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Chapter 1
Geometry of The Ellipse and The
Ellipsoid

1.1 GEOMETRY OF THE ELLIPSE

1.1.1 Definitions

Definition 1.1 The ellipse is the locus of the points whose sum of the distances to two distinct fixed points
(foci) is constant:

MF +MF ′ = constant = 2a (1.1)

where a is called the semi-major axis of the ellipse (Fig. 1.1).

Definition 1.2 An ellipse is the transform by affinity of a circle in the ratio b/a where b is the semi-minor
axis (Fig. 1.2).

To the point M′ ∈ circle =⇒M ∈ ellipse with :

HM =
b
a

HM′ (1.2)

Let ψ be the angle ĤOM′, ψ is called the parametric latitude or reduced latitude, then the coordinates of
M′:

x = OH = OM′cosψ

y = OL = OM′sinψ

1
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Fig. 1.1 Definition of the ellipse

Fig. 1.2 The affinity transformation
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Hence, the coordinates of M on the ellipse are: x = OH = acosψ

y = OL =
b
a

HM′ =
b
a

asinψ = bsinψ
(1.3)

In the system of axes Ox,Oy, the equation of the ellipse is written:

x2

a2 +
y2

b2 = 1

We call respectively the flattening, the square of the first eccentricity and the square of the second
eccentricity the quantities:

α =
a−b

a
, e2 =

a2−b2

a2 , e′2 =
a2−b2

b2 (1.4)

1.2 PARAMETRIC EQUATIONS OF AN ELLIPSE

The equations (1.3) represent the parametric equations of an ellipse in function of the latitude ψ . We will
express these equations as a function of the angle ϕ of the normal at M with the axis Ox.

Let T M′ be the tangent at M’ on the circle of radius a, the point T is the intersection of this tangent with
the axis Ox. The transform of this tangent by affinity of ratio b/a of this tangent is the line tangent to the
ellipse at the point M and it goes through T (Fig. 1.3).

In the triangle MHT , we have:

tgϕ =
HT
MH

and in the triangle M′HT :

tgψ =
HT
M′H

so :
tgψ

tgϕ
=

HT
M′H

MH
HT

=
MH
M′H

= ratio of the affinity =
b
a

It follows:

tgψ =
b
a

tgϕ (1.5)

From (1.5), we write cosψ and sinψ in function of the angle ϕ , then:

1
cos2ψ

= 1+ tg2
ψ = 1+(b/a)2tg2

ϕ =
a2cos2ϕ + b2sin2ϕ

a2cos2ϕ

and :
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Fig. 1.3 The relation between ϕ and ψ

cos2
ψ =

a2cos2ϕ

a2cos2ϕ + b2sin2ϕ

Let:

W 2 =
a2cos2ϕ + b2sin2ϕ

a2 = 1− e2sin2
ϕ (1.6)

then:
W =

cosϕ

cosψ
(1.7)

We calculate in the same way sinψ:

sin2
ψ = 1− cos2

ψ = 1− a2cos2ϕ

a2cos2ϕ + b2sin2ϕ

we obtain:

sin2
ψ =

b2sin2ϕ

a2cos2ϕ + b2sin2ϕ
(1.8)

Let :

V 2 =
a2cos2ϕ + b2sin2ϕ

b2 = 1− e′2cos2
ϕ (1.9)

where e′ is the second eccentricity, then:

V =
sinϕ

sinψ
=

a
b

W (1.10)

It follows the parametric equations of the ellipse as functions of ϕ as:

X = acosψ = a
cosϕ

W
= a

cosϕ√
1− e2sin2ϕ

(1.11)
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Y = bsinψ =
bsinϕ

V
=

b2sinϕ

a
√

1− e2sin2ϕ
= a(1− e2)

sinϕ√
1− e2sin2ϕ

(1.12)

let:

X = a
cosϕ√

1− e2sin2ϕ

Y = a(1− e2)
sinϕ√

1− e2sin2ϕ

(1.13)

1.2.1 Differential Relations between ϕ and ψ

From the relation (1.5), we obtain:

dψ

cos2ψ
=

bdϕ

acos2ϕ
=⇒ dψ

dϕ
=

bcos2ψ

acos2ϕ
(1.14)

and using (1.7), we have:
dψ

dϕ
=

b
aW 2 =

b
a(1− e2sin2ϕ)

(1.15)

1.3 THE EXPRESSION OF THE CALCULATION OF THE GREAT NORMAL

We call the great normal the lenght of JM. The vector JM is normal to the ellipse at M, let l =
JM
||JM||

, its

components are: (cosϕ ,sinϕ) (Fig. 1.4).

Then the Cartesian equation of the normal is:

X−XM

cosϕ
=

Y −YM

sinϕ
(1.16)

We obtain the ordinate of J in taking X = 0 in (1.16), then:

−XM

cosϕ
=

Y −YM

sinϕ
=⇒ YJ = YM−XMtgϕ

It follows the expression of the distance MJ equal to :

MJ =
√
(YJ−YM)2 +X2

M =
√

X2
Mtg2ϕ +X2

M = XM
√

1+ tg2ϕ =
XM

cosϕ

XM

cosϕ

But:
XM =

acosϕ

W
=⇒MJ =

acosϕ

Wcosϕ
=

a
W

=
a√

1− e2sin2ϕ

Let :



6 1. Geometry of The Ellipse and The Ellipsoid

Fig. 1.4 The great normal

N(ϕ) = MJ =
a√

1− e2sin2ϕ
(1.17)

N is called the great normal.

The parametric equations of an ellipse (1.3) become:

X = acosψ = a
cosϕ

W
= a

cosϕ√
1− e2sin2ϕ

= N(ϕ)cosϕ

Y = bsinψ = b
sinϕ

V
= a(1− e2)

sinϕ√
1− e2sin2ϕ

= (1− e2)N(ϕ)sinϕ

Finally:

X = a
cosϕ√

1− e2sin2ϕ
= N(ϕ)cosϕ

Y = a(1− e2)
sinϕ√

1− e2sin2ϕ
= (1− e2)N(ϕ)sinϕ

(1.18)

1.3.1 Elementary arc ds and Radius of Curvature of an Ellipse

The elementary arc ds of an ellipse is determined from the parametric equations as:

ds2 = dX2 + dY 2 = a2sin2
ψdψ

2 + b2.cos2
ψdψ

2

or ds2 = (a2sin2
ψ + b2.cos2

ψ)dψ
2
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Using the equations (1.7) and (1.10), we obtain:

ds =
b

W
.dψ

Replacing dψ using (1.15), we find:

ds = a(1− e2)
dϕ

(1− e2sin2ϕ)3/2

The length of the meridian arc counted from the equator is:

s(ϕ) =
∫

ϕ

0
ds = a(1− e2)

∫
ϕ

0

dt
(1− e2sin2t)3/2 (1.19)

The integration is obtained from a limited development of (1− e2sin2t)−3/2 (Voir plus loin). The radius of
curvature of an ellipse ρ is given from ds as:

ρ =
ds
dϕ

=
b2

aW 3 =
a(1− e2)

(1− e2sin2ϕ)3/2 (1.20)

1.4 GEOMETRY OF THE ELLIPSOID OF REVOLUTION

We will study the properties of the ellipsoid of revolution obtained by the rotation of an ellipse around the
semi-minor axis as shown in the figure below (Fig. 1.5):

1.4.1 The Geographic Coordinates

The geographic coordinates defined on the ellipsoid of revolution are:

- the longitude λ : angle of the meridian plane of point M with the origin meridian plane, in our case, the
origin plane is the XOZ plane, - the latitude ϕ: angle of the direction of the normal at point M with the
equatorial plane;

- the ellipsoid altitude he, if the point is on the ellipsoid, then he = 0.

In the plane ROZ (Fig. 1.6), with r and k the unit vectors of the axis OR and OZ, we can write:

OM = acosψr+ bsinψk

and r = cosλ i+ sinλ j

Then:
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Fig. 1.5 The Ellipsoid of revolution: Reference ellipsoid

Fig. 1.6 Geodetic coordinates
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OM = acosψcosλ i+ acosψsinλ j+ bsinψk

It follows the parametric equations of the point M are :

X = acosψcosλ

Y = acosψsinλ

Z = bsinψ

Replacing ψ in function of ϕ , we obtain:

X = acosψcosλ =
acosϕ

W
cosλ = Ncosϕcosλ

Y = acosψsinλ = Ncosϕsinλ

Z = bsinψ =
b2sinϕ

a
√

1− e2sin2ϕ
= N(1− e2)sinϕ

Let :
X = Ncosϕcosλ

Y = Ncosϕsinλ

Z = N(1− e2)sinϕ

(1.21)

If he 6= 0, then the coordinates of M are:

X = (N + he)cosϕcosλ

Y = (N + he)cosϕsinλ

Z = (N(1− e2)+ he)sinϕ

(1.22)

1.4.2 Passage from three-dimensional coordinates (X ,Y ,Z) to (ϕ ,λ ,he) coordinates

From the first two equations of (1.22) and ignoring the special case (X = 0), we get:

tgλ =
Y
X

=⇒ λ = Arctg
Y
X

(1.23)

We denote :
r =

√
X2 +Y 2 = (N + he)cosϕ

From (1.22), can write:
Z = (N + he)sinϕ−Ne2sinϕ (1.24)

or:
Z = Z′−Ne2sinϕ

with:
Z′ = (N + he)sinϕ (1.25)
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The calculation of ϕ is done by iterations:

- 1st iteration:

Z′ = Z⇒ tgϕ =
Z′

r
⇒ ϕ1 = Arctg

Z′

r
(1.26)

- 2nd iteration: N = a(1− e2sin2ϕ1)−1/2, Z′ = Z +Ne2.sinϕ1

and : ϕ2 = Arctg(Z′/r).

- 3rd iteration: N = a(1− e2sin2ϕ2)−1/2 Z′ = Z +Ne2.sinϕ2

and : ϕ3 = Arctg(Z′/r). In general, 3 to 4 iterations are sufficient and we obtain:

ϕ = ϕ3 (1.27)

As a result, we can determine the geodetic altitude he :

he =
r

cosϕ
−N(ϕ) (1.28)

1.5 CALCULATION OF THE GEODESIC LINES OF THE ELLIPSOID OF

REVOLUTION

" Alongside the main difficulty, that which lies at the very bottom of things, there are a host
of secondary difficulties which further complicate the task of the researcher. It would
therefore be advantageous to study first a problem where one would encounter this main
difficulty, but where one would be freed from all the secondary difficulties. This problem
is obvious, it is that of the geodesic lines of a surface; it is still a problem of dynamics,
so that the main difficulty remains; but it is the simplest of all dynamic problems. "

(H. Poincaré1, 1905)

We define the geodesic lines of a surface then we establish the geodesic equations for a given surface. As
an application, we detail those of the ellipsoid of revolution. We will integrate these equations.

1.5.1 Introduction and Notations

Let (S) be one surface defined by the parameters (u,v) with (u,v)∈D one domain⊂R2. One point M ∈ (S)
verifies :
1 Henri Poincaré (1854-1912): French mathematician, among the greatest of the 19th century.



1.5. CALCULATION OF THE GEODESIC LINES OF THE ELLIPSOID OF REVOLUTION 11

OM = OM(u,v)

∣∣∣∣∣∣∣
x(u,v)
y(u,v)
z(u,v)

(1.29)

We introduce the usual notations :

E =
∂M
∂u

.
∂M
∂u

=

∥∥∥∥∂M
∂u

∥∥∥∥2

F =
∂M
∂u

.
∂M
∂v

G =
∂M
∂v

.
∂M
∂v

=

∥∥∥∥∂M
∂v

∥∥∥∥2
(1.30)

From the equations (1.30), we obtain the equations :

∂E
∂u

= 2
∂M
∂u

.
∂ 2M
∂u2

∂E
∂v

= 2
∂M
∂u

.
∂ 2M
∂u∂v

∂F
∂u

=
∂ 2M
∂u2 .

∂M
∂v

+
∂M
∂u

.
∂ 2M
∂u∂v

∂F
∂v

=
∂ 2M
∂v2 .

∂M
∂u

+
∂M
∂v

.
∂ 2M
∂u∂v

∂G
∂u

= 2
∂M
∂v

.
∂ 2M
∂u∂v

∂G
∂v

= 2
∂M
∂v

.
∂ 2M
∂v2

(1.31)

Let n be the unit vector at M(u,v) on the surface (S), n is given by :

n =

∂M
∂u
∧ ∂M

∂u
H

(1.32)

with:

H =

∥∥∥∥∂M
∂u
∧ ∂M

∂u

∥∥∥∥ (1.33)

then :
ds2 = E.du2 + 2.F .du.dv+G.dv2 (1.34)

The equation (1.34) represents the square of the infinitesimal length of the arc.

Let (Γ) be a curve traced on (S) and N is the unit vector of the principal normal along (Γ).
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Definition 1.3 A curve (Γ) is a geodesic line on the surface (S) if and only if the vectors n and N are
collinear.

We prove by the calculation of variations that the geodesic line between two points of a surface (S) when it
exists is the curve of minimum length joining the two points.

1.5.2 Differential Equations of Geodesic Lines

We calculate N, we get :

N = R
dT
ds

but:
T =

dM
ds

=
∂M
∂u

du
ds

+
∂M
∂v

dv
ds

then:
dT
ds

=
∂ 2M
∂u2

(
du
ds

)2

+ 2
∂ 2M
∂u∂v

du
ds

dv
ds

+
∂M
∂u

d2u
ds2 +

∂M
∂v

d2u
ds2 +

∂ 2M
∂v2

(
dv
ds

)2

The condition n // N can be written as :
N∧n = 0

so:

R
dT
ds
∧

 ∂M
∂u
∧ ∂M

∂u
H

= 0 (1.35)

Using the formula of the cross product:

A∧ (B∧C) = (A.C)B− (A.B)C (1.36)

we obtain: (
dT
ds

.
∂M
∂v

)
∂M
∂u
−
(

dT
ds

.
∂M
∂u

)
∂M
∂v

= 0

But
∂M
∂u

and
∂M
∂v

form a base of the tangent plane in M, it follows the two conditions:

dT
ds

.
∂M
∂v

= 0 and
dT
ds

.
∂M
∂u

= 0 (1.37)

It gives two differential equations of second order:

∂ 2M
∂u2 .

∂M
∂v

(
du
ds

)2

+F
d2u
ds2 + 2

∂ 2M
∂u∂v

.
∂M
∂v

du
ds

dv
ds

+
∂ 2M
∂v2 .

∂M
∂v

(
dv
ds

)2

+G
d2v
ds2 = 0 (1.38)

and:
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∂ 2M
∂v2 .

∂M
∂u

(
dv
ds

)2

+F
d2v
ds2 + 2

∂ 2M
∂u∂v

.
∂M
∂u

du
ds

dv
ds

+
∂ 2M
∂u2 .

∂M
∂u

(
du
ds

)2

+E
d2u
ds2 = 0 (1.39)

We denote:

E ′u =
∂E
∂u

; E ′v =
∂E
∂v

; F ′u =
∂F
∂u

F ′v =
∂F
∂v

; G′u =
∂G
∂u

; G′v =
∂G
∂v

(1.40)

and we use the equations (1.31), (1.38) et 1.39), these last 2 equations can be written :

(F ′u−
E ′v
2
)

(
du
ds

)2

+F
d2u
ds2 +G′u

du
ds

dv
ds

+
G′v
2

(
dv
ds

)2

+G
d2v
ds2 = 0 (1.41)

(F ′v −
G′u
2
)

(
dv
ds

)2

+F
d2v
ds2 +E ′v

dv
ds

du
ds

+
E ′u
2

(
du
ds

)2

+E
d2u
ds2 = 0 (1.42)

1.5.3 Determination of the Geodesic Lines of the Ellipsoid of Revolution

We now consider as surface the ellipsoid of revolution which we parametrize as follows:

X = N.cosϕcosλ

Y = Ncosϕsinλ (1.43)

Z = N(1− e2)sinϕ

then :
N =

a√
1− e2sin2ϕ

= aW−1/2

is the radius of curvature of the great normal with:

W = 1− e2sin2
ϕ

Let :
r = Ncosϕ

be the radius of the parallel of latitude ϕ and ρ the radius of curvature of the meridian given by :

ρ =
a(1− e2)

(1− e2sin2ϕ)
√

1− e2sin2ϕ
= a(1− e2)W−3/2

Then, the first fundamental form is written as :

ds2 = ρ
2dϕ

2 + r2dλ
2 (1.44)



14 1. Geometry of The Ellipse and The Ellipsoid

Considering as variables u = ϕ and v = λ , we obtain:

E = E(ϕ) = ρ2, F = 0, G = r2 (1.45)

E ′ϕ = 2ρρ ′, E ′
λ
= 0, F ′ϕ = F ′

λ
= 0, G′ϕ = 2rr′ = −2rρsinϕ , G′

λ
= 0 (1.46)

Then, the equations (1.41) and (1.42) become :

−2rρsinϕ
dϕ

ds
dλ

ds
+ r2 d2λ

ds2 = 0 (1.47)

rρsinϕ

(
dλ

ds

)2

+ρρ
′
(

dϕ

ds

)2

+ρ
2 d2ϕ

ds2 = 0 (1.48)

We write the first equation as:
d
ds

(
r2 dλ

ds

)
= 0 (1.49)

its integration gives :

r2 dλ

ds
=C = constant (1.50)

Then, we find Clairaut’s relation :2

r.sinAz = constant =C = a.sinAze (1.51)

where Az is the azimuth of the geodesic line at the point M and Aze its initial azimuth at the point M0 on the
equator.

The equation (1.48) is written:

ρ

(
rsinϕ

(
dλ

ds

)2

+ρ
′
(

dϕ

ds

)2

+ρ
d2ϕ

ds2

)
= 0 (1.52)

It gives:

- ρ = 0 the point M is on the equator: ϕ = 0 and r = a the semi-major axis of the ellipsoid and the equation
(1.47) becomes:

d2λ

ds2 = 0 (1.53)

its integration gives:
λ −λ0 = l(s− s0) (1.54)

the point M describe the equator and the geodesic line is the great circle of radius a.

- ρ 6= 0, the point M is not on the equator, the equation (1.48) is written as :

ρ
d2ϕ

ds2 +ρ
′
(

dϕ

ds

)2

+ rsinϕ

(
dλ

ds

)2

= 0 (1.55)

To integrate (1.55), we will use a new function, let :

2 Alexis Claude de Clairaut (1713-1765): French mathematician, astronome and geophysist.
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Z =
dλ

dϕ
(1.56)

be the new function. From (1.50), we obtain :

dϕ

ds
=

dϕ

dλ

dλ

ds
=

C
r2

dϕ

dλ
=

C
r2Z

so :
dϕ

ds
=

C
r2Z

(1.57)

We calculate now the second derivative d2ϕ/ds2 :

d2ϕ

ds2 =
d
ds

(
dϕ

ds

)
=

d
dϕ

(
dϕ

ds

)
dϕ

ds
=

1
2

d
dϕ

(
dϕ

ds

)2

(1.58)

Using (1.50) and (1.58), the equation (1.55) is written :

ρ

2
d

dϕ

[(
dϕ

ds

)2
]
+ρ

′
(

dϕ

ds

)2

+ sinϕ

(
C2

r3

)
= 0 (1.59)

Let :

U =

(
dϕ

ds

)2

(1.60)

The equation (1.59) becomes:
ρ

2
dU
dϕ

+ρ
′U = −C2sinϕ

r3 (1.61)

The equation (1.61) is a first order linear differential equation with second member. Its resolution without a
second member gives :

U =
k

ρ2 (1.62)

Using the second member of (1.61), we consider that k is a function of ϕ , then we obtain :

U =
1

ρ2

(
k0−

C2

r2

)
=

k0r2−C2

ρ2r2 (1.63)

with k0 the constant of integration. U is a positive function, we must obtain :

k0r2−C2 > 0 (1.64)

The equation (1.60) becomes :

U =

(
dϕ

ds

)2

=
k0r2−C2

ρ2r2 (1.65)

We use the equations (1.57) and (1.65), we obtain :(
dϕ

ds

)2

=
k0r2−C2

ρ2r2 =

(
C

r2Z

)2

=
C2

r4Z2 =
C2

r4

(
dϕ

dλ

)2

(1.66)

it gives :
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dλ

dϕ

)2

=
ρ2

r2
C2

k0r2−C2 (1.67)

To determine the value of k0, we write
dλ

ds
using the equations (1.50) and (1.67). The term ds2 is :

ds2 = ρ
2dϕ

2 + r2dλ
2 =

r2(k0r2−C2)

C2 dλ
2 + r2dλ

2

soit:

ds2 =
r4k0

C2 dλ
2⇒

(
dλ

ds

)2

=
C2

k0r4 (1.68)

But from (1.50) : (
dλ

ds

)2

=
C2

r4

then k0 = 1, it follows : (
dλ

dϕ

)2

=
ρ2

r2
C2

r2−C2 (1.69)

To be able to integrate the preceding equation, we express r2−C2, then :

r2−C2 = N2cos2
ϕ−C2 =

a2cos2ϕ

1− e2sin2ϕ
−C2 =

(a2−C2)
(

1− a2−C2e2

a2−C2 sin2ϕ

)
W

(1.70)

Let :

k2 =
a2−C2e2

a2−C2 (1.71)

then :
r2−C2 = (a2−C2)(1− k2sin2

ϕ)/W (1.72)

We notice that the coefficient k is greater than 1, therefore the geodesic latitude ϕ remains lower than the
latitude ϕ1 defined by sinϕ1 = 1/k.

Then, the equation (1.69) is written :(
dλ

dϕ

)2

=
(1− e2)2C2

(a2−C2)cos2ϕ(1− e2sin2ϕ)(1− k2sin2ϕ)
(1.73)

Hence by replacing C by a.sin(Aze) and since tg(Aze) has the same sign as (dλ /dϕ), then, we can write:

dλ

dϕ
=

(1− e2)tg(Aze)

cosϕ
√
(1− e2sin2ϕ)(1− k2sin2ϕ)

(1.74)

Integrating between 0 and ϕ:

λ −λe =
∫

ϕ

0

(1− e2)tg(Aze)

cost
√
(1− e2sin2t)(1− k2sin2t)

dt =
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(1− e2)tg(Aze)
∫

ϕ

0

dt

cost
√
(1− e2sin2t)(1− k2sin2t)

or :
λ −λe = (1− e2)tg(Aze)

∫
ϕ

0

dt

cost
√
(1− e2sin2t)(1− k2sin2t)

(1.75)

Taking as variable w = sint, the integral (1.75) becomes:

λ −λe = (1− e2)tg(Aze)
∫ sinϕ

0

dw

(1−w2)
√
(1− e2w2)(1− k2w2)

(1.76)

Now, we seek to express the curvilinear abscissa s as a function of ϕ . The expression of ds2 is equal to:

ds2 = ρ
2dϕ

2 + r2dλ
2 = ρ

2dϕ
2 +

C2

r2 ds2

or:

ds2 =
r2ρ2dϕ2

r2−C2 =
a2(1− e2)2cos2ϕdϕ2

cos2(Aze)(1− e2sin2ϕ)3(1− k2sin2ϕ)
(1.77)

Then:

ds =
a(1− e2)cosϕdϕ

cos(Aze)(1− e2sin2ϕ)
√
(1− k2sin2ϕ)(1− e2sin2ϕ)

(1.78)

By taking t = sinϕ as a new variable, the integral of (1.78) gives by taking as the origin of the curvilinear
abscissa s a point on the equator:

s =
a(1− e2)

cosAze

∫ sinϕ

0

dt

(1− e2t2)
√
(1− k2t2)(1− e2t2)

(1.79)

The integrals (1.76) and (1.79) are called elliptic integrals of the third kind.

1.6 APPLICATIONS TO DIRECT AND INVERSE PROBLEMS OF THE

COMPUTATION OF GEODESIC LINES

In this second part, we will deal numerically the application of the preceding formulas in the resolution of
the problems called respectively direct and inverse of the computation of the geodesic lines.

1.6.1 The Direct Problem

We give :

- the coordinates (ϕ1,λ1) of a point M1;
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- the length s of the geodesic line from M1 to M2;

- the geodetic azimuth Az1 of the geodesic line from M1 to M2.

We ask to calcultate:

- the geodetic coordinates (ϕ2,λ2) of the point M2;

- the geodetic azimuth Az2 at M2.

Solution: 1. Calculate the constant C, C = N(ϕ1).cosϕ1.sinAz1 = a.sin(Aze), then Aze and k.

2. Determination of ϕ2 from :

∆s =
a(1− e2)

cosAze
cosϕ1∆ϕ

(1− e2sin2ϕ1)
√
(1− k2sin2ϕ1)(1− e2sin2ϕ1)

with ∆ϕ = ϕ2−ϕ1.

3. Knowing ϕ2, we calculate λ2 using :

λ2−λ1 = (1− e2)tg(Aze)
∫ sinϕ2

sinϕ1

dw

(1−w2)
√
(1− e2w2)(1− k2w2)

4. Calculate Az2 by the formula sin(Az2) =C/r(ϕ2).

1.6.2 The Inverse Problem

We give the coordinates (ϕ1,λ1) and (ϕ2,λ2) of two points M1 and M2. We ask to calculate:

- the length s of the geodesic line from M1 to M2;

- the geodetic azimuth Az1 at M1;

- the geodetic azimuth Az2 at M2.

Solution:

1. We must calculate the constant C: from the equation (1.69), we can write :(
∆λ

∆ϕ

)2

=
ρ2(ϕ1)

r2(ϕ1)

C2

(r2(ϕ1)−C2)
=

(λ2−λ1)2

(ϕ2−ϕ1)2

that gives C:



1.6. APPLICATIONS TO DIRECT AND INVERSE PROBLEMS OF THE COMPUTATION OF GEODESIC LINES 19

C =
r2

ρ

∆λ

∆ϕ√
1+ r2

ρ2

(
∆λ

∆ϕ

)2

Considering the azimuth between 0 and π , therefore Az is positive, C is positive. By calculating it for ϕ1

and ϕ2, we get C by the mean value:

C =
C1(ϕ1)+C2(ϕ2)

2

2. Then, we obtain the value of k by (1.71):

k =
a2−C2e2

a2−C2

3. Having the value of C, from (1.51), we obtain Az1 and Az2 :

sinAz1 =
C

r(ϕ1)
and sinAz2 =

C
r(ϕ2)

4. Then, we obtain also Aze: sinAze =
C
a

5. Finally, the equation (1.79) gives s.

We retire the process.

1.6.3 Computation of the term (1.79)

In this paragraph, we calculate in detail :

s =
a(1− e2)

cosAze

∫ sinϕ

0

dt

(1− e2t2)
√
(1− k2t2)(1− e2t2)

For |x|< 1, we have the following limited developments:

1
(1+ x)3/2 = 1− 3

2
x+

15
8

x2− 35
16

x3 +
315
128

x4 + ... (1.80)

1√
1− x

= 1+
x
2
+

3x2

8
+

5x3

16
+

35x4

128
+ ... (1.81)

Taking x = −e2t2 and x = k2t2, we obtain:

1
(1− e2t2)3/2 = 1+

3
2

e2t2 +
15
8

e4t4 +
35
16

e6t6 +
315
128

e8t8 + ...

1√
1− k2t2

= 1+
k2t2

2
+

3k4t4

8
+

5k6t6

16
+

35k8t8

128
+ ... (1.82)

Then:
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1

(1− e2t2)
√
(1− k2t2)(1− e2t2)

= 1+
k2 + 3e2

2
t2 +

3k4 + 6e2k2 + 15e4

8
t4+

5k6 + 9k4e2 + 15k2e4 + 35e6

16
t6 +

35k8 + 60k6e2 + 90k4e4 + 140k2e6 + 315e8

128
t8 + ... (1.83)

or to the order 4 :
1

(1− e2t2)
√
(1− k2t2)(1− e2t2)

= 1+mt2 + nt4 + ... (1.84)

with:

m =
k2 + 3e2

2
; n =

3k4 + 6e2k2 + 15e4

8

1.6.4 Calculation of the expression (1.76)

We have:

λ −λe = (1− e2)tg(Aze)
∫ sinϕ

0

dw

(1−w2)
√
(1− e2w2)(1− k2w2)

that becomes in our case:

λ2−λ1 = (1− e2)tg(Aze)
∫ sinϕ2

sinϕ1

dt

(1− t2)
√
(1− e2t2)(1− k2t2)

But from (1.81):
1√

1− e2t2
= 1+

1
2

e2t2 +
3
8

e4t4 +
5
16

e6t6 +
35

128
e8t8 + ...

and :
1√

1− k2t2
= 1+

k2t2

2
+

3k4t4

8
+

5k6t6

16
+

35k8t8

128
+ ...

and for (1− t2)−1, we obtain:
1

1− t2 = 1+ t2 + t4 + t6 + t8 + ...

Then :

1

(1− t2)
√
(1− e2t2)(1− k2t2)

= 1+
2+ k2 + e2

2
t2+

8+ 4k2 + 4e2 + 3k4 + 2e2k2 + 3e4

8
t4+

16+ 8k2 + 8e2 + 6k4 + 4e2k2 + 6e4 + 5k6 + 3k4e2 + 3k2e4 + 5e6

16
t6 + ...

that we write under the form:

1

(1− t2)
√
(1− e2t2)(1− k2t2)

= 1+αt2 +β t4 + γt6 + ... (1.85)

with:
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α =

2+ k2 + e2

2

β =
8+ 4k2 + 4e2 + 3k4 + 2e2k2 + 3e4

8

γ =
16+ 8k2 + 8e2 + 6k4 + 4e2k2 + 6e4 + 5k6 + 3k4e2 + 3k2e4 + 5e6

16

(1.86)
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