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Abstract

A description of the matter and the world structure based on the

action-duration change is proposed. The concept of place and spatial

relations for its harmonics are introduced. The world emergence from

extra-spatial noise and its development to the over-noisy spatial struc-

ture are studied. The environment hidden behind the seemingly empty

space has a huge density and is the cause of electric and gravity �elds.

There is an endless chain of interconnected and controlled worlds. An

explanation of the particle structure was proposed. Modern physical

theories may be derived from this representation.

Introduction. World of changes

Three basic physic concepts were used in the late 19th century in addition
to absolute time: bodies, �elds, and space. The bodies move in the space,
are �elds sources and interact with other bodies through �elds. The bodies
and �elds are located in the empty space that is not material but has prop-
erties: in�nity, three dimensions, and distances. It was assumed that there
is an unobservable environment in space � the Descartes ether [1] in which
all phenomena should occur: �elds are waves and bodies are features of a
structure or movement (for example vortices).

Experiences and theories reveal inconsistencies and contradictions in this
representation of the world at the beginning of the 20th century [1]. This led
to the creation of two new mechanics: the theory of relativity [2, 3] and the
quantum mechanics [4, 5]. Previously clear concepts of bodies, waves, �elds,
and space began to blur, intersect and interact with each other in them. The
concept of the ether was recognized as erroneous because its theories was
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contradicted with the experience [1, 2]. However there were and are still
attempts to revive it.

The continuation of these attempts to revive the concept of the ether
is associated with the special and unusual characteristics that the new me-
chanics give to empty space. Their characteristics correspond more to the
substance than to the void [6]. Gravity changes the "empty space" which
now a�ects movement of bodies and �elds [3]. "Void" is represented by a
"physical vacuum" [7] with irreducible zero oscillations, virtual particles and
energy �uctuations.

Einstein's and quantum mechanics are good enough to describe the re-
sults of experiments and observations but their foundations are still unclear.
This is mainly due to the inductive path of physics development � from
observations of ordinary phenomena to simple laws for them and the fur-
ther successive complication of laws (theories) as the volume of experimental
knowledge increases accompanied by an increase in their abstraction. Ab-
stract tools of cognition (symmetries, groups, complex spaces) allow to see
general patterns "from afar" as if "from above" but do not penetrate deeply
enough into their foundations. However these obscure grounds leave their
traces in the physical laws. This is energy, action, time, space.

In physics everything that exists (Everything) is matter, and all its parts
have energy which is the ability to do work � to change the state. Therefore
energy, as a characteristic of change and contained in everything, transmits
own totality to change. Then Everything is a change. It has two compo-
nents (magnitude, duration) and is not reduced to anything else. Replacing
one magnitude or duration with another only converts one change into an-
other.

It is necessary to have samples and a comparison method to compare and
measure a change. One sample is taken as conditional zero, the other as
a conditional unit of measurement. The choice of some method to compare
any change with these samples gives its numerical characteristic and allows to
measure the change. A transition to another samples, may be non-constant
compared to the �rst, modi�es the measured change but leaves it as a change.

Everything is scaling. It has no any speci�c magnitudes or durations.
But the choice of any sample as zero de�ne summarily symmetrical station-
ary repeats relatively to it. Zero becomes the average line of repetitions and
the only conserved value that determines the voidness of Everything � the
relativity of void. Non-stationarity (also relative) is possible only tem-
porarily as a special case. Everything consists of these special cases that
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expresses the constancy of changes.
It is convenient and usual to describe the in�nite repetition variety by

an in�nite set of harmonics which have any frequencies, amplitudes and
phases. Everything is scaling and has not special harmonics with properties
di�erent from others. The representation of Everything using harmonics is
not a Fourier transform which applies only to one certain periodic function
possibly with an in�nite period in a limit. This requires an in�nite set of
each frequency harmonics. In another way it is possible to use only one
harmonic of a given frequency and consider an in�nitely complex structure
of its amplitude distortion, but this is less convenient.

Everything is fully represented in any harmonic. The frequency
and amplitude de�ne its scale. Other harmonics with a lower frequency add
up to its middle line taken as the zero, and harmonics with a higher frequency
add up to the oscillation noise which is described by multiplying a random
amplitude by a certain oscillation in the probability theory.

General conclusions about the matter structure
Everything is not empty and changeable relatively to any harmonic. But

for each harmonic there is an antiphase one with the same amplitude and
frequency. The sum of all harmonics is zero. Then Everything is void and
therefore constant. Total voidness is manifested through changeable fullness.
Everything is nothing but appears as something.

Any part of Everything is opposite and equal in absolute magnitude to
the rest as their sum is void. Any part has a zero which is Everything.
Hence any part contains Everything together with each part including
their past, present and future.

This is the logic of in�nities which di�ers from the usual �nite logic
where the part does not exceed the whole. In�nite sets have similar properties
in mathematics. There are in them a �nite or in�nite number of subsets
which are isomorphic to the set. Each subset has its own sub-subsets which
are isomorphic to the set also. Therefore these subsets contain set. It is
possible to divide in�nity into in�nite parts which have own in�nite parts
isomorphic to the original in�nity. For example sum/product of all elements
is zero/one in an in�nite additive/multiplicative abelian group. The entire
group is contained in zero/one. Some numerical groups have this property.

A set of the same frequency harmonics make up an additive abelian group.
It is two-dimensional � two amplitudes (multipliers before cosωt and sinωt)
or an amplitude and initial phase. This group is enough to express the above
mentioned properties of Everything but not enough to describe it completely
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that requires a three-dimensional groups family of all frequencies harmonic.
This family is no longer a group.

Since an in�nite set can be divided into any (up to an in�nite) number
of isomorphic subsets then the in�nity is divisible by repeats of itself.
Everything is void but has in�nite energy how in�nite harmonics set of all
frequencies and amplitudes. Any part as containing Everything also has
in�nite energy. Therefore the part owns in�nite energy of Everything.

Everything is an unmanifest state (not-reality, chaos) from which worlds
(reality, cosmos) are manifested (born). Their set and variety is countless.
Our temporary and changeable world is among an in�nite number of other
worlds. Its special properties are not derived logically entirely from general
considerations although they are inextricably linked to them. Our world is
known from the particular experience of our life in it.

Harmonic of action-energy (haen)

In the introduction it was proposed to represent repetitions of change by an
in�nite set of harmonics. The equation of harmonic and its solution are
s̈ ≡ d2s/dt2 = −Ω2s, s(t, ϕ) = S cos(Ωt+ ϕ) = ReSei(Ωt+ϕ).

The oscillation s(t) have the frequency Ω and amplitude S. The initial
phase ϕ gives oscillation shift in time. Two harmonics with the same Ω
and S but di�erent ϕ represent two coincident oscillations shifted in phase.
They are like bodies in di�erent places of space. Thus the initial phase may
be called the place of harmonic. Determining the place is possible for
its slowly change ϕ̇� Ω. Otherwise the concept of place is blurred. The
oscillation period is a quantum of time which restricts the temporal and
spatial relations.

Two more quantities characterizing a harmonic as a whole are determined
by Ω and S. This is the impulse ΩS representing it externally and the internal
energy Ω2S2 supporting it. But Ω~ is an oscillation energy quantum. If ΩS is
also considered as a harmonic energy then S would be the action amplitude
and s(t) � the negative action so that its speed e = ṡ is the oscillating energy
and corresponds to the usual connection of energy with the action. Thus the
impulse of harmonic is its external energy involved in external interactions.
The "harmonic of action-energy" (haen, H) is formed.

After selecting any haen frequency it can be taken as a unit of measure-
ment Ω = 1. This makes time dimensionless t = Ωt and gives the same
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dimensions for energy and action.

s = Sc cos t+ Ss sin t = S cos(t+ ϕ) = ReSei(t+ϕ) (1)

where Sc = S cosϕ, Ss = S sinϕ.
The haen with the place ϕ ± π (shifted by half-turn) is antihaen H̄.

It is represented as a negative-amplitude (−S) haen in the place ϕ. After
the introduction of antihaens the set of places is divided into the real space
|ϕ| ≤ π/2 and the mirror antispace π/2 ≤ |ϕ| ≤ π in which H and H̄ are
mutually replaced. These concepts are relative for each haen. All haens with
places other than its place by less than π/2 are included in its space, the rest
� in anti-space. The sum H̄+H gives zero oscillation. But H and H̄ do not
disappear but hide preserving their energy.

Noise and over-noisy haens

According to the introduction Everything is an in�nite set of equals frequency
(Ω = 1) harmonics for which the sum of lower frequencies harmonics describe
the midline taken as zero and of higher ones - oscillation distortions.

An oscillating variable may be represented as a random quantity (ranqu)
having probability of observation equal to the ratio of its existence time to the
oscillation period. According to Lyapunov central limit theorem [8] an in�nite
sum of independent ranqu with any probability distributions converges to
the Gauss distribution. Now the higher frequencies harmonics sum becomes
the equilibrium �uctuations of oscillation amplitude (noise) at the selected
frequency.

The noise magnitude is uncertain. But the Gauss distribution is in�nitely
divisible. Then the modulation magnitude uncertainty is replaced by an
in�nite set of independent noises with any �nite dispersions. One of them
is the carrier of our world. The dispersion 〈S2〉 de�ne noise scale. There is
nothing to compare it with but can be taken 〈S2〉1/2 = 1 as the unit of the
haen amplitude measurements. Now an in�nitesimal part of Everything is
taken but it remains as in�nite for us.

A stationary ranqu must have a canonical harmonic decomposition. In
it the harmonics amplitudes Sc and Ss (1) are ranqus with zero averages
〈Sc〉 = 〈Ss〉 = 0 and have the same Gaussian distributions. From the noise
dispersion 〈S2〉 = 〈S2

c 〉+ 〈S2
s 〉 = 1 follows 〈S2

c 〉 = 〈S2
s 〉 = 1/2. Then the noise
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probability density is

P e(Sc, Ss) = (1/π)e−S
2

, S2 = S2
c + S2

s . (2)

If go to a distribution P e(S, ϕ) for S > 0 then

P e(S, ϕ) = (S/π)e−S
2

, |ϕ| ≤ π. (3)

This distribution is homogeneous over the place ϕ. It has no spatial relations
other than one-dimensionality (1d).

From the 1d noise (2, 3) and the in�nite divisibility of the Gauss dis-
tribution follows the 3d noise consisting of independent identical ranqus
Sj, j = 1, 2, 3 with zero averages 〈Sj〉 = 0 and unit disperses 〈S2

j 〉 = 1:

P e(S,ϕ) =
∏3

j=1 P
e
j (Sj, ϕj), P e

j (Sj, ϕj) = (Sj/π)e−S
2
j .

Here the vectors S = {Sj ≥ 0}, ϕ = {ϕj}(|ϕj| ≤ π) are entered.
Noise alone is not enough to create and exist a complex ordered world.

The world is over-noise structure consisting of over-noisy haens which
should be able to combine into more complex developing structures. They
can appear from a noise if its level decreases but some �uctuation set do not
adjust to it and remains as over-noisy haens.

If the relaxation is great then there is only noise in which there can be
no the world. If the relaxation is small then as the noise decreases its some
large �uctuations become over-noisy haens. Since the haen amplitudes are
counted in units of the noise level this looks like their increase � the release
of over-noisy energy which becomes the world energy. This is the world
birth (manifestation) from the noise (chaos, nonexistence, etc.). The noise
constancy ensures the world development with the energy preservation. The
noise increase looks like an haen amplitude decrease and the absorption of
over-noisy world energy. The world plunges (returns) into noise (chaos).

Let there be 3d de�ned haen (1) and the noise (2). Their joint distribution
has haen average amplitudes S̄cj, S̄sj, the noise dispersion and becomes the
over-noisy haen distribution

PH(Sc,Ss) =
3∏
j=1

PH
j (Scj, Ssj), PH

j (Scj, Ssj) = (1/π)e−S̊
2
j . (4)

Here Sc = {Scj}, Ss = {Ssj} � the random vectors, S̊2
j = S̊2

cj + S̊2
sj,

S̊cj = Scj − S̄cj, S̊sj = Ssj − S̄sj � the centered ranqus (�uctuations). The
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ranqu stationarity conditions (zero means and the same dispersions) are
not satis�ed for this distribution. Hence the distributions of over-noisy
haens are non-stationary.

After switching to variables Sj and ϕj as in output (3), the spatial dis-
tribution is followed: PH

j (Sj, ϕj) = SjP
H
j (Scj, Ssj)

where Scj = Sj cosϕj, Ssj = Sj sinϕj, S̄
2
j = S̄2

cj + S̄2
sj.

Entered ϕ̄j = arctg(S̄sj/S̄cj), ϕ̊j = ϕj − ϕ̄j, S̊j = Sj − S̄j, 〈Sj〉 = S̄j cos ϕ̊j.
Then exponent indicator omitting indexes j,
−{...} = S2 cos2 ϕ− 2SS̄c cosϕ+ S̄2

c + S2sin2ϕ− 2SS̄s sinϕ+ S̄2
s

= S2 + S̄2 − 2S(S̄c cosϕ+ S̄s sinϕ)
= S2 + S̄2 − 2SS̄(cos ϕ̄ cosϕ+ sin ϕ̄ sinϕ) = S2 + S̄2 − 2SS̄ cos ϕ̊
= S2 + S̄2 − 2SS̄ + 2SS̄(1− cosϕ̊) = S̊2 + 4SS̄sin2(ϕ̊/2).
or −{...} = S2 + S̄2 − 2SS̄ cos ϕ̊+ S̄2 cos2 ϕ̊− S̄2 cos2 ϕ̊
= (S − 〈S〉)2 + S̄2 sin2 ϕ̊.
The spatial distribution of over-noisy haen is

PH(S, ϕ̊) =
3∏
j=1

PH
j (Sj, ϕ̊j),

PH
j (Sj, ϕ̊j) = (Sj/π) exp{−S̊j

2
− 4SjS̄j sin2(ϕ̊j/2)}

= (Sj/π) exp{−(Sj − 〈Sj〉)2 − S̄2
j sin2 ϕ̊j}

where S = {Sj}, Sj ≥ 0, ϕ̊ = {ϕ̊j}, |ϕ̊j| ≤ π. Two types of the same distri-
bution are written here. They have the di�erent average amplitudes S̄j, 〈Sj〉
and spatial disperses. The width of the distribution depends on the distance
ϕ̊j to its center. Near it |ϕ̊j| � 1 and the distribution is Gaussian with the
width 1/S̄j. The width increases further from the center and the distribution
merges with the noise.

For a largely over-noisy haens S̄j � 1 this distribution is narrow
because S̄j sin ϕ̊j grows rapidly with ϕ̊j. Then |ϕ̊j| � 1. Exponent indicator

omitting indexes j: S̊2 + 4SS̄ sin2(ϕ̊/2) = S̊2 + SS̄ϕ̊2. And another
(S − 〈S〉)2 + S̄2 sin2 ϕ̊ = S2 − 2SS̄ cos ϕ̊+ S̄2 cos2 ϕ̊+ S̄2 sin2 ϕ̊
= S2 +S̄2−2SS̄+2SS̄(1−cos ϕ̊) = (S−S̄)2 +2SS̄(1−1+ϕ̊/2) = S̊2 +SS̄ϕ̊2.
Then

PH(S, ϕ̊) =
3∏
j=1

PH
j (Sj, ϕ̊j), PH

j (Sj, ϕ̊j) =
Sj
π

exp{−S̊2
j − SjS̄jϕ̊2

j}. (5)
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The distribution of the place is found by an approximate integration (5)
over the amplitude in which the main contribution is given by Sj ∼ S̄j:

PH(ϕ̊) =
3∏
j=1

PH
j (ϕ̊j), PH

j (ϕ̊j) =
S̄j
π1/2

exp{−S̄2
j ϕ̊

2
j} (6)

where |S̄j| � 1. Since the distribution width 〈ϕ̊2
j〉1/2 ∼ 1/S̄j then the space

capacity for haens ∼ S̄j increases with their amplitude.
Planck constant. 1d haen is the certain oscillation (1) blurred by the

noise (3). Its amplitude uncertainty is 〈S̊2〉1/2 = 1. The vertices of the
two distributions are distinguishable if the average amplitudes di�er by more
4S̄ = 2. They are quantized by quantum 2. Then the oscillation average
amplitudes coincide with the energy levels of the quantum harmonic oscillator
S̄ = 2n+ 1 = (n+ 1/2)~ where n is an integer. Thus the Planck constant ~
is twice the average noise amplitude ~ = 2. However indistinguishability of
the nearest amplitude haens is only external. They are quite distinguishable
by their average values.

Space and Environment of our world

The stationary noise of Everything �uctuations is described by the probabil-
ity density Gauss distribution of haen amplitudes. From in�nite divisibility
it can be represented by multidimensional oscillations formings a dimensions
of the places space. Let the set of haens forming a 1d part of its space be
called hdim (reduction of "haen dimension").

However any parts of Everything are non-stationary. The noise variabil-
ity leads to a di�erence in the probability distribution from Gaussian and to
a change in the average values. The non-zero average amplitudes and cor-
relations between hdims are originated. an haen and antihaen of each hdim
should also be correlated with each other. Their set

〈SHi SHj 〉, 〈SHj SH̄j 〉, 〈SHi SHj SHk 〉, 〈SHi SH̄i SHj 〉, 〈SHi SH̄i SH̄j 〉, . . . (7)

where SHj and SH̄j � the haen and antihaen amplitudes in the hdim j. The
set of correlations depend on how the probability distribution is distorted
and is in�nite. It is necessary to choose appropriate for our world.

A rearrangement of a changing noise distribution is a�ected by its �uctua-
tion relaxation rate to a new noise level. The distribution is quasi-stationary
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Gaussian with variable averages if the relaxation is large. And its change
lags behind the changes in the average noise level if the relaxation is small.
In this case some large �uctuations of the old noise remain as over-noisy
haens blurred by the new noise level. Correlations (7) are passed to them.
The amplitudes of over-noisy haens do not exceed the initial noise and their
dimension is determined by correlations which are not destroyed by noise.
The world is not created but manifested from primordial chaos.

Correlations between haens of di�erent hdims or between an haen and
antihaen of one hdim haves the same cause and are similar. They may be
taken equals. Then it is assumed that the existence of our world is provided
by the same connections of haens from di�erent hdims which can switch
to the connections of an haen and antyhaen in the same hdim. They are
represented as two free bonds in a gàen to connect with the same bonds in
gàen of other hdim or with antyhaen of own hdim where both bonds are
involved.

The haens random amplitudes SHj and SH̄j of hdims j from the distribution
(5) can be written as noises sums. In this case the paired correlations between
1d haens H1

j inside the 3d haen H3 should be amplitude exchanges that
preserve the amplitude sums.

SHj = S̄Hj + εj + gSHj

3∑
i=1

ηjiS
H
i , ηji = −ηij. (8)

The equations for the amplitudes of a 1d haen and antihaen of one hdim
which ensure the preservation of the amplitudes sum in paired exchanges
and take into account the pairness of bonds have added

SHj = S̄Hj + εj + g(ηj + θj)S
H
j S

H̄
j , SH̄j = S̄H̄j + εj − g(ηj + θj)S

H
j S

H̄
j . (9)

Here εj is common for an haen and antihaen unit noise in hdim j, ηji is unit
noise of amplitude exchange between haens of di�erent hdims, ηj and θj are
unit noises of amplitude exchanges between haen and antihaen of one hdim,
g are coupling coe�cients between haens of di�erent hdims or between an
haen and antihaen of one hdim, which are taken to be same.

Weakly over-noisy 1-dimensional haens H1 should appear �rst when noise
is attenuated. They create a 1d haens space of small-capacity. 2d haens
H2 = H1

1gH
1
2g, 1d pairs νj = H1

j gH̄
1
j g of hdims j = 1, 2 and their 2d sums

ν1ν2 based on H1 appear further. (Here and after the last g-bond con-
nects last and �rst haens.) They create a 2d space of haens and two 1d
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spaces of pairs νj. The continued noise attenuation causes the appearance
of 1d pairs νj = H1

j gH̄
1
j g, 2d νjνk, νjk = H1

j gH̄
1
j gH

1
kgH̄

1
kg (j = 1, 2, 3), 3d

ν1ν2ν3, ν123 = H1
1gH̄

1
1gH

1
2gH̄

1
2H

1
3gH̄

1
3g and longer combinations. This pro-

cess can continue creating worlds of higher dimensions.
The space of our world has three dimensions. It is homogeneous,

isotropic, and circular � the places ϕj = ±π coincide. Haens are its material
points, hdims are the absolute axes. In relation to any place the space can be
represented as consisting of the real world space and the mirror anti-world
space in which the haen and the antihaen are mutually replaced. The world
seems in�nite only if is viewed from small its part in a small time.

Thus the world could arise from the initial spaceless noise (2, 3) atten-
uated with the preservation of �uctuations. They are distinguished if the
di�erence of their amplitudes is more twice noisy average amplitude. It is
possible that each twofold noise decrease is accompanied by the formation
of a new over-noisy haen level from the stored �uctuations of previous. Here
the �uctuations haves a width ∼ 1/S where S ∼ 2n is their amplitude which
summed by n over-noise levels.

The spatial uncertainty of haens is S∆ϕ ∼ 2/S. They do not di�er in
appearance if the distance between their centers is r < 2/S. In this case a
level is the haens plateau over which the current noise �uctuates. The spatial
constancy of the plateau leads to the invisibility of the level and the energy
can be counted relative it. The elevations above it remain noticeable only.
This is the current noise with a unit dispersion and over-noisy haens that
form the world structure.

Let take the Universe radius ∼ 1027 m to estimate of the over-noise levels
number n. The haen size is no more the electron radius (. 10−22 m [9],
see "Particles"). If the Universe occupies the entire space of haen places
then along each axis it can have at least 1049 haens. This axis capacity is
proportional to the haen amplitude S in noise units (6). Then S & 1049 ∼
2163 or n & 163 when the amplitude doubles from level to level. The plateau
has the amplitude S0 & 1022 ergs if a noise amplitude is ∼ ~ ∼ 10−27 ergs.

Our world stand on a powerful but invisible basis. The �uctuations of
its noise give zero oscillations of "physical vacuum" over which relatively
rare particles are released. These �uctuations are spatially distinguishable.
Although the particles are noticeably blurred by the noise (quantum uncer-
tainty) they have a spatial localization.
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Haens interaction

The correlation g-connection (8, 9) combining 1d haens into 3d creates the
basis of our 3dimensional space. However this is not enough for the exis-
tence of complex and developing world. The interaction between 3d haens is
required allowing them to form larger and larger constructions. This is the
haens interaction through noise.

An haen is the certain oscillation which is located in the noise and depends
on it. The presence of another haen near the �rst changes the noise and thus
a�ects �rst haen. The de�ning parameters of an haen are its frequency Ω and
amplitude S. Hence the noise action is described by the derivatives Ω̇ and Ṡ
if the in�uence of the noise perturbation is weak. The haen preservation re-
quires constancy of Ω and S. Its change may be transmitted to the movement
Ω̇ = ϕ̈. Then the haens interaction is expressed by their acceleration.

The average interaction e�ect is determined by the average amplitude S̄
and is expressed by a function U(S̄) for given haen frequency Ω = 1. If S̄ is
constant in space then the noise is unchanged and other haen in it does not
change. an haen is accelerated by the gradient U: ϕ̇ = −∂ϕU if the a�ecting
haen have a constant in time distribution. Thus the function U(S̄) is the
potential of the haens interaction through the noise.

Our world emerged from the original noise attenuated with the �uctuation
preservation. It consists of a basis (plateau of upper level) with the amplitude
S0 and the distinguishable haen parts rising above it with amplitude Su :
S = S0 + Su, S̄ = S0 + S̄u. If S0 � S̄u, then U(S̄) decomposes in the series
U(S̄) = U(S0) + USS̄u + USSS̄

2
u/2 + . . .

where US = dSU(S = S0), USS = d2
SU(S = S0). Selecting U(S0) = 0 gives

U(S̄) = U(S̄u) = USS̄u + USSS̄
2
u/2 = Uγ(S̄u) + UG(S̄u), Uγ � UG, (10)

where the smallness of UG/Uγ is related to the smallness of S̄u/S0.
After the introduction of antihaens their amplitude S̄u is taken negative.

Now the potential consists of odd Uγ = USS̄u and even UG = USSS̄
2
u/2 parts.

Its dependence on the place ϕ̊ follows from the distribution (5) changed to
PH
j (Sj, ϕ̊j) = PH

j (Suj, ϕ̊j) = (S0/π) exp{−S̊2
uj − φ̊2

j}, φ̊j = Sϕ̊j ≈ S0ϕ̊j.

Since PH
j (S̊uj, φ̊j) = PH

j (Suj, ϕ̊j)/S0 then

PH (̊Su, φ̊) =
3∏
j=1

PH
j (S̊uj, φ̊j), PH

j (Suj, φ̊j) =
1

π
exp{−S̊2

uj − φ̊2
j},

11



where S̊u = {Suj − S̄uj}, φ̊ = {φj − φ̄j}, φ̄j = S0ϕ̄j.
The spatial part of the distribution is written through the basis amplitude
S0, and the amplitude part � through the elevation Su above it.

The average haen amplitudes are assumed to be the same S̄uj = S̄u, and

PH (̊Su, φ̊) changes to PH(Su, φ̊) with the amplitude Su ≡ Su1 + Su2 + Su3:

PH(Su, φ̊) =

∫∫
PH

1 (S̊u1, φ̊1)PH
2 (S̊u2, φ̊2)PH

3 (S̊u − Su1 − Su2, φ̊3)dSu1dSu2

= π−3

∫∫
exp{−S̊2

u1 − S̊2
u2 − (Su − Su1 − Su2 − S̄u)2 − φ̊2}dSu1dSu2,

where φ̊2 = φ̊2
1 + φ̊2

2 + φ̊2
3. Since Su1 ∼ S̄u and Su2 ∼ S̄u makes the main

contribution to the integral then PH(Su, φ̊) ≈ π−2 exp{−(Su − SH)2 − φ̊2},
where SH = 3S̄u is the average 3d haen amplitude, φ̊ is the distance from its
center. The spatial distribution

PH(φ̊) =

∫ ∞
−∞

PH(Su, φ̊)dSu = π−2e−φ̊
2

∫ ∞
−∞

e−(Su−SH)2dSu.

Now the distribution of the 3d haen

PH(Su, φ̊) = π−2 exp{−(Su − SH)2 − φ̊2}, PH(φ̊) = π−3/2e−φ̊
2

. (11)

The spatial potential dependence is determined by the spatial distribution
of average haen amplitude or its conditional expectation

U(φ̊) = 〈U(Su)|φ̊〉 =

∫ ∞
0

U(Su)P
H(Su, φ̊)dSu.

Since Su ∼ SH makes the main contribution to the integral then

U(φ̊) ≈ U(SH)π−2e−φ̊
2

∫ ∞
−∞

e−(Su−SH)2dSu = U(SH)π−3/2e−φ̊
2

.

Now the potential of the haen action through the noise is

U(φ̊) = Uγ(φ̊) + UG(φ̊), Uγ(φ̊) = γe−φ̊
2

, UG(φ̊) = Ge−φ̊
2

, φ̊ = S0ϕ̊, (12)

where γ = γuSH , G = GuS
2
H , γu = π−3/2US, Gu = π−3/2USS/2, |ϕ̊| ≤ π/2.

The haen oscillations interact only locally when their places coincide.
But the haen consists of certain oscillations blurred by the noise. The spatial
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dependence of the potential (12) is related to this blurring so it is determined
by the noise. Hence haens interacts by means of the noise. The potential
does not a�ect on the noise but the certain haen oscillation (the distribution
center) and accelerates it.

The signs of the constant γu, Gu determine the action quality. If γu > 0
then the haen repel another haen and attract the antihaen. If Gu > 0 then
any haens and antihaens are repelled. Such signs correspond to our world.

Consider 1d γ-interaction of 3d haens H3 with equal amplitude modules
SH . The following notation is used in the further description

U(r) = e−r
2

, f(r) = rU, fr(r) = (1−2r2)U, frr(r) = (4r3−6r)U. (13)

Interaction of two haens H1 è H2.
The coordinate system for symmetrical motion is chosen. The haen places

are φ1 and φ2 = −φ1, φ = φ1 − φ2. The interaction potential (12) in units
of γ is ±U where U = e−φ

2
. The upper (lower) indexes denote the haen-

haen (haen-antihaen) interaction. The speci�c forces (per unit of amplitude)
a�ecting on the haens are f1 = −f2 = ∓dφU , and φ̈ = ∓2dφU . Since
φ̈ = dφ(φ̇)2/2 then (φ̇)2/2± 2U = E, (φ̇)2 = 2(E ∓ 2U), where E is the full
speci�c energy of relative motion.

Repulsion haen-haen. If 0 < E < 2 then there is a re�ection at the
turning point in counter motion. Two identical haens cannot be in the same
place (state). This is a property of fermions caused by γ-repulsion at a
su�ciently small energy E.

Attraction haen-antihaen (HH̄-pendulum). If −2 < E < 0 then there
is a nonlinear soft oscillator in the potential U . For E + 2� 1 when φ2 � 1
it is linear φ̈ = −4φ with frequency ωγ = 2 or ωγ = 2γ1/2.

Interaction of two HH̄-pendulums
Let there be two haen-antihaen pairsH1H̄1 andH2H̄2 with equal modulus

of haen amplitudes. The haen places are φH1 , φ
H̄
1 , φ

H
2 , φ

H̄
2 . Its di�erence are

ξ1 = φH1 − φH̄1 , ξ2 = φH2 − φH̄2 . The distance between the pair centers is r.
The speci�c forces, acting on the haens and antihaens, are written in the
units 2γ and notations (13)
fH1 = −f(φH1 − φH̄1 ) + f(φH1 − φH2 )− f(φH1 − φH̄2 ),
f H̄1 = f(φH1 − φH̄1 )− f(φH̄1 − φH2 ) + f(φH̄1 − φH̄2 ),
fH2 = −f(φH1 − φH2 ) + f(φH̄1 − φH2 )− f(φH2 − φH̄2 ),
f H̄2 = f(φH1 − φH̄2 )− f(φH̄1 − φH̄2 ) + f(φH2 − φH̄2 ).

The equations of motion are written in same units
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ξ̈1 = fH1 − f H̄1 = −f(ξ1) + f(r + (ξ1 − ξ2)/2)− f(r + (ξ1 + ξ2)/2)
− f(ξ1) + f(r − (ξ1 + ξ2)/2)− f(r − (ξ1 − ξ2)/2),
ξ̈2 = fH2 − f H̄2 = −f(r + (ξ1 − ξ2)/2) + f(r − (ξ1 + ξ2)/2)− f(ξ2)
− f(r + (ξ1 + ξ2)/2) + f(r − (ξ1 − ξ2)/2)− f(ξ2),
2r̈ = fH1 + f H̄1 − fH2 − f H̄2 = −f(ξ1) + f(r + (ξ1 − ξ2)/2)
− f(r + (ξ1 + ξ2)/2) + f(ξ1)− f(r − (ξ1 + ξ2)/2) + f(r − (ξ1 − ξ2)/2)
+ f(r + (ξ1 − ξ2)/2)− f(r − (ξ1 + ξ2)/2) + f(ξ2)− f(r + (ξ1 + ξ2)/2)
+ f(r − (ξ1 − ξ2)/2)− f(ξ2) =
= 2[f(r+(ξ1−ξ2)/2)−f(r+(ξ1+ξ2)/2)−f(r−(ξ1+ξ2)/2)+f(r−(ξ1−ξ2)/2)].

The speci�c forces are decomposed in a series by degrees ξ up to ξ3 for
|ξ| � r. Then the equations of motion are
ξ̈1 = −2(ξ1−ξ3

1)+fr(ξ1−ξ2)+frrr(ξ1−ξ2)3/24−fr(ξ1 +ξ2)−frrr(ξ1 +ξ2)3/24
= −2(ξ1−ξ3

1)−2frξ2−frrr(ξ3
1 +3ξ2

1ξ2 +3ξ1ξ
2
2 +ξ3

2−ξ3
1 +3ξ2

1ξ2−3ξ1ξ
2
2 +ξ3

2)/24
= −2(ξ1 − ξ3

1)− 2frξ2 − frrr(3ξ2
1ξ2 + ξ3

2)/12,
ξ̈2 = −2(ξ2 − ξ3

2)− 2frξ1 − frrr(3ξ2
2ξ1 + ξ3

1)/12,
r̈ = frr(ξ1 − ξ2)2/4− frr(ξ1 + ξ2)2/4 = −frrξ1ξ2

where f = f(r), fr = fr(r), frr = frr(r) from (13) and frrr = drfrr(r). Now
ξ̈1 = −2(ξ1 − ξ3

1)− 2frξ2 − frrr(3ξ2
1ξ2 + ξ3

2)/12,
ξ̈2 = −2(ξ2 − ξ3

2)− 2frξ1 − frrr(3ξ2
2ξ1 + ξ3

1)/12, r̈ = −frrξ1ξ2.
Because r changes in the second approximation then its change in the equa-
tions for ξ1 and ξ2 was neglected from the very beginning.

In the linear approximation the equations of motion are
ξ̈1 = −2ξ1 − 2frξ2, ξ̈2 = −2ξ2 − 2frξ1, r̈ = 0.
In variables ξ± = (ξ1 ± ξ2) we get own oscillations
ξ̈± = −2ξ1 − 2frξ2 ∓ (2ξ2 + 2frξ1) = −2(1± fr)(ξ1 ± ξ2) = −2(1± fr)ξ±
with the normal frequencies ω2

± = 2(1±fr) in units of ω2
γ/2 where fr describes

the in�uence of other pair. Since fr < 0 then ω+ < ω−.
If the pairs oscillate in the phase ξ1 ≈ ξ2 and r

2 > 1/2 then the speci�c
force decreases with distance. The pair attracts the nearest to it haen of
other pair and repels the farthest but weaker � the pairs are attracted.

If the oscillations are antiphase ξ1 ≈ −ξ2 then the pairs repel.
In the nonlinear approximation the equation of the distance change

between HH̄-pairs is

r̈ = −frrξ1ξ2 = −frr(ξ2
+ − ξ2

−)/4 (14)

where on the right are solutions of the �rst approximation. Substituting own
harmonics in form ξ± = a± cos Φ±,Φ± = ω±t+ φ±, we get
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ξ2
+− ξ2

− = a2
+ cos2 Φ+− a2

− cos2 Φ− = a2
+(1 + cos 2Φ+)/2− a2

−(1 + cos 2Φ−)/2
= (a2

+ − a2
− + a2

+ cos 2Φ+ − a2
− cos 2Φ−)/2.

Without taking into account the second harmonics (averaging over oscillation
period) the speci�c force of the slow HH̄-pairs interaction is

f̄ = −frr(a2
+ − a2

−)/8 (15)

From (13) frr = 2r(2r2 − 3)U changes sign when r2 = r2
0 = 3/2.

If the HH̄-pairs oscillate in the opposite phase a2
− > a2

+ then f̄ > 0 at
r > r0 (repulsion of pairs) and f̄ < 0 at r < r0 (attraction of pairs) where
r0 is the unstable equilibrium point. If HH̄-pairs oscillate in the same phase
a2
− < a2

+ then r0 is the stable equilibrium point.

Matter and chain of worlds

The haens and antihaens by the γ-interaction forms HH̄-pairs H3γH̄3 which
under certain conditions bind to the HH̄-environment. The relative shift of
H and H̄ in the pair determines the environment polarization. Else there are
1d pairs νj = HjgH̄jg of hdims j connected by the correlation interaction (9).
This are neutrinos (see "Particles"). They have the average zero amplitude
and do not participate in the γ-interaction.

Thus the matter of our world containsHH̄-pairs and neutrinos mainly.
Its density ρ is estimated via the HH̄-pair mass (∼neutrino mass ∼ 10−37 kg
� see "Particles") and distance r between HH̄-pairs (no more the electron
size ∼ 10−22 m [9]). Then ρ & 1029 kg/m3 which is much larger the nuclear
density ∼ 1017 êã/ì3 and 55 orders of magnitude more the Universe matter
density ∼ 10−26 kg/m3. But the HH̄-environment only rises above the upper
level of the basis which itself is more 49 orders of magnitude more the modern
noise ∼ ~. Then all the energy-mass known to science is negligible compared
to the basis energy. This is not counting the in�nite noise energy.

Chain of worlds. The representation of Everything by harmonics has no
special frequencies. In each set of harmonics with a frequency taken as a unit
(Ω = 1), the harmonics of the remaining frequencies are represented either by
the noise (at Ω > 1) and slow changes (at Ω < 1). Each such set of harmonics
is the basis for a description of some world. Then there is a connection and
mutual in�uence of worlds with di�erent basic frequencies. So there is a
contribution of slow worlds in�uence with Ω < 1 to the slow change of our
world characteristics, and a fast worlds in�uence with Ω > 1 is hidden in the
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noise. Our world acts on other worlds similarly. This connection occurs at
the 1d haen level and extends to all levels up to the bodies.

Worlds at di�erent basic frequencies are similar but not identical. They
may have the same evolution rate measured by periods of their basic frequen-
cies but di�erent relative rates. The worlds with higher frequencies change
faster the worlds with lower frequencies. It should be expected that �rsts are
more advanced in their development. Then seemingly random changes hide
the in�uence of more developed worlds and slow changes are associated with
less developed worlds. Randomness contain an unknown necessity.

Noise is not disorder although it obeys Gaussian distribution for ran-
dom variables in the equilibrium state. It only seems disorderly due to in-
su�cient time resolution which does not allow to notice the rapid in�uences
of the worlds with higher basic frequencies.

The world is an over-noisy structure that retains its disequilibrium. How-
ever a non-equilibrium closed system inevitably passes into the equilibrium
state over time and remains in it forever. This is because the support of the
equilibrium mess and the �uctuation relaxation are determined by the same
mechanism. The over-noisy world should be an open system with external
interactions which supports its over-noisiness in order for it to exist and does
not relax to the equilibrium noise. Living beings have this property. It may
even be taken as their de�nition: Life is the ability to constantly support a
non-equilibrium state in an equilibrium environment. Then the concept of
life expands and allows to call not only molecular organisms alive. Based on
this de�nition and ancient legends where the Universe is often depicted how
a tree, an animal or even a person we may assume that our world is alive.

If our world is alive then the similar worlds on other basic frequencies
are alive also. They make up a sequence of living worlds with di�erent levels
and rates of a development which are connected by interaction. Faster and
more advanced worlds can perceive and control existences of slower and less
advanced worlds not allowing them to fall into chaotic noise. Thus there
must be an in�nite chain of living controlled worlds in which our world is
a link. Only a such chain of interconnected and similar worlds of di�erent
development levels is able forever support a non-equilibrium ordered state
from falling into a equilibrium chaos. This is the chain of eternal life.
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Polarisation

3d haens H3 and antihaens H̄3 by the γ-interaction (12) is combined into
HH̄-pairs capable to form a stable HH̄-environment. Also this interaction
shifts H3 and H̄3 inside a pair (polarization) and changes the distance be-
tween pairs.

Each haen has a speci�c location only on average. Its place distribution
(5,6) is blurred with the dispersion 〈φ2〉 = 1. In this noise the small separa-
tion of H3 and H̄3 does not stand out outwardly. However rapid noise �uc-
tuations are mutually destroyed by averaging over slow haen motion times.
They don't interfere with making ratios for averages values. In�nite noise
energy is the necessary condition for the existence of �nite polarization.

It is impossible exactly to study the perturbation dynamics in such en-
vironment. Simpli�ed approximate approaches are need. They account the
interaction only with neighbors and a decomposition by a degree of pertur-
bation. Satisfactory results can be get already in the linear approximation
with some nonlinear additions.

Consider a homogeneousHH̄-environment which occupies the entire space
of places. It consist of HH̄-pairs in which the haen and antihaen have the
same average amplitudes. They are together in unperturbed state and sepa-
rated in perturbed. HH̄-pairs connected by γ-interaction constitute a simple
lattice of a cube and is used as HH̄-environment model. Hdims (8, 9) are
absolute coordinate axes of the space.

The HH̄-pairs are located at the cube vertices. There are three axes:
longitudinal l along which the pairs move during the interaction and two
transverse j, k. The studied pair HH̄0 is placed in the coordinate center.
It is a�ected by 6 adjacent pairs HH̄jkl(=±1) (two on each axis) located at
the distance r from HH̄0. The place projections on axis l of the haen φHjkl
and antihaen φH̄jkl from HH̄jkl are located symmetrically relative to the pair

center. Their shift (polarization) is ξjkl = φHjkl − φH̄jkl � r. Polarization of

HH̄0 is ξ = φH − φH̄ where ξ = ξ000, φ
H = φH000, φ

H̄ = φPi000. The change of
r have the second order of smallness (14) and is considered as a nonlinear
amendment.

The polarization is determined by the γ-potentials (12) acting on haen
UH = UH

0 +UH
jkl and antihaen U

H̄ = U H̄
0 +U H̄

jkl of HH̄0. They include actions

of the neighbor in the pair UH
0 = U H̄

0 and the adjacent pairs UH
jkl = UHH

jkl + UHH̄
jkl ,

U H̄
jkl = U H̄H

jkl + U H̄H̄
jkl . Here the �rst superscript indicates the haen being af-
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fected and second � a�ecting.
The interaction potential inside HH̄0 U

H
0 = −γe−ξ2 determines the forces

on the haen fH0 = −∂ξUH
0 = −2γξe−ξ

2 ≈ −2γξ(1 − ξ2) and the antihaen
f H̄0 = −fH0 . They are decomposed up to ξ3. Other forces are taken linear.

The potentials UHH
jkl and UHH̄

jkl are clouse in absolute value and di�er in
sign: UHH

jkl = UHH
jkl (ξ−ξjkl) = UHH

jkl (ξ)−ξjkl∂ξUHH
jkl (ξ, ξjkl = 0), ∂ξ = ∂/∂ξ,

UHH̄
jkl = UHH̄

jkl (ξ + ξjkl) = −UHH
jkl (ξ)− ξjkl∂ξUHH

jkl (ξ, ξjkl = 0),

UH
jkl = UHH

jkl + UHH̄
jkl = −2ξjkl∂ξU

HH
jkl (ξ, ξjkl = 0).

Since the haen place φH = ξ/2 then the force on it is −∂φHUH
jkl = −2∂ξU

H
jkl.

From the lattice symmetry and the haen locations in the HH̄-pair it follows
that in the linear approximation the opposite force acts on the antihaen.
Then the force of the pair HH̄jkl acting on the shift ξ is ξjklFjkl where

Fjkl = 8∂2
ξU

HH
jkl (ξ = ξjkl = 0) (16)

is even for each axis: F1kl = F−1kl, . . . .
Now the force changing the polarization is

f = −4γξ(1− ξ2) +
∑

jkl ξjklFjkl,∑
jkl ξjklFjkl = [(ξ100 + ξ−100)F100 + (ξ010 + ξ0−10)F010 + (ξ001 + ξ00−1)F001].

Transition to the lattice derivatives along each axis i = j, k, l
δiξ1/2 = ξ1 − ξ, δ2

i ξ = δiξ1/2 − δiξ−1/2 = (ξ1 − ξ)− (ξ − ξ−1) = ξ1 + ξ−1 − 2ξ,
gives
f = −4γξ(1− ξ2) + [F100(δ2

j + 2) + F010(δ2
k + 2) + F001(δ2

l + 2)]ξ.
The potentials (12) are used to �nd Fjkl. For transverse axes

UHH
100 = γ exp{−r2 − (ξ100 − ξ)2/4},

∂ξU
HH
100 = γ(ξ100 − ξ) exp{−r2 − (ξ100 − ξ)2/4}/2|ξ100=0

= −γξ exp{−r2−ξ2/4}/2, F100 = −4γ∂ξ[ξ exp{−r2−ξ2/4}]ξ=0 = −4γe−r
2
.

Also F010 = F100. For the longitudinal axis
UHH

001 = γ exp{−[r + (ξ001 − ξ)/2]2},
∂ξU

HH
001 = γ[r + (ξ001 − ξ)/2] exp{−[r + (ξ001 − ξ)/2]2}|ξ001=0

= γ(r− ξ/2) exp{−(r− ξ/2)2}, F001 = 8γ∂ξ[(r− ξ/2) exp{−(r− ξ/2)2}]ξ=0

= 8γ[−1/2 + (r − ξ/2)2] exp{−(r − ξ/2)2}ξ=0 = 4γ(2r2 − 1)e−r
2
.

Now f = 4γ[−(1− ξ2)− e−r2(δ2
j + δ2

k + 4) + (2r2 − 1)e−r
2
(δ2
l + 2)]ξ.

The introduction of the notations ω2
γ = 4γ, U = e−r

2
, fr = (1− 2r2)U from

(13) and c2 = ω2
γU, c

2
l = −ω2

γfr = (2r2 − 1)c2 gives
f = [−(ω2

γ + 4c2 − 2c2
l ) + ω2

γξ
2 − c2(δ2

j + δ2
k) + c2

l δ
2
l ]ξ.

The e�ect of the distance change h between HH̄-pairs along the longitu-
dinal axis on the polarization is �nded if instead F001 = F00−1 = c2

l (r) take
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F00±1 = c2
l (r+h±1/2) ≈ c2

l (r)+drc
2
l (r)h±1/2. Then the term (ξ001 +ξ00−1)F001

in the expression for the force f changes to
ξ001F001 + ξ00−1F00−1 = (ξ001 + ξ00−1)c2

l (r) + drc
2
l (r)(ξ001h1/2 + ξ00−1h−1/2).

Here the �rst bracket leads to the above formula f = . . . and the second is
converted to lattice derivatives if to account the smoothness of h:
ξ001h1/2 + ξ00−1h−1/2 = [ξ001(h1 + h0) + ξ00−1(h−1 + h0)]/2
= [ξ001h1 + ξ00−1h−1 + h0(ξ001 + ξ00−1)]/2
= [(δ2

l + 2)(ξh) + h(δ2
l + 2)ξ]/2 = [δ2

l (ξh) + hδ2
l ξ + 4ξh]/2, h ≡ h0.

This expression multiplied by drc
2
l (r) is added to the force f .

The polarization in�uence on the distance betweenHH̄-pairs is calculated
from the HH̄-pendulums interaction (14) r̈ = −frrξ1ξ2 (in units of 2γ). It
consists of two identical but opposite accelerations of the pair. Therefore the
shift a of HH̄0 under the adjacent pairs in�uence is found from
ä = frrξ(ξ001 − ξ00−1)/2 = frrξδlξ = frrδlξ

2/2,
and the distance change between HH̄-pairs h = δla obeys the equation
ḧ = frrδ

2
l ξ

2/2, or in usual units: ḧ = ω2
γfrrδlξ

2/4 = −drc2
l (r)δlξ

2/4.
Now the equations of polarization and deformation of the environment

ξ̈ = [−ω2
0 − c2(δ2

j + δ2
k) + c2

l δ
2
l + ω2

γξ
2]ξ + drc

2
l [δ

2
l (ξh) + hδ2

l ξ + 4ξh]/2,

ḧ = −drc2
l δ

2
l ξ

2/4, ω2
0 = ω2

γ + 4c2 − 2c2
l , c

2 = ω2
γU, c

2
l = (2r2 − 1)c2.

Here ω2
0 � the square of the linear oscillation frequency in the HH̄-pair,

ω2
γ = 2γ � the same for the HH̄-pendulum. Minus before c2 means the

reverse transverse transfer and plus before c2
l � straight longitudinal one.

The qualitative di�erence between transverse and longitudinal transfers
is determined by the features of the haen interactions in these directions.
Along the longitudinal axis adjacent HH̄-pairs are located at a distance ∼ r
between them. The displaced haen of the pair attracts the antihaen and re-
pels the haen of other pair creating in it the polarization similar to own and
part of the �rst pair energy is transfered there. The direct transfer is formed.
The neighbors along the transverse axes have superimpose projections of the
haen displacements on the axis l. Here the displaced haen also attracts the
antihaen and repels the haen of other pair but this cause the opposite po-
larization and energy transfer. The polarization of adjacent along transverse
axes pairs become opposite which give the lowest environment energy. In this
case the HH̄-environment acquires the cross-striped polarization which
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is taken into account by changing the sign before c2:

ξ̈ = [−ω2
m + c2(δ2

j + δ2
k) + c2

l δ
2
l + ω2

γξ
2]ξ + drc

2
l [δ

2
l (ξh) + hδ2

l ξ + 4ξh]/2,

ḧ = −drc2
l δ

2
l ξ

2/4, ω2
m = ω2

γ − 4c2 − 2c2
l , c

2 = ω2
γU, c

2
l = (2r2 − 1)c2. (17)

Continuous approximation is obtained by change the lattice deriva-
tives on partial for continuous functions ξ, h

ξ̈ = [−ω2
m + ω2

γξ
2 + c2(∂2

j + ∂2
k) + c2

l ∂
2
l ]ξ + drc

2
l [∂

2
l (ξh) + h∂2

l ξ + 4ξh]/2,

ḧ = −drc2
l ∂

2
l ξ

2, ω2
m = ω2

γ − 4c2 − 2c2
l . (18)

To �nd the vector polarization equation at h = 0 need to change
the absolute axes-hdims to conditional coordinate axes that coincide with
them. This coordinate system may be changed to any other now relative
system. But the HH̄-environment remains absolute. The polarization vector
ξ = ξt + ξl, div ξt = 0, rot ξl = 0 is entered with transverse ξt and longitu-
dinal ξl components. The second derivatives ∂2

j + ∂2
k are replaced by the

transverse part of the Laplacian ∆t = − rot rot and ∂2
l � by the longitudinal

part ∆l = grad div. Then from (18) follows

ξ̈ + ω2
mξ = c2∆tξ + c2

l ∆lξ + ω2
γξ

2ξ. (19)

The left side of this equation describes the oscillations in HH̄-pairs and right
� their transfer and nonlinearity. (19) is decomposed into the Klein-Fock-
Gordon equations (eqKFG) [11]�[13] for transverse and longitudinal �elds

ξ̈t,l + ω2
mξt,l = c2

t,l∆ξt,l + ω2
γξ

2ξt,l, ct ≡ c. (20)

Polarization waves

The dispersion equation (dispeq) for ξ-waves is derived from the linear
part of (17) after substitution ξ(x, t) = Re[ψ exp{−iωt+ iqx}] where q =
{qj, qk, ql} � wave vector, x = {j, k, l} � coordinates in numbers of a HH̄-
pair. Then from δ2

xξ = ξx+1 + ξx−1 − 2ξ = 2(cos q− 1)ξ = −4ξ sin2(q/2)
follows the ξ-wave dispeq and the group speed vector dqω ≡ V = {Vj, Vk, Vl}

ω2 = ω2
m + 4c2[sin2(qj/2) + sin2(qk/2)] + 4c2

l sin2(ql/2), (21)

ω2
m =ω2

γ − 4c2 − 2c2
l , Vj,k = (c2/ω) sin qj,k, Vl = (c2

l /ω) sin ql.
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In continuous approximation

ω2 = ω2
m + c2(q2

j + q2
k) + c2

l q
2
l , Vj,k = c2qj,k/ω, Vl = c2

l ql/ω (22)

where x are continuous coordinates in units r. Decomposition into equations
for transverse ξt and longitudinal ξl waves give

ω2
t,l = ω2

m + c2
t,lq

2
t,l, Vt,l = c2

t,lqt,l/ωt,l, ct ≡ c, q2
t = q2

j + q2
k. (23)

Here ω2
m determines the wave propagation and the HH̄-environment state:

The attraction of H3 and H̄3 inside the HH̄-pair prevails over the attrac-
tion of adjacent pairs if ω2

m > 0. Part of the wave energy remains in this pair
and the other is passed to the neighbors. The wave is fading with distance
and massive. HH̄-environment behaves like a solid � HH̄-solid.

If ω2
m = 0 then the attractions of H3 and H̄3 inside a pair and adjacent

pairs are equals. An indi�erent state is formed � the boundary of pair
decay. All the wave energy is contained in the transfer � the wave becomes
massless. The condition ω2

m = 0 gives the boundary distance r0 ≈ 1.6
between HH̄-pairs.

If ω2
m < 0 but not much then the destruction of some HH̄-pairs and

the subsequent rearrangement of HH̄-environment increases r making the
decay boundary stable for a small decrease in the distance between the pairs.
A relatively small number of free haens and antihaens are originated which
become the bases of elementary particles (see "Particles"). The deviation
r0− r determines the particle density in Universe. Since it is much less than
the HH̄-environment density then r0 − r � r0.

If ω2
m < 0 then the attraction of adjacent HH̄-pairs prevails. Such envi-

ronment is unstable. Any small perturbation destroys HH̄-pairs. Free haens
and antihaens forms a plasma-like environment � HH̄-plasma. It is not
suitable for formation of the ordered world in it.

A massless wave is described by the equations (17, 21) at ω2
m = 0:

ξ̈t = [c2(δ2
j + δ2

k) + ω2
γξ

2]ξt, ω2
t = 4c2[sin2(qj/2) + sin2(qk/2)],

ξ̈l = (c2
l δ

2
l + ω2

γξ
2)ξl, ω2

l = 4c2
l sin2(ql/2), (24)

Vj,k = sin(qj,k)/Mt, Vl = sin(ql)/Ml.

Here Mt = ωt/c
2 and Ml = ωl/c

2
l are the masses of moving wave quanta.

They relate the speeds V = {Vj, Vk, Vl} and impulses q = {qj, qk, ql} of
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quanta. The wave speeds are not constant

V 2
t = V 2

j + V 2
k =

c2(sin2 qj + sin2 qk)

4[sin2(qj/2) + sin2(qk/2)]
, Vl = cl cos(ql/2). (25)

The vector equations in the continuum approximation follows from (20, 24)

ξ̈t = −c2 rot rot ξt + ω2
γξ

2ξt, div ξt = 0, ωt = cqt, Vt = c, (26)

ξ̈l = c2
l grad div ξl + ω2

γξ
2ξl, rot rot ξl = 0, ωl = clql, Vl = cl.

Electric �eld

Let there be an additional haenH3 betweenHH̄-pairs inHH̄-environment at
ωm = 0. Its potential Uγ of the decomposition (12) acts on the nearest pairs
and creates a perturbed zone. Stationary massive (see the next section) and
constant radial ξ(R) (R � distance from the haen center) �elds near H3 is
formed. The equation grad div ξl = dR[R−2dR(R2ξ)] = 0 follows from (26) in
the continuum approximation. Its solution decreasing with R is ξ(R) = e/R2.
The internal radius of the perturbed zone determines the �nite �eld energy.

Maxwell's equations
The linear part of (26) is ξ̈ = −c2 rot rot ξ for the massless transverse

�eld ξ = ξt in the continuum approximation. Since ξ̇ is also a transverse
vector, it can be written as the rotor of some vector function ξ̇ = c rot b.
Now ξ̈ = c rot ḃ, ḃ = −c rot ξ, div ḃ = 0. No reason to introduce a b-charge
allows to write div b = 0. The resulting equations system
ξ̇ = c rot b, ḃ = −c rot ξ, div ξ = div b = 0
coincides with Maxwell's equations for the electromagnetic �eld in the void.

The charges in the HH̄-environment are the haens or the antihaens with
the �eld ξ(R) = e/R2. This Coulomb �eld leads to Gauss's law:

4

3
πR3 div ξ =

∫
div ξd3x =

∮
ξnd2x = 4πR2ξ(R) = 4πe = 4π

4π

3
ρR3

where n is the external normal of the sphere, ρ is the volume charge density
inside it. Hence div ξ = 4πρ, div ξ̇ = 4πρ̇ = −4π div j, ξ̇ = −4πj. The
continuity equation ρ̇+ div j = 0 (j � the current density) is used.

The received �elds add up and the Maxwell's equations are formed

ξ̇ = c rot b− 4πj, div ξ = 4πρ, ḃ = −c rot ξ, div b = 0 (27)
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for the electric �eld strength ξ and the magnetic induction b in a space with
volume densities of charges ρ and currents j.

So the electric �eld strength can be identi�ed with the part of po-
larization including haen constant radial and transverse massless ξ-�elds.
Magnetic induction characterizes a change of the ξ-�eld in time and is not
fundamental despite its convenience in use. It can be removed from the �eld
name. Only adjective "electric" remains: electric �eld and electric wave.
The question about the longitudinal part of ξ-�eld is considered in the next
section.

The electric wave is a massless transverse ξ-wave. Its wavelength λ > 4
in units of the distance r0 between HH̄-pairs. If r0 ∼ 10−22 m (experimental
electron size [9]) then λ > 4 · 10−22 m and the wave frequency is less 1030

Hz. Its group speed (25) varies from the speed of light c for long waves to
c/2 for λ = 4. But the continuous approximation (25) in which the speed is
constant covers all the observed waves.

In accordance with (17) the ξ-�eld should have a striated structure �
alternating directions of polarization in a plane orthogonal to the direction
of the �eld. The distance between the bands is r0 . 10−22 m. This structure
is transmitted to an electric waves.

The over-noisy haen distribution (11) has the spatial dispersion 〈φ̊2〉 ∼ 1
and forms the polarization noise δξ ∼ 1 much larger the electric �eld. But
this noisy background is invisible since opposite �uctuations are mutually
destroyed by averaging when observe times much longer their durations.

Our world can exist if the distances betweenHH̄-pairs r = r0 are precisely
maintained providing only a geometric polarization attenuation in space. In
HH̄-solid (r > r0) massive ξ-�eld quickly fade away source. In HH̄-plasma
(r < r0) stable polarization is impossible. The thin border between them is
our world environment which similar to the hypothetical Descartes' ether as
an electric �eld carrier. It is possible leave this name ("ether", E) for our
HH̄-environment and to call its elements "etherons" et=H3γH̄3.

It is almost impossible that such special conditions could be constantly
maintained in our Universe. It is more natural to assume that ether is a
3dimensional surface in a 4dimensional environment which separate
HH̄-plasma and HH̄-solid. Such a surface can be born, change maintaining
its quality and disappear. A comparison with our Universe evolution leads
to the assumption of a phase transition of 4d environment from HH̄-plasma
to HH̄-solid which begins from an point seed and continues with an increase
of a boundary surface. This transition surface can to have a time-varying
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curvature represented by the cosmological constant [10] in Einstein gravity.
The ether emergence should be accompanied by the generation of haens

and antihaens which are not connected in the pairs.They will spread in the
ether approximately preserving their number. This spread is noticed (un-
like to the ether expansion) and determines the observed substance of the
Universe the size of which does not exceed the ether 3d surface size..

Massive �eld

A massless ξ-�eld exist if the distance r between etherons provide ωm = 0.
The presence of an additional haen H3 (or H̄3) change r. It attract the
antihaen and repel the haen in the nearby etheron. Attraction is stronger
repulsion if their force decrease with distance. The nearest etherons are
shifting to the haen stretching ether behind them and forming a rarefaction
zone with ω2

m > 0. A radial and spherically symmetric �eld can be there only.
The polarization have a constant Coulomb part ξc and stationary oscillations
(transverse ξt and longitudinal ξl): ξ = ξc + ξt + ξl in the stationarity.

The source of the constant �eld is the average haen amplitude. The source
of the stationary �eld is the noise distribution of the haen (5) which may be
represented as a random displacement of the amplitude. It consists of a "ro-
tation" around the haen center and a "radial movement" that causes similar
transverse and longitudinal �elds. The transverse �eld (waves) moving along
a sphere around H3 become stationary. The longitudinal �eld moving along
a radius can't be stationary. It does not stand out from the noise and does
not a�ect slow over-noisy processes.

If to assume that almost all ξ-�elds are caused by the presence of particles
based on haens then there are two their types: constant ξc and transverse ξt
� stationary massive near the haen and massless (electric) away from it. But
longitudinal �eld ξl from other sources or for other reasons is not excluded.

The massive ξt-�eld becomes non-stationary and not just radial when H
3

moves. The equation derived from (20) for the oscillation amplitudes slowly
changing over time is used to consider it in a coordinate system moving
with the particle. Introduce ξt(x, t) = Re[ψ(x, t)e−iωm(x)t] leaving approxi-
mately the radial �eld only. If to neglect ψ̈ and di�erentiation of ωm then
ξ̈t ≈ −(2iωmψ̇ + ω2

mψ)e−iωmt and gradωm ≈ 0. Further ξ2 = |ψ|2/2 in the
nonlinear part (20) if do not take into account second ξ-harmonics (averaging
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over the oscillation period). Then

−iψ̇ = ∆ψ/2m+ ω2
γ|ψ|2ψ/2, m = ωm/c

2, (28)

where m is the transverse �eld mass which changes slowly in the space near
H3 together with ωm. The change in the speed of light c can be ignored here.
The full derivative (along the path) dtψ = ψ̇ + V gradψ, where V is the
particle speed vector, must to replace the partial ψ̇ in the resting coordinate
system. But with a small V the second term can be neglected.

The nonlinear Schr�odinger equation (eqS) [5] is formed if in (28) to change
the variable in space mass with some constant m̄

−iψ̇ = ∆ψ/2m̄+ ω2
γ|ψ|2ψ/2. (29)

EqS describe the wave function in quantum mechanics. Here it is equation
of the ξt-oscillation amplitude near the haen. Their identity is possible if
this ξt-�eld is the basis of particle motion. Then the wave function is
the transverse oscillation complex amplitude and the particle mass is the
some mass m̄ of the transverse ξ-�eld (for example it is the largest mass
m̄ = maxR ωm(R)/c2 which is reached for the etherons nearest to the haen).

If to write ψ = |ψ|eiΦ then |ψ| is the massive ξ-oscillation amplitude and
the wave function phase Φ (the action of particle) is their place.

The smallness condition V is written as ωm � V/L if the particle is a
wave packet having the frequency ωm, the size L ∼ 1/q, and the wave vector
q ≈ ωm/c. Then V � c. This usual condition for the applicability of eqS is
derived here by another way.

Thus the haen in�uence causes the ether phase transition to the
HH̄-solid inside the particles and excite there the massive transverse
polarization �eld creating the particle mass. A similar phenomenon when
the particle mass is determined by the surrounding �eld in�uence occurs in
solid-state physics. The electron polarizes the crystal lattice and excites oscil-
lations there. The formed quasiparticle (Pekar polaron [14]) has the e�ective
mass which can signi�cantly exceed the electron mass.

The potential energy is determined by the nonlinearity. Let in (29) the
amplitude ψ consists of two parts ψ = ψ1 +ψ2. If ψ1 � ψ2 then ψ

2 = ψ2
2 and

the external �eld potential Uψ1, where U = −ω2
γ|ψ2|2/2, is formed in eqS.

An oscillation with an amplitude of ψ = 2 in units of the noise amplitude
is taken as the ξ-oscillation quantum so that its external energy (impulse)
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is ψωm = ~ωm at ~ = 2. Since |ψ| � 1 then this energy is not reached in one
etheron but in many � the quantum is collective.

The density distribution of the massive ξ-oscillations internal energy is
proportional to |ψ|2 and obeys the continuity equation followed from (29). A
quasi "probability distribution" is formed if |ψ|2 is normalized by one. But a
particle can not be observed in parts. Now |ψ|2 is represented by "the particle
detection probability density" as usual in quantum mechanics and not by the
internal energy density distribution of transverse massive ξ-oscillations inside
the particle as obtained here.

The particle motion is the haen motion together with the surrounding
ξ-�eld. This haen moving between etherons attracts the etheron's antihaen
and repels its haen. The �rst haen with the antihaen are combined creat-
ing the new etheron and the released haen replaces it in the moving par-
ticle supporting the conditions for the massive ξ-�eld existence. Thus the
particle motion is a perturbation transfer.

Let's consider in the continuous approximation the propagation of a
transverse �eld wave packet (quantum) which is a set of nearest in spec-
trum waves. The polarization direction determines the axis l. The packet
moves transversely this axis in the plane jk. The �eld ξt is written as an
oscillation at the packet average frequency ω(q) with a slowly changing am-
plitude ψ : ξt(x, t) = Re[ψ(x, t)eiΦ] = ψeiΦ/2 + kc
where Φ = −ωt+qx is phase, x = {j, k}, q = {qj, qk}, kc denotes a complex
conjugation. Then neglecting ψ̈ :
2ξ̈t = −(2iωψ̇ + ω2ψ)eiΦ + kc, 2∂2

j ξt = ∂2
jψ + 2iqj∂jψ − q2

jψ + kc.
Also for the axis k. Harmonics 2Φ, 3Φ are not taken into account.
8ξ3
t = ψ3e3iΦ + 3ψ2ψ∗eiΦ + ... = 3|ψ|2ψeiΦ + kc.

The equation for ψ is �nd from (18): −2iωψ̇ − ω2ψ + ω2
mψ =

c2[∂2
j + ∂2

k + 2i(qj∂j + qk∂k)− q2
j − q2

k]ψ + 3ω2
γ|ψ|2ψ/8.

After reduction due to the dispeq (23)remains
−2iωψ̇ = [c2(∂2

j + ∂2
k) + 2iω(Vj∂j + Vk∂k)]ψ + 3ω2

γ|ψ|2ψ/8
= [(∂2

j + ∂2
k)/2M + 3ω2

γ|ψ|2/8]ψ, dtψ = ψ̇ + (Vj∂j + Vk∂k)ψ
where V = {Vj, Vk} is the group speed vector, M = ω/c2 is the transverse
�eld mass or the moving particle mass if a particle is a wave packet.

Enter Laplacian ∆ = ∂2
j + ∂2

k in the transverse plane. Then

−idtψ = (∆/2M + 3ω2
γ|ψ|2/8)ψ, dtψ = ψ̇ + (V grad)ψ. (30)

There are two movements: the wave packet (particle) with the speed (22)
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V = (c2/ω)q and internal. This equation turns into eqS (29) when V � c.
The photon motion is described by (30) for ωm = 0, M = q/c, V = q/M .

These results di�er from the interpretation of the relation between
Schr�odinger and Klein-Fock-Gordon equations accepted in quantum mechan-
ics, where eqKFG is the relativistic generalization of eqS. Here eqKFG (24) is
the polarization equation and eqS (29) is the simpli�ed equation of complex
polarization amplitude. The relativistic generalization of eqS is (30) which
di�ers from eqS by the total time derivative and the moving quanta mass.

Introduction in (30) ψ = Re(ΨeiΦψ) where Φψ = −ωψt + qψx allows to
write the slow dispeq ωψ = Vqψ + q2

ψ/2M + U with the potential energy U
in an external �eld. It describes the relationship between energy, impulse,
and speed of the wave packet (particle).

The amplitude phase Φψ is the particle action whose stationarity under
variation (the principle of stationary action) determines the motion of
particles. It arose as a consequence of the �eld nature of particles (including
photons and excluding neutrinos). Then the basis for using the principle of
stationary action is the polarization �eld in the ether.

In the reference frame accompanying the packet (particle, body) V = 0,
q = 0, ω = ωm, M = m and the equation (30) returns to eqS (29) with
m = m̄. The moving and rest body masses are connected by the dispeq
ω2 = ω2

m+c2q2 = ω2
m+ω2V 2/c2 = ω2

m/(1−V 2/c2), orM2 = m2/(1−V 2/c2).
The proper time of a moving body t ∼ 1/M because mass is an external

energy (oscillation impulse) which is inversely proportional to the passage of
time. On the other hand to enter the time you need to have a sample of a
duration a comparison with which gives it. In a wave packet, such a sample
is the oscillation period T = 2π/ω for a moving body and Tm = 2π/ωm for a
resting one. Their times in the units of periods coincide t/T = tm/Tm, where
tm is the proper time of a motionless body. But in the common units they
di�er t = tmT/Tm = tm(1− V 2/c2)1/2 ∼ 1/M .

The same number of wavelengths, which are proportional T , is placed
inside the wave packet at any its speed. Then the moving body size L ∼ t
or L/Lm = T/Tm = (1− V 2/c2)1/2, where Lm is the rest body size.

The body velocities addition is determined by the dispeq (23) and its
change during the transition to a reference system moving with a body. Let
body 1 move at a speed v relative to body 2, which has a speed u in the
resting frame of reference 0. The dispeq of the body 1 relative motion is
ω2 = ω2

m + c2q2
1. Its speed is v = c2q1/ω. At the transition to the frame 0,

this dispeq changes to (ω + k1u)2 = ω2
m + c2q2, where u = c2q2/ω, q2 and
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q = q1 + q2 � wave vectors of bodies 2 and 1 in this frame. The particle 2
velocities sum is V = dω/dq = c2q/(ω + q1u) = (u+ v)/(1 + uv/c2).

These relations for mass, time, size and velocity are derived here from the
consideration of massive polarization waves. They coincide with the theory
of relativity relations [2].

A particle motion is the haen motion together with the surrounding ξ-
�eld. The haen attracts the antihaen of the etheron and repels its haen. It
combines with the antihaen to a new etheron. The released haen replaces it
in the moving particle and supports the conditions for existence of a massive
ξ-�eld. Thus a particle motion is a perturbation transfer.

Gravity

The ether deformation has two causes. This is the polarization ξ which
changes the distance r between the etherons (18) and even part UG of the
interaction potential (10). Etherons are points of space and the ether defor-
mation �eld is metric. The repulsion at UG > 0 creates conditions for the
neutral ether stability, its deformation and the wave propagation in it.

To illustrate consider the following example. Let there be an additional
etheron et0 in the ether at a distance r0/2 from its neighbors. It is motionless
in the symmetry center. The remaining etherons etl (l = 1, 2... is their
numbers counted from et0 along the radius) are shifted by al to (l−1/2)r0+al.
The distance change is hl+1/2 = al+1 − al < 0 : rl+1/2 = r0 + al+1/2. Since
the ether is not disturbed away from et0 then h1/2 = −

∑
l>1 hl+1/2. The

compression volume is much larger the stretching one. The distance change
is a vector h directing along the radius from a point object of in�uence. The
ether deformation �eld is determined by their vector sum (integral).

The distance change is a vector h directed along the radius from the
object of in�uence. The ether deformation is these vectors sum (integral).

The ether is compressed at h < 0. A space with a gravity �eld has
same property in Einstein's theory [3]. They can be identi�ed if to take the
distance change between the etherons h (in some units) as the vector gravity
potential. Gravity is a special case of an ether deformation. This
provides the rationale for the metric nature of Einstein's gravity.

Electric waves and particles in gravity. They motion in the ether
is a ξ-�eld perturbation transfer depended on h. The wave energy is better
transferred in the compressed ether that increase the transfer speeds.
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The speed vector of the electric wave c changes its magnitude and direc-
tion. The electric wave frequency changes along with the speed. In the 1d
case ω(r0 + h) = c(r0 + h)q = (c+ drc · h)q = ω(r0)[1 + (drc/c)h], c = c(r0).
Since drc < 0, the speed and frequency of the electric wave increase in the
gravity (h < 0). The electric wave accelerates towards a larger �eld.

The motion and properties of a particle, as a wave packet, are determined
by the dispeq (23) ω2 = ω2

m + c2q2, in which the oscillation frequency in the
etheron (17) ω2

m = ω2
γ − 4c2 − 2c2

l . The frequencies ωm and ω together with
the particle masses at rest m = ωm/c

2 and motion M = ω/c2 decreases,
the speed V = c2q/ω and the mass ratio M2/m2 = ω2/ω2

m = 1 + c2q2/ω2
m

increases in the compressed by gravity ether compared to uncompressed. The
speed vector V changes its magnitude and direction.

Since the electric wave or particle accelerations are proportional to gradhi
then h acts as the gravity potential vector having three parameters hi. It
changes the metrics of each axis, and through these the space curvature and
the time metric determined by the wave packet frequency ω(h). If do not
notice the ether then the electric wave and the particle movement occurs as
if in a curved empty space-time.

Gravity �eld equations may be found in the ether model. However the
gravity transfer speeds σ is extremely small due to the weak interaction (10)
UG � Uγ : σ2/c2 ∼ UG/Uγ ∼ Su/S0 . 10−50.

The ether deformation h has two parts. These are hG generated by the
even part of the potential UG (10) and hξ generated non-linearly by the
variable electric �eld ξ (18). Their relation is hG/hξ ∼ UG/Uγ, hξ/ξ ∼ ξ/r.
The smallness of hG causes the known weakness of gravity which is able to
create noticeable �elds for a huge set of particles only.

The hG-�eld a�ects the electric wave (18) and can be carried along with
it. But this �eld is extremely small. And the nonlinearity in (18) lead to
the dependence of the deformation transferred in this way on parameters of
the electric wave carrying it that makes di�cult to predict a result of this
transfer. Then "the gravitational wave accompanied by an electric wave"
observed in [15] can be a hξ-�eld inseparable from an electric wave.

Matter is electroneutral only for spatial resolutions much larger than the
atom size. On a smaller scale there are always variable electric �elds. Also the
cosmic microwave background is necessarily present if there are no particles.
They are quite capable to rearrange gravity �elds of moving masses at speed
of light that is the necessary for the derivation of Einstein's gravity theory.
Gravitons are small and can be ignored. As a result there remains a quasi-
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constant gravity �eld of massive bodies which is nonlinearly rearranged by
the electric �eld when bodies move.

Gravity �eld of bodies is proportional to particles number in them. The
body mass too. Then the inertial and gravitational masses are proportional
or equal in the appropriate system of units.

A very strong gravity causes a signi�cant decrease in the distance between
the etherons leading to a phase transition of the ether into HH̄-plasma.
There are no polarization �eld, electric waves and particles in it. This zone
looks like a black hole. Then black holes are HH̄-plasma zones formed
in ether under an in�uence of a strong gravity.

Particles

The main elements of our 3d world are 3d haens H3 = H1
1gH

1
2gH

1
3g, their

antihaens and a 1d pairs νj = H1
j ggH̄

1
j (j = 1, 2, 3) which are composed of

1d haens H1
j and its antihaens connected by exchange g-bonds (8, 9). Down

quarks [16, 17] and 1d haens have similar properties if quark colors [18, 19]
are identify with hdims. Then down quarks dj are antihaens H̄

1
j , down

antiquarks d̄j are haens H1
j , quark colors are hdims responsible for our

space dimensions.
Quarks are bound by gluons [19] in hadrons [20] just as H1

j and H̄
1
j are

bound by g-exchanges (8, 9) in H3, H̄3 and νj. Hence gluons are g-bonds.
But in general they are not wave quanta. A waves are the transfer through
adjacent points. But in the multidimensional noise of g-exchanges each H1

j

is connected to all H1
i 6=j at once. There are no waves in it. 3d haens are

an exception. In them all H1
j are neighbors which allows to introduce the

concept about gluons as wave quanta into the "color space".
The amplitudes of H3 and H̄3 are threefold greater the amplitudes of H1

and H̄1 that coincides with the charges ratio for an electron and a quark. If
the particle charges are associated with the haen amplitudes then assume:
The electron e− has a antihaen in its basis B−e = H̄3, and the positron e+

has an haen B+
e = H3. Hence they contain quarks (down) which give them

a location point and not a spatial structure. Their structures are determined
by surrounding ξ-�eld yards Y −e and Y +

e which creates the particle mass.
The 1d pairs νj = H1

j ggH̄
1
j of the hdim j have antiphase oscillations and

are non-amplitude particles (without charge) but have an internal oscillation
energy. There are also 2d νjνk and νjk = H1

j gH̄
1
j gH

1
kgH̄

1
kg, 3d ν1ν2ν3 and
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ν123 = H1
1gH̄

1
1gH

1
2gH̄

1
2H

1
3gH̄

1
3g, and longer combinations. There should be

transitions between them based on the g-exchange which leads to the estab-
lishment of a detailed balance. 1d νj and their combinations νjνk, ν1ν2ν3

are most stable because the longer chain is easier to break. The only parti-
cles they look like are neutrinos [21]. Then the transitions between them
correspond to the neutrino oscillations [22].

The haen H1
j may be represented as having two free g-bonds for interac-

tions with haens of other hdims or antihaen of own hdim where both bonds
are involved. These corresponds to the concept of interactions by gluons.

Haen pairs from di�erent hdims connected by a single g-bond have dou-
bled amplitude and two free bonds. They are similar to antiquarks d̄j with
the double charge. These are up quarks uj = gH1

j+1gH
1
j−1g = d̄j+1d̄j−1 and

their anti-quarks ūj = gH̄1
j+1gH̄

1
j−1g.

The resulting combinations of the 1d haens together with photons γ, as
quanta of massless ξ-waves, constitute the �rst generation of particles:
dj = H̄1

j , d̄j = H1
j , uj = gH1

j+1gH
1
j−1g, ūj = gH̄1

j+1gH̄
1
j−1g, νj = H1

j ggH̄
1
j ,

e+− = B+−
e + Y +−

e , B+
e = H1

1gH
1
2gH

1
3g, B

−
e = H̄1

1gH̄
1
2gH̄

1
3g, γ.

They are lightest and do not disintegrate.
Neutrinos and electron bases contain the smallest number of g-bound

quarks. These g-bonds were the �rst to stand out from the diminishing
noise. Their strength corresponds to a noise level at their birth and is greatest
among other interactions. g-bonds combine quarks to closed compounds and
are not free. This is represented in (8, 9) by pairs correlations giving linear
g-bonds. But in quantum chromodynamics gluon interactions are nonlinear
and require taking into account higher-order correlations (7).

Exchanges between g-bonds (gluons) are added in (8, 9). It lead to

SHj = S̄Hj + εj + gSHj

3∑
i=1

ηji(1 + g1

3∑
k,l=1

τij,klηkl)S
H
i , τij,kl = −τkl,ij.

SHj = S̄Hj + εj + g[ηj(1 + g1τjθj) + θj(1− g1τjηj)]S
H
j S

H̄
j , (31)

SH̄j = S̄H̄j + εj − g[ηj(1 + g1τjθj) + θj(1− g1τjηj)]S
H
j S

H̄
j ,

where τij,kl and τj are exchanges between gluons by noises with dispersion
equal to one. For a strong nonlinearity g1 ∼ 1 there is a large probability of a
�eeting break of g-bonds with a possibility of switching them to other quarks
which have a same temporarily broken g-bonds in this place and time.

Next generations contain heavier particles with an internal spatial
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structure. They consist of quarks but have much larger masses. Conse-
quently quarks are only their bases B and must to be supplemented by their
surroundings (yard, Y ) which give particles mass.

Quark-gluon bases can be of any length. But a probabilities of basis
breaking increases with growing length. Particles with the smallest closed
bases are presented in the �rst generation. Their random bond breaks are
restored in the same basis. Longer bases break up. 2d neutrinos haves the
smallest length among them νij = H̄1

i gH
1
i gH

1
j gH̄

1
j g = uū and spontaneously

breaks up 1d neutrinos. It is also possible that there are 3d and multi-d
neutrinos with a detailed balance between them.

There are particles without charge starting with the neutral pion π0. It
has a basis B0

π = uū+ dd̄ reducing to a pair H3ξH̄3, and yard Y 0
π containing

neutrinos and massive ξ-�eld providing the pion mass. The pion existence
is supported by internal exchanges (31) with jumps of g-bonds in its yard.
It is a dynamic and statistical object. A long-lived and heavier neutron has
the same basis Bn = udd = B0

π. Assume that all neutral particles have
the same bases of H3ξH̄3 (haen and antihaen located at a distances greater
than a distance r between the etherons and connected by a polarization �eld)
and di�erent yards with which particle di�erences are associated. A positive
pion π+ has a basis B+

π = ud̄ = B+
e that coincides with a positron basis.

All positive particles have the same bases B+
e and di�ered only in yards.

Negative particles have an electron basis B−e and di�erent yards.
The proton has the positron basis B+

e ν linked with the neutrino yard by
exchanges. This is manifested in the proton reactions pν = e+2ν, pν = ne+,
pe− = nν, n = pe−ν which necessarily contain neutrinos. The reason for its
stability may be found in a yard structure and reactions inside it.

There are two interactions of an haen with the environment: by means of
γ-potential (12) and g-exchange (31). The �rst prevails in ether the second in
neutr. haen-neutrino g-exchange is possible to change their locations which
causes random movements of the haen inside yard.

A g-exchange occurs at su�ciently large neutrino density in space. If this
density decreases then a closest to the haen and linked with it part of the
neutrino yard retains an initials density and g-bonds. A bonded system is
created there and may be relatively stable. haen wanderings become limited
in space. Perhaps this is how protons and neutrons were born when a neutrino
number density decreased in the expanding Universe.

The causes of masses and decays of heavy particles should be sought
inside their yards. It is possible that repeated passes of a same places may
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increase a distances between an etherons up to a certain equilibrium value.
Thus a particles could get to obtain a greater mass than have positron.

haen wanderings are conforms with the experiments [23] from which it
followed that a nucleons have similar distributions of mass and charge den-
sities. They decrease from a center ∼ 10−16m to a border ∼ 10−15m. This
zone is much larger the distance between an etherons ∼ 10−22m.

All heavy particles are described by the scheme basis-yard. Their
bases are haen or/and antihaen. No need to introduce heavy quarks. Three
quarks (down) and their antiquarks are su�cient. The di�erences between
the particles are de�ned by yard structures. Mesons and bosons of the weak
interaction do not stand out from other particles except for their participation
in the creation of the nuclear matter. Structures of muons and taons has no
qualitative di�erences from hadrons.

The nucleon yards exist together with their bases from nucleons birth at
the corresponding time of Universe development. They must have the im-
print of that environment. These yards are now a transition zone from the
basis through a remnant of their birth environment to modern Universe envi-
ronment. The yards of other heavy particles are determined by the conditions
of their birth in the corresponding reactions.

an haen and its antihaen only conditionally have one location but they are
separated by half of the total space (half a turn in phase). If environments in
these places are di�erent (incomplete mirroring) then an interaction of haens
with them will be di�erent also. Then particles founded on such haens may
be di�erent. Since the proton and the antiproton are founded on the haen
and the antihaen then complete symmetry between them may not be.

Di�erence between fermions and bosons is conditional in particles
having yards. Strictly only haens are fermions due to their γ-repulsion (12)
which does not allow them to be in one place. Only wave quanta are bosons
because they freely pass through one another. Particles that have haens and
ξ-�elds in their structures cannot be only fermions or bosons although one
or another property may prevail.

Spin. The main oscillation with the frequency Ω = 1 in the noise-blurred
2d or 3d haens (5, 6) may be represented as having a noise rotation at the
speed ϕ̇ = Ω = 1. It produce a rotation moment J around an axis passing
through the haen center. If the oscillation amplitude is S then the rotation
radius ∼ 1/S and J ∼ Sϕ̇ · (1/S) ∼ 1 = ~/2. Hence the noise-blurred main
oscillation of (2 or 3)d haen is the cause of the spin 1/2 for all particles
except 1d quarks. Other spin values are derived from it. Since the haen
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amplitudes are the source of the particle charges then the rotation moment
J is accompanied by a magnetic moment which is connected by the spin
now. Also the spin is the cause of electric waves and particle masses.
The presence of the spin 1/2 and the property of being the fermion have the
di�erent reasons for particles.

Estimation of the fundamental frequency. The over-noise energy of
the haen is taken estimationly as standard value of a quark energy ∼ 10−1 eV
which is considered to be equals a noise average amplitude energy. But the
noise rises above foundation plateau which is on ∼ 46 orders of magnitude
more it. Then an haen energy ~Ω = 7 · 10−16Ω ∼ 1045 eV which gives an
estimate of the fundamental frequency Ω ∼ 1060 Hz.

The ether is absolute because it is in the absolute space of haen places.
Particles (except neutrinos) and �elds are ether perturbations. An observer
or a device can move with the particles so with perturbations of ether only. A
massive wave group velocity together with a quantum impulse (wave vector)
become zero in the attendant coordinate system containing the device. A
frequency and mass decrease to a values of rest state at that. A speeds and
quanta impulses of other particles (including photons and excluding neutri-
nos) are counted from zero. Then particle speeds is always less than the
limiting transfer speed (of light) and a photon speed is equal to it. Therefore
in any moving with a observer system the speed of light is constant and all
physical processes are identically � motion is relative. The ether abso-
luteness is hidden behind relativity of the perturbation movement which is
basis of physical coordinate systems.

Relativity of gravity. Massive bodies are perturbations of the absolute
ether and the gravity �elds are adjusted to their motion by means of an
electric �eld. This process is relative which makes it possible to use Einstein's
theory of gravity.

Neutrinos are absolute because they consists only of the haen and the
antihaen without ξ-�elds and is not a perturbation of ether. Thus neutrinos
represents the absolute environment in our relative world.

Classical elements and levels of matter

The HH̄-environment state may be di�er since it depends on a distances be-
tween HH̄-pairs and their polarization. There are unperturbed state without
a polarization, polarized ether, HH̄-plasma and HH̄-solid. There are also
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four classical elements � �re, air, water, earth. It is possible to match these
states and classical elements.

Sum of haen and its antihaen has zero average amplitude and twice the
noise dispersion in unperturbed HH̄-environment. This state is a located
structureless noise and most corresponds to �re. The disturbed ether is
a medium between HH̄-plasma (ionized gas) and HH̄-solid. Then it cor-
responds to water. It remains to identify HH̄-plasma and HH̄-solid with
air and earth. Now a noise is �re, the polarized ether is water,
HH̄-plasma is air, HH̄-solid is earth.

The noises are di�er. There are Everything as a total noise, a noise of
uncertain magnitude at the selected main frequency taken as one, its in�nite
division into independent noises of �nite dispersions, their change over time
to modern noise, and the sum of the haen and its antihaen in unperturbed
HH̄-pairs. Each of them may correspond to a special �re element. This is
the diversity of �re.

A noise is not disorder but the basis from which the worlds arise, by
which exist, and to which return. It is a conductor of other worlds in�uence.
A world structures are maintained by noise connecting worlds in the chain
of life. An interaction within each world is carried out via its noise. Then
�re is the basis of matter and worlds, a necessary condition for their
existence and development.

The polarized ether is water. It is manifested as electric �elds. The ether
is medium because relatively small in�uence puts it in other state. an haen
change a distance between etherons by the γ-interaction and puts the ether in
HH̄-solid inside particles. Therefore particles and bodies are built of earth.
A gravity puts the ether in HH̄-plasma. Then black holes are air.

Seven levels of Existence may be distinguished in a matter structure
� each next is the basis and cause of the previous:
1. Dense matter: The Universe, planets, bodies, molecules, atoms, particles.
2. A polarization �eld of the ether: a massive �eld inside particles and
massless electric �eld. They de�ne dense matter.
3. A deformation �eld of the ether: The polarization is determined by a
distance between etherons � the metric �eld of the ether, including a gravity.
4. Etherons: The metric is due to the etheron interaction.
5. 3d haens: The etherons (points of our 3d space) are pairs of 3d haens and
antihaens.
6. 1d haens: The 3d haens are assembled from 1d haens (quarcs) linked by
correlation g-bonds (gluons).
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7.Everything that is Nothing (Emptiness, Absolute, One, Ine�able,...), the
unity of being and no-being.

Similar levels of man structure are used in esotericism and theosophy [24]:
1. The physical body (Sthula sharira).
2. The etheric double (Linga sharira).
3. The astral body (Kama-loka. animal soul).
4. The mental body (lower mind).
5. The causal body (karmic, higher mind).
6. The body of bliss (Buddha, enlightenment).
7. Atma (Atman is an eternal unchanging spiritual essence, a conscious
Absolute, which is identi�ed in this level with Brahman as an absolute Being
� Atman is Brahman).

Then:
1. The physical (dense) body is built of particles.
2. The etheric body is the polarization �eld of ether, which provides and
de�nes dense bodies.
3. The astral body (of desires) is an etheric metric �eld. Desires attract.
And gravity too.
4. The mental body is built of etherons. They de�ne a scheme (matrix) for
constructing the following levels.
5. The causal body corresponds to 3d haens the interaction of which deter-
mines the world structure.
6. The body of bliss consists of 1d haens � the basic building blocks of the
world. 7. Atma is Everything that is nothing.

Results

There is a concept about "theory of everything" in physics as a goal to be
seeked by generalization and uni�cation already known theories of interac-
tions and matter structure (existence of particles). The proposed work is
also aimed to this goal but in a another way. Instead of further abstraction
and complication of mathematical research tools, the main attention is paid
to �nding a relatively simple foundation of physics.

Such a choice requires an appropriate name for the presented theory. Its
name should be similar to the accepted "theory of everything" and di�er from
it. The expression panory has these properties. It consists of two ancient
Greek words: "pan" (everything) and "theory" from which the second half
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of the name is taken. The presented study is just beginning to enter à vast
area of new theory. The simplest available models are used and are proposed
with the hope of their further development.

The study begins with the statement about the universality of energy
understood as the rate of change. The change represented by the variables
of action and duration is taken as the basis of Everything.

Stationary repeats of Everything are expressed in terms of harmonics in
which the initial phase is their relative place. The harmonic in variables
"action-energy" is called haen, and antiphase one� antihaen. The har-
monic becomes the main element for the description of matter and substitute
the material point.

The harmonic's set of same frequencies (taken as a unit) is selected for
representation of Everything. The noise at this frequency is taken as the
basic state of the world.

A stable world structure is formed by over-noisy haens aroused when
the noise was attenuated with the preservation of some �uctuations. Here-
with harmonic's correlations led to the existence of multidimensional haens.
Three-dimensional (3d) haens H3 and antihaens H̄3 constituted by 1d H1

j

and H̄1
j of di�erent dimensions j together with 1d pairs H

1
j H̄

1
j of each dimen-

sion have become elements of our world. haens H1
j are identical to quarks

(down) dj, haen dimensions hdims � quark colours, correlations between
dimensions � gluons, pairs H1

j H̄
1
j � 1d neutrinos.

There is a haens interaction via noise. Its potential depending on
the haen average amplitude consists of odd and even parts. The odd part
(γ-interaction) is the cause of polarization, and the even � of gravity.

The space of our world is a set of haen places. It is closed (cyclic) and
has a material basis. The environment of our world consists of attenuated
noise, a base plateau, and over-noise parts of haens above plateau.

The over-noisy parts of haens are assembled into environmental elements
and individual particles. HH̄-pairs form HH̄-solid. Free haens and anti-
haens formHH̄�plasma. The medium between them is the environment of
our world � ether (E) consisting of etherons (3d HH̄-pairs). The other part
of the HH̄-environment (neutr N) consists of neutrinos. Their set is eneu
(EN). It is assumed that the ether is a 3d surface in a 4d HH̄-environment
and separates HH̄-plasma and HH̄-solid in it.

HH̄-plasma and HH̄-solid are represented in the ether by rare inclusions.
Black holes are HH̄-plasma, and there is HH̄-solid inside the particles.

A model of our world environment is proposed. The polarization ξ and
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dispersion equations are found. Waves in the environment have transverse
and longitudinal components. But the last is much weaker the �rst.

The massless transverse and constant ξ-�elds around the particles forms
the system of Maxwell's equations. The electric �eld is ether polarization.
The magnetic �eld is its change over time. The electromagnetic wave is a
transverse polarization wave in the ether.

There are around the haen stationary transverse massive ξ-�eld giving
the particle mass and a constant ξ-�eld. Further there is the Coulomb electric
�eld.

The ξ-�eld is described by the Klein-Fock-Gordon equation. The non-
linear Schr�odinger equation is derived after the switching to the amplitude
description of a stationary massive ξ-�eld near haens. The wave function
is the amplitude of this oscillating �eld. The equation of a massive ξ-wave
packet is written. The mass and movement of the body are of a �eld nature.

Gravity is part of the ether deformation. These potential is described by
the change in the distance between etherons. It is shown how electric waves
and particles move in gravity. Gravitational waves are negligible. Only the
gravitational �eld of bodies remains. There is nonlineary transfer of gravity
by an electric �eld when bodies are moving.

The 3d haen forms the basis of positron B+
e = H3 and antihaen � of

electron B−e = H̄3. The 1d electron neutrino is the pair of 1d haen and
antihaen νj = HjgH̄j connected by g-bond (gluon). The down quark is 1d
antihaen dj = H̄1

j . The top quark uj is the haen pair uj = H1
j+1gH

1
j−1.

First-generation particles are consisted from quarks (except the
photon). It is necessary to include yards of a massive ξ-�eld in the positron
and electron structures.

All massive particles (except neutrinos) contains the haen basis sur-
rounding by the yard of the polarization �eld and neutrinos. Proton yard
retain an imprint of the Universe environment which was at their birth.

The world is absolute at the haen level and relative at the level of the
polarization �elds and particles which are portable etheric excitations.

Our Universe cannot exist on its own. The necessary condition for its exis-
tence and development is the in�nite chain of interacting living worlds.

Thus it is shown that the theories of modern physics can be derived from
the representation of matter in the form of variable action.

A. N. Pan. Extra-spatial basis of spatial world. Principles of panory.
http://viXra.org/abs/2107.0101. This work is translation [25] to English.
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