C)(1—ksine)/ (1.72)

We notice that the coefficient & is greater than 1, therefore the geodesic latitude ¢ remains lower than the
latitude ¢@; defined by sing@; = 1/k.

Then, the equation (T.69) is written :

di*_ (1-e)c? (1.73)
dp)  (a®>—C?)cos?o(1 —exsin?@) (1 — k2sin Q) '

Hence by replacing C by a.sin(Aze) and since 1g(Aze) has the same sign as (dA/d @), then, we can write:

ar _ (1—e?)tg(Aze)
Ao cospr/(1—e2sin?) (1 — k2sin2 @)

(1.74)

Integrating between 0 and ¢:

(1—e?)tg(Aze)

¢
r-re= [
“Jo cost\/(1—e2sin?t) (1 — K2sin’t)
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(1—e?)tg(Aze) /(P d

0 costr/(1— e2sint)(1 — K2sin?t)

or:
A=A = (1—e?)tg(Aze) /(p dt (1.75)
0 cost\/(1—e2sin?t) (1 — k2sin?t)
Taking as variable w = sint, the integral becomes:
~SInQ dw
A== (1-e*)g(Aze / 1.76)
e = (1=eglaze) (1—w?)/(1 —e2w?) (1 - k2w2) (

Now, we seek to express the curvilinear abscissa s as a function of ¢. The expression of ds? is equal to:
C2
ds* = p*d@® + r*dA* = p*d® + = ds’
r
or:

42 r’p2dg? 2(1—e?)?cos® pd p?
s = =
r2—C?  cos?(Aze)(1 —e2sin?@)3 (1 — k2sin )

(1.77)

Then: 5
ds— a(l—e*)cospdp (178)
cos(Aze) (1 — e2sin?@)\/ (1 — K2sin2@) (1 — e2sin2 @)

By taking ¢ = sin@ as a new variable, the integral of gives by taking as the origin of the curvilinear

abscissa s a point on the equator:

a(l—é?) /simp dt
cosAze Jo  (1—e22)\/(1—k22)(1 —e212)

(1.79)

The integrals and are called elliptic integrals of the third kind.

1.6 APPLICATIONS TO DIRECT AND INVERSE PROBLEMS OF THE
COMPUTATION OF GEODESIC LINES

In this second part, we will deal numerically the application of the preceding formulas in the resolution of

the problems called respectively direct and inverse of the computation of the geodesic lines.

1.6.1 The Direct Problem

We give :

- the coordinates (@;,A;) of a point M;;
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- the length s of the geodesic line from M; to M>;

- the geodetic azimuth Az; of the geodesic line from M to M;.

We ask to calcultate:
- the geodetic coordinates (¢, A2) of the point My;

- the geodetic azimuth Az, at M».

Solution: 1. Calculate the constant C, C = N(@y ).cos@ .sinAz; = a.sin(Aze), then Aze and k.
2. Determination of ¢, from :

a(l—é?) cos@IAQ
cosAze (1 — e2siny) /(1 —K2sin2@y) (1 — e2sinZ¢; )

As =

with Ap = @ — ¢y.

3. Knowing ¢,, we calculate A, using :

Mo— 21 = (1= )ig(Aze) / e dw
singy (1 —w2)y/(1—e2w?) (1 —k2w?)

4. Calculate Az, by the formula sin(Azz) = C/r(¢2).

1.6.2 The Inverse Problem

We give the coordinates (¢1,4,) and (@2,1,) of two points M; and M,. We ask to calculate:
- the length s of the geodesic line from M to M>;
- the geodetic azimuth Az at M;

- the geodetic azimuth Az, at M».

Solution:

1. We must calculate the constant C: from the equation (I.69), we can write :

(M)Z_pzapl) (kA
Ao r2(o1) (PP (@1)—C?)  (¢2—¢1)?

that gives C:
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[SS]
B>
S

7

C—___Phe
2

2 (AL

1+ 5 (5)

gl
<

Considering the azimuth between 0 and 7, therefore Az is positive, C is positive. By calculating it for ¢,

and @, we get C by the mean value:

c_ Cilo) + ()
2
2. Then, we obtain the value of k by (I.71):
B a® —C%e?
k= a2 —C2

3. Having the value of C, from (I.51)), we obtain Az; and Az, :

C
and sinAzp =

C
r(o1) r(¢2)

sinAz) =

C
4. Then, we obtain also Az,: sinAz, = —
a

5. Finally, the equation gives s.

We retire the process.

1.6.3 Computation of the term (1.79)

In this paragraph, we calculate in detail :

a(1—e?) /“”‘P dt
cosAze Jo  (1—e22)\/(1—k22)(1 —e22)

S =

For |x| < 1, we have the following limited developments:

b 3 B 3P 35
(1+x)%72 27T 16t Tt T
L g3, e et
T—x 2778 T 16 128

Taking x = —e%t? and x = k*, we obtain:

1 3,5, 15,4 35 ¢ 315 g4
———— =14 —€t —e't —e't ——e't
(I—eppn Tyt tgeltget Tget *
L. K2 N 3kt N 5k516 N 35k818
VI—k? 2 8 16 128

Then:

(1.80)

(1.81)

(1.82)
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K> +3e? 5, 3k*+6e2k* + 1564t4+

(1—e22)/(1—k2)(1—e2)

5kO + 9k*e? 4+ 15k%e* + 35¢° o 35k8 4 60kSe? + 90k*e* + 140k%e® + 31568 o

t
2 8

1.83
16 128 ( )
or to the order 4 : 1
=1+m?+nm*+ .. (1.84)
(1—e22)\/(1—k212) (1 — e2¢2)
with:
K432 3k 46e%K* + 156
mET o T 8
1.6.4 Calculation of the expression (1.76)
We have: ino J
A=A = (1—¢*)tg(Aze / i
e = (I=rglAze) | (1—w2)/(1—n?) (1 w?)
that becomes in our case:
Sing, dt
A=A =(1-€)t Aze/
2—h = (1-rglAze) singr (1—12)/(1—e22) (1 — k212
But from (T.81):
L i lep 3y O e 30 s
V1 —e2t2 2 8 16 128
and :
[ H@ 3kt +5k6t6 35k%®
N 2 8 16 128
and for (1 —¢2)~!, we obtain:
=142+ 40+ 88+
1—12
Then :
1 _ 2+k2+6212+
(1-12)/(1—e22) (1 —k212) 2
8+4k2+4e2+3k4+2e2k2+3e4t4+
8
16+ 8k? + 8e? 4 6k* + 4e2k> + 6¢* + 5k 4 3k*e? + 3k?e* + 5¢8 o
T
that we write under the form:
1
=1+ar*+Br* +yb+ .. (1.85)

(1-12)/(1—e2) (1 —k22)

with:
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2+k* 4
o= ——-

2
2 2 4 272 4
B = 8+ 4k” +4e” +3k™ +2e°k” + 3e (1.86)

8
/e 16+ 8k2 + 8% + 6k* + 4e2k? + 6¢* + 5k° 4 3k*e? 4 3k2e* + 5¢°
B 16
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