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Abstract: 
As there is no special primality test for Sophie Germain primes and safe primes as is the 
case with Fermat primes and Mersenne primes. 
Argentest is born, a personal research project that develops a new exclusive 
deterministic primality test for Sophie Germain's prime numbers and safe prime 
numbers. 
 
Introduction: Primes building Primes 

 
A prime (𝑃𝑠) is said to be safe if, in addition to being a prime, it is the result of multiplying a 
smaller prime (P) by two and adding one to it. For example, the number 23 is a safe prime 
because 23 = 2 x 11 + 1, where 11 and 23 are prime numbers. 
Safe prime numbers are constructed by a Sophie Germain prime number. 
 
Sophie Germain's prime numbers 

Characteristics: 
P > 2 ≡ 1 ∨  3 (𝑚𝑜𝑑 4) 

 
𝑃 = {2,3,5,11,23,29,41,53,83,89,113,131,173,179,191,233,239,251,281,293,359, 
419,431,443,491,509, … . . . }  
Referencia OEIS (A005384) 
 
 
Safe Prime Numbers 
With the exception of 7, all safe primes have the form 6n - 1, that is, they are congruent with 5 
modulo 6. Similarly, with the exception of 5, all safe primes have the form 4n - 1, that is that is, 
they are congruent with 3 modulo 4, as can be easily verified, considering that p must be an odd 
number. Since the least common multiple of 6 and 4 is 12, all safe primes greater than 7 must 
be able to be expressed in the form 12n - 1, that is, they must be congruent with 11 modulo 12. 
 
Safe Prime Numbers 𝑃𝑠 = (2𝑃 + 1) 
 
𝑃𝑠 = {5, 7, 11, 23, 47, 59, 83,107,167, 179,227,263,347,359,383,467,479,503,563, 
587,719,839,863,887,983, … . . . } 
Referencia OEIS (A00538) 
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Algorithm to determine primality 
of the prime numbers Sophie Germain 

 
Given an input odd natural number (r), the algorithm checks if (r) is a Sophie Grermain prime 
number and consequently constructs a safe prime. 
 
The algorithm has a congruence that must be met to have an affirmative result. It combines 
Euler's criterion with Fermat's little theorem. 
 
The algorithm checks the primality of an odd number (r) 
If the algorithm is affirmative, (r) will be equal to Sophie Germain's prime number and 
consequently we will identify a safe prime number in the form (2p + 1). 
 
If the algorithm is negative, (r) is not a prime of Sophie Germain and in turn does not construct 
a safe prime number. 

Theorems 
 

Theorem [1]: Fermat's Little Theorem, If p is a prime number, then, for each natural number a, 
with a> 0 

 𝑎𝑝 ≡  𝑎 (𝑚𝑜𝑑 𝑝) 
 
Theorem [2]: Euler's Criterion 
[2.1] Let p> 2 be a prime number and a coprime integer with p. Then a is a quadratic remainder 
modulo p if and only if 

2
𝑝−1

2 ≡ 1 (𝑚𝑜𝑑 𝑝) 
 
[2.2] As a corollary of this theorem, it follows that if a is not a quadratic remainder modulo p 
then 

2
𝑝−1

2 ≡ −1 (𝑚𝑜𝑑 𝑝) 
 
 [2.3] It is well known that 2𝑚 + 1 | 2𝑚 − 1, when 2m + 1 is prime and  2𝑚 − 1 is composite. 
Ultimately, a prime number divides a Mersenne number. 
 
[2.4] It is well known that 2𝑚 + 1 | 2𝑚 + 1, when 2m + 1 is prime and  2𝑚 + 1 is composite.  
 
Then 
But theorem 3 is not sufficient for the development of a proof of primality, since the pseudo-
primes are present. The same happens with Theorem [1 and 2]. 
 
Example: 
 2 ∗ 280 + 1| 2280 − 1 =  561| 2280 − 1 
 but 561 = 187 ∗ 3  
 
Then starting from Theorem [2.3] and applying an improvement in the development and 
combining the Euler criterion with the small Fermat theorem is how the Argentest algorithm 
works to determine the primality of an odd natural number and validate if it belongs to the 
primes of Sophie Germain. 
In this algorithm the pseudoprimes fail to pass the test, since the base 2 exponent is always a 
composite number for the pseudoprimes, I have verified this up to the number 500,000,000 with 
a satisfactory result. 
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Sophie Germain's Primality Test  
 

∃ 𝑘 ∈ ℕ/2𝑘 + 1 = 𝑟 

𝑟 ≡ 1 ∨ 3 (𝑀𝑜𝑑 4) ∧  2 ∨ 5 ∨ 8 (Mod 9) 
2𝑟 ± 1

2𝑟 + 1
≡ 1 ∨ 3(𝑀𝑜𝑑 𝑟) →  𝑟 = 𝑃  ∧  2𝑟 + 1 = 𝑃𝑠 

 
𝑃 = 𝑆𝑜𝑝ℎ𝑖𝑒 𝐺𝑒𝑟𝑚𝑎𝑖𝑛 𝑝𝑟𝑖𝑚𝑒 > 2 
𝑃𝑠 = 𝑆𝑎𝑓𝑒 𝑃𝑟𝑖𝑚𝑒  

 
So in order to execute the algorithm correctly, I separate the algorithm into two variables called 
Algorithm A and Algorithm B. 

 
Algorithm A 

∃ 𝑘 ∈ ℕ/2𝑘 + 1 = 𝑛 
𝑛 ≡ 1 (𝑀𝑜𝑑 4) ∧  2 ∨ 5 ∨ 8 (Mod 9) 

𝟐𝒏 + 𝟏

𝟐𝒏 + 𝟏
≡ 𝟑(𝑴𝒐𝒅 𝒏) →  𝒏 = 𝑷 ∧ 𝟐𝒏 + 𝟏 = 𝑷𝒔 

 
Affirmative example of the test: 𝑛 = 29 

29 ≡ 1 (𝑀𝑜𝑑 4) ∧   𝟐 (Mod 9) 
229 + 1

59
≡ 3(𝑀𝑜𝑑 29) →  29 = 𝑃 ∧ (2 ∗ 29 + 1) = 59 = 𝑃𝑠 

 
Negative test example: 𝑛 = 65 

65 ≡ 1 (𝑀𝑜𝑑 4) ∧   𝟐 (Mod 9) 
265 + 1

131
≢ 3(𝑀𝑜𝑑 65) →  65 ≠ 𝑃 ∧ (2 ∗ 65 + 1) = 131 ≠ 𝑃𝑠 

 
Proof A: Primality test of (n, q) 
𝑞 =  Safe 𝑝𝑟𝑖𝑚𝑒  
𝑛 =  𝑆𝑜𝑝ℎ𝑖𝑒 𝐺𝑒𝑟𝑚𝑎𝑖𝑛 𝑝𝑟𝑖𝑚𝑒 
 
By definition of a safe prime number we know that: 

𝑞 = 2𝑛 + 1 →  𝑛 =
𝑞 − 1

2
 

 
Part One: I demonstrate the primality of (𝑞)  

2𝑛 + 1

2𝑛 + 1
 

Theorem [2.4] 
 

2𝑛 + 1|2𝑛 + 1 
Then 

= 2𝑛 + 1 ≡ 0(𝑚𝑜𝑑 2𝑛 + 1) 
Replacement (n) 

= 2
𝑞−1

2 + 1 ≡ 0(𝑚𝑜𝑑 𝑞) 

= 𝟐
𝒒−𝟏

𝟐 ≡ −𝟏(𝒎𝒐𝒅 𝒒) 
Euler′s criterion[2.2] 



4 
Argentest  

 
Part Two:  I demonstrate the primality of(𝑛) 

 
2𝑛 + 1

2𝑛 + 1
≡ 3(𝑀𝑜𝑑 𝑛) 

 
= 2𝑛 + 1 ≡ 3(2𝑛 + 1)(𝑀𝑜𝑑 𝑛) 

= 2𝑛 + 1 ≡ 6𝑛 + 3 (𝑀𝑜𝑑 𝑛) 
 

𝑇ℎ𝑒𝑛 6𝑛 ≡ 0 (𝑀𝑜𝑑 𝑛) 
= 2𝑛 + 1 ≡ 3 (𝑀𝑜𝑑 𝑛) 

∴ 𝟐𝒏 ≡ 𝟐 (𝑴𝒐𝒅 𝒏) 
Fermat's little theorem [1] 

 
This implies that if both congruences work (n) it will be a prime number of Sophie Germain. 
 
 
 

Algorithm B:  
∃ 𝑘 ∈ ℕ/2𝑘 + 1 = 𝑚 

𝑚 ≡ 3 (𝑀𝑜𝑑 4) ∧   2 ∨ 5 ∨ 8 (Mod 9) 
2𝑚 − 1

2𝑚 + 1
≡ 1(𝑀𝑜𝑑 𝑚) →  𝑚 = 𝑃 ∧ 2𝑚 + 1 = 𝑃𝑠 

 
Affirmative example of the test: 𝑛 = 83 

83 ≡ 3 (𝑀𝑜𝑑 4) ∧  2  (Mod 9) 
283 − 1

167
≡ 1(𝑀𝑜𝑑 83) →  83 = 𝑃 ∧ (2 ∗ 83 + 1) = 167 = 𝑃𝑠  

Negative test example: 𝑛 = 35 
35 ≡ 3 (𝑀𝑜𝑑 4) ∧  8 (Mod 9) 

235 − 1

71
≢ 1(𝑀𝑜𝑑 35) →  35 ≠ 𝑃 ∧ (2 ∗ 35 + 1) = 71 ≠ 𝑃𝑠 

 
Proof B: Primality test of (𝑚, 𝑞) 
𝑞 =  Safe 𝑝𝑟𝑖𝑚𝑒 
𝑚 =   𝑆𝑜𝑝ℎ𝑖𝑒 𝐺𝑒𝑟𝑚𝑎𝑖𝑛 𝑝𝑟𝑖𝑚𝑒 
 
By definition of a safe prime number we know: 

𝑞 = 2𝑚 + 1 →  𝑚 =
𝑞 − 1

2
 

 

Part One: I demonstrate the primality of (𝑞)  

2𝑚 − 1

2𝑚 + 1
 

Theorem [2.3] 
 

2𝑚 + 1|2𝑚 − 1 
Then 

= 2𝑚 − 1 ≡ 0(𝑚𝑜𝑑 2𝑚 + 1) 
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Replacement (m) 

= 2
𝑞−1

2 − 1 ≡ 0(𝑚𝑜𝑑 𝑞) 

= 𝟐
𝒒−𝟏

𝟐 ≡ 𝟏(𝒎𝒐𝒅 𝒒) 
Euler′s criterion [2.1] 

 
 

Second part: I demonstrate the primality of (𝑚)  
2𝑚 − 1

2𝑚 + 1
≡ 1(𝑀𝑜𝑑 𝑚) 

 
= 2𝑚 − 1 ≡ 1(2𝑚 + 1)(𝑀𝑜𝑑 𝑚) 

=2𝑚 − 1 ≡ 2𝑚 + 1 (𝑀𝑜𝑑 𝑚) 
= 2𝑚 ≡ 2𝑚 + 2 (𝑀𝑜𝑑 𝑚) 

 
Entonces 2𝑚 ≡ 0 (𝑀𝑜𝑑 𝑚) 

∴ 𝟐𝒎 ≡ 𝟐(𝑴𝒐𝒅 𝒎) 
Fermat's little theorem [1] 

 
This implies that if both congruences work (m) will be a prime number of Sophie Germain. 
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Inverse algorithm for determining primality 
of the safe prime numbers 

 
Given an input odd natural number (z), the algorithm checks if (z) is a Safe prime number and 
consequently it is constructed by another Sophie Germain prime number. 
 
The algorithm has a congruence that must be met to have an affirmative result. It combines 
Euler's criterion with Fermat's little theorem. 
 
The algorithm checks the primality of (z) 
If the algorithm is affirmative (z) it will be a safe prime number and consequently 
(p-1) / 2 will be Sophie Germain's prime number. 
 
If the algorithm is negative (z) it is not a safe prime number and consequently it is not built by a 
cousin of Sophie Germain. 
 
𝑃 = 𝑆𝑜𝑝ℎ𝑖𝑒 𝐺𝑒𝑟𝑚𝑎𝑖𝑛 𝑝𝑟𝑖𝑚𝑒 >2 
𝑃𝑠 = 𝑆𝑎𝑓𝑒 𝑝𝑟𝑖𝑚𝑒 

 
Safe prime numbers have the following characteristic: 
 

𝑃𝑠 > 5 ≡ 3 (𝑚𝑜𝑑 4) 
 

 
Primality Test Algorithm for Safe Prime Numbers 

 
∃ 𝑘 ∈ ℕ/2𝑘 + 1 = 𝑧  

𝑘 ≡ 1 ∨ 3 (𝑀𝑜𝑑 4) ∧  2 ∨ 5 ∨ 8 (Mod 9) 

2
𝑧−1

2 + 1

𝑧
≡  1 ∨ 3 (𝑀𝑜𝑑 

𝑧 − 1

2
) →  𝑧 = 𝑃𝑠 ∧  

𝑧 − 1

2
= 𝑃 = 𝑘 

 
 

So in order to execute the algorithm correctly I separate the algorithm into two variables 

called Algorithm C and Algorithm D. 

Algorithm C 

∃ 𝑘 ∈ ℕ/2𝑘 + 1 = 𝑛 

𝑘 ≡ 1 (𝑀𝑜𝑑 4) ∧  2 ∨ 5 ∨ 8 (Mod 9) 

2
𝑛−1

2 + 1

𝑛
≡ 3 (𝑀𝑜𝑑 

𝑛 − 1

2
) →  𝑛 = 𝑃𝑠 ∧ 

𝑛 − 1

2
= 𝑃 = 𝑘 
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Affirmative example of the test: 𝑛 = 59 

59 − 1

2
≡ 1 (𝑀𝑜𝑑 4) ∧   2 (Mod 9) 

2
59−1

2 + 1

59
≡ 3 (𝑀𝑜𝑑 

59 − 1

2
) 

229 + 1

59
≡ 3(𝑀𝑜𝑑 29) →  59 = 𝑃𝑠 ∧ (

59 − 1

2
) = 29 = 𝑃  

Negative test example: 𝑛 = 131 

131 − 1

2
≡ 1 (𝑀𝑜𝑑 4) ∧  2 (Mod 9) 

2
131−1

2 + 1

131
≡ 3 (𝑀𝑜𝑑 

131 − 1

2
) 

265 + 1

131
≢ 3(𝑀𝑜𝑑 65) →  65 ≠ 𝑃𝑠 ∧ (

65 − 1

2
) = 131 ≠ 𝑃  

Proof C: Primality test of (𝑛, 𝑞) 
𝑛 =  𝑆𝑎𝑓𝑒 𝑝𝑟𝑖𝑚𝑒 
𝑞 =  𝑆𝑜𝑝ℎ𝑖𝑒 𝐺𝑒𝑟𝑚𝑎𝑖𝑛 𝑝𝑟𝑖𝑚𝑒 
 

By definition of a safe prime number we know that a safe prime number (n) is equal: 

𝑛 = 2𝑞 + 1 →  𝑞 =
𝑛−1

2
 

 
Part One: We demonstrate the primality of (𝑛) 

2
𝑛−1

2 + 1

𝑛
 

= 2
𝑛−1

2 + 1 ≡ 0(𝑚𝑜𝑑 𝑛) 

= 𝟐
𝒏−𝟏

𝟐 ≡ −𝟏(𝒎𝒐𝒅 𝒏) 
Euler′s criterion[2.2] 

 
Part Two: We Prove the Primality of (𝑞)  

 

2
𝑛−1

2 + 1

𝑛
≡ 3 (𝑀𝑜𝑑 

𝑛 − 1

2
) 

 
Replacement 

2𝑞 + 1

2𝑞 + 1
≡ 3(𝑀𝑜𝑑 𝑞) 

 
2𝑞 + 1 ≡ 3(2𝑞 + 1)(𝑀𝑜𝑑 𝑞)   
= 2𝑞 + 1 ≡ 6𝑞 + 3 (𝑀𝑜𝑑 𝑞) 
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𝑇ℎ𝑒𝑛 6𝑞 ≡ 0 (𝑀𝑜𝑑 𝑞) 
= 2𝑞 + 1 ≡ 3 (𝑀𝑜𝑑 𝑛) 

∴ 𝟐𝒏 ≡ 𝟐 (𝑴𝒐𝒅 𝒏) 
Fermat's little theorem [1] 

 
This implies that if both congruences work (n) will be a Safe prime number and (n-1) / 2 will be 
a Sophie Germain prime number. 

 
 
 
 

Algorithm D 
∃ 𝑘 ∈ ℕ/2𝑘 + 1 = 𝑚 

𝑘 ≡ 3 (𝑀𝑜𝑑 4) ∧   2 ∨ 5 ∨ 8 (Mod 9) 

2
𝑚−1

2 − 1

𝑚
≡ 1 (𝑀𝑜𝑑 

𝑚 − 1

2
) →  𝑚 = 𝑃𝑠  ∧  

𝑚 − 1

2
= 𝑃 = 𝑘  

 
Affirmative example of the test: 𝑚 = 167 

167 − 1

2
≡ 3 (𝑀𝑜𝑑 4) ∧   𝟐 ∨  5 ∨  8 (Mod 9) 

 
2

167−1
2 − 1

167
≡ 1 (𝑀𝑜𝑑 

167 − 1

2
) 

283 − 1

167
≡ 1(𝑀𝑜𝑑 83) →  167 = 𝑃𝑠  ∧ (

167 − 1

2
) = 83 = 𝑃  

Negative test example: 𝑚 = 71 

71 − 1

2
≡ 3 (𝑀𝑜𝑑 4) ∧   𝟐 ∨  5 ∨  8 (Mod 9) 

 
2

71−1
2 − 1

71
≡ 1 (𝑀𝑜𝑑 

71 − 1

2
) 

235 − 1

71
≢ 1(𝑀𝑜𝑑 35) →  71 ≠ 𝑃𝑠  ∧ (

167 − 1

2
) = 35 ≠ 𝑃  

 
 
Proof D: Primality test of (𝑚, 𝑞) 
𝑚 =  𝑆𝑎𝑓𝑒 𝑝𝑟𝑖𝑚𝑒 
𝑞 =  𝑆𝑜𝑝ℎ𝑖𝑒 𝐺𝑒𝑟𝑚𝑎𝑖𝑛 𝑝𝑟𝑖𝑚𝑒 
 
By definition of a safe prime number we know that a safe prime number (m) is equal: 

𝑚 = 2𝑞 + 1 →  𝑞 =
𝑚−1

2
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Part One: I demonstrate the primality of (𝑚)  

2
𝑚−1

2 − 1

𝑚
 

= 2
𝑚−1

2 − 1 ≡ 0(𝑚𝑜𝑑 𝑚)  

= 𝟐
𝒎−𝟏

𝟐 ≡ 𝟏 (𝒎𝒐𝒅 𝒎)  
Euler′s criterion[2.1] 

 
Part Two: I demonstrate the primality of (𝑞)  
 

2
𝑚−1

2 − 1

𝑚
≡ 1 (𝑀𝑜𝑑 

𝑚 − 1

2
) 

 
Replacement 

2𝑞 − 1

2𝑞 + 1
≡ 1(𝑀𝑜𝑑 𝑞) 

 
= 2𝑞 − 1 ≡ 1(2𝑞 + 1)(𝑀𝑜𝑑 𝑞) 

=2𝑞 − 1 ≡ 2𝑞 + 1 (𝑀𝑜𝑑 𝑞) 
= 2𝑞 ≡ 2𝑞 + 2 (𝑀𝑜𝑑 𝑞) 

 
Then 2𝑞 ≡ 0 (𝑀𝑜𝑑 𝑞) 

∴ 𝟐𝒒 ≡ 𝟐(𝑴𝒐𝒅 𝒒) 
Fermat′s little theorem  [1] 

 
This implies that if both congruences work (m) it will be a Safe prime number and 
(m-1) / 2 will be a prime number of Sophie Germain. 
 

 
 

Conclution 
 
Argentets works with perfect determination and manages to pinpoint the primality of 
the primes of Sophie Germain and of the Safe primes efficiently. 
 
The algorithm presents very simple and limited mechanisms in comparison with other 
existing primality tests. Since it calculates in 2 simple steps the primality of two closely 
related numbers. 
 
Without a doubt, Argentest is fabulous for its simplicity and speed, computationally 
very fast and easy to program for the use of large numbers. 

 
Professor Zeolla Gabriel Martín 

San Vicente, Buenos Aires, Argentina. 
2021 
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