A recursive algorithm proving the Strong Goldbach Conjecture

Gregory M. Sobko

Abstract

A Recursive Algorithm described here generates consecutive sequences of Goldbach sets
{GP13<k<m}, where GP={nn' |neP,n’=2-k-neP}

toward the proof of the Strong Goldbach Conjecture. This approach is grounded in the fundamental
principle of mathematical induction and uses rather elementary set-theoretical technique.

I tried to follow the idea of Martin Aigner and Giinter M. Ziegler [10] to make the content
accessible to the readers with their background only in the basics of discrete mathematics.

The main idea is to develop a recursive algorithm toward building the sequence of consecutive

Goldbach sets {GkP |13<k < m} representing solutions to the system of Goldbach equations

{x+y=2-k|3£k£m} in the intervals ]k=[3,2-k—3], 3<k<m.

Validity of the algorithm follows from the proved here recursive formula

1[(GkIP>+2-(m—k))mSm]:GmIP’?&@ :
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given the inductive assumption that Gk]P) #Oforall k:3<k < m,where Sm =1 N P,

and [P is a set of all odd prime numbers. We establish a definite connection between the

Goldbach function G(2m) and some invariant properties for Diphantine variety

of Goldbach sets.



“The most interesting facts are those which can be used several
times, those which have a chance of recurring ...”

(Henry Poincaré, The Value of Science)

1. Shift invariance of Goldbach Set.

We approach here one of old classical problems in Number Theory known as the strong
form of Goldbach Conjecture (SGC) [1, 5]. According to the conjecture stated by Goldbach
in his letter to Euler in 1742, “every even number 2 > 6 is the sum of two odd primes” [1].

Regardless numerous attempts to prove the statement, supported in our days by computer

calculations up to 4x 10", it remains unproven till now.
Let N be a set of natural numbers, and P a set of odd primes (all prime numbers excluding 2).
The Goldbach’s Conjecture (GC), as one of the oldest and notoriously known unsolved problems

in Number theory, raises a question why it seems so difficult to decide whether the equation
p+p =2m, (*)

where pand p’are prime numbers, has at least one solution for each even number 2, > 6.

Indeed, occurrences of primes look very sporadic, so that it is hard to predict, that there exists a

pair of primes ( . p’) related by the equation (*), especially for ‘big’ values of m.

Notice that every solution (n,n")=(p,p’) in primes to the equation p+ p’=2m , must satisfy
condition: (n,n")e[3,2m—3]" .

We call a prime number p a G - prime (Goldbach prime) if p’ =2m— p is also a prime
number. Then, denote G P as setof all G - primes, and call G P Goldbach set.

The number of elements in set G P, denoted G(2m), is called Goldbach function.

Obviously, forall m>3 wehave G Pcl =[3,2-m—-3]. Aset G PP isempty if

for some m >3 G - primes do not exist. Goldbach function G(2m) counts the number

of solutions to the equation



n+n'=2m, (nn')eP’ (1)
where n and n’ are prime numbers, m is any integer m >3 .
Obviously, any pair ( p, p')of primes greater then 2 solves (1) for 2m=p+ p” .
Due to infinity of IP, this implies that the Goldbach function has limsup G(2m) = oo.
The Strong Goldbach Conjecture states that min G(2m) =1, so that every set G P

is nonempty set for all m > 3. Calculations show that max G(2m) increases with M,
ms<M

though G(2m) is not a monotonically increasing function (Fig.1)

Goldbach function G(2-m) for m=3,4,...,1000 (Fig.1)
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We observe that each pair (n,n’) which solves (1) must belong to a set [3,2m—3] =17,
where [ =[3,2m—3]={3,4,...,2m~3} . Since 3 is prime, if n’'=(2-m-3)eP,

the pair (3, 2-n— 3) solves (1), so that the prime (2 -m— 3) € G, [P, and we need to consider
the case (2 -m-— 3) ¢ P. In general, if p is a prime number such that (2 -m— p) eP,

then (2-m—p)e G P.

Consider a shift mapping of an interval of integers 6 :1 — I given by the formula



6 (n)=2m-n. (2)

Denote F an algebra of all subsets of the interval I =[3,2m—3].
Obviously, Qmis one-to-one and has an inverse 9;1 ,sothatforall A€ F
we have 6 (A)e F,, 0 (A)eF,. Denote I, =[3,m—1],1° ={m},I} =[m+1,2m-3].
Obviously, 8 is idempotent: 031 = id (an identical map), that is 0; =0 .
Indeed, 6%(n)=6, (6, (n)=6, (2-m=(2-m-n))=n.
Let S denote a set of prime numbers in the interval of integers 7 =[3,2m-3],
thatis § =1 NP, and S =7 \ S its complementin / so that

I =S uS', § NS =@ . While § stands for the set of primes in /

S¢ is the set of composite numbers in / .
We denote 6 (S )=2-m—-S = {n’ |n"=2-m—n,ne Sm}.
The Strong Goldbach Conjecture asserts that for any m >3 the set G P is not empty:

G P={nn'|nePn'=2m-n)eP}=2m-5,)nS, =6, (S)NS, #D.

Lemma 1.
Golbach sets G [Pon intervals [ are @ - shift invariant: § (G P)=G P.
Proof.

Notice that the sets Im,{ m},{3, 2-m-— 3} and 6 (S )NS are invariant sets of the map
0,:1,—1, since forall nel, wehave 6, ({n.6,(m})={6,(n.0?(n}={6,(n).n} ,
due to 0; =id. 6 -invariance of G, [P also follows directly from the equalities

m

0,(G,P)=6,(S,N6,(S))=6,(S)N8.(S,)=6,(S)NS, =G P.

Q.E.D.

In what follows we need several recursively derived formulas.



Lemma 2.

(1) 1,=1,, u{2m-4,2m-3}, where I =[3,2m-3] )
@ s,=5,, U(P“{2m—3})={s'“k.){2m_3} if (2m-3)eP “
S, if 2m-3)eP
(3) 6.(S )= m( m—1)L'){ }1 { m }e 5
em(Sm—l) if {Zm—3}€]P°
@ G P:{em(sm)“5m=9m(5ml)U{3} it an-y e .
" 16,(5,)nS,=6.(S )nS,  if Gm-1)eP

Proof.

(1) Weobserve that I  =[3,2-(m—1)-3]=[3,2-m~-3]

|
sothat I =[32m—-3]=1_ u{2m-4,2m-3}.

@) ({2m-4.2m-3}"P)=({2m-3} "P) implies

S, =1,nP=(1_ nP)U({2m-42m-3}"P)=S, L(P~{2m-3}),

Thus, S, =1 NP=S, u{2m-3}if 2m-3)eP and S, =5,  otherwise.

(3) 6,(5,)=0,(S,.,)uo,({2m-3}"P)= {Z: E;i;;{?z;_{;}z ;P 3jeP
since § (2m—3)=2-m—(2m—3)=3.

@ GP=0,5)nS,=(6,,)u{3})ns,, =(6,,)ns,,)u{3}

if 2m-3)eP,and G,P=6,(S, )NS,  if (2m—-3)eP,thatis

1
GP= Om(Sm—l)ﬁSm—l if 2m-3)¢P
S

Q.E.D.
Notice that (5) implies that if (2m—3)¢P,then § =S and G P=6 (S )NS .Inthecase

when (2-m—-3)eP, wehave G P# since (2m-3)eP,so that 3+(2m—3)=2m.

Thus, we need to consider the case (2m—3) ¢P. We observe that Gm (Sm—l) = 9m-1(Sm_1) +2,



due to (7) in Lemma 3 below. This implies G, P=(6, (S, )+2)nS, .If peG, P=@,

1

then peS and pef (S ).Assumingnow that p isa twin prime, that is
(p+2)eS, =S, , wehavethat G,_P#@ implies G P=(0, (S, )+2)NS, #D.
See in what follows the more detailed discussion and definitions of sets of twin primes TP

and t-primes TP related to the Goldbach Conjecture.

The next Lemma concerns some properties of the shift transformation 6 (m = 3)

Lemma 3.

Consider a shift transformation
0 :7Z— Zsuchthat 6 (n)=2-m—n, whereneN, meN (m 23).
Then, for any subset 4 c Z and integer e N the following properties of 6 hold true:

0 (A)=06 (A)+2-1

(7
0 (A)=6 (A)+2-1

Proof.

0 (A)=2-(m+1)—A=2-m—A+2-1=0 (A)+2-1
0 (A)=2-m—A=2-(m—t)— A+2-1=60 _(A)+2-1

Q.E.D.

2. Twin primes, ¢-primes and Goldbach sets.

Let TP = {p |pePand (p+2)e IP} stand for a set of all twin primes and consider G P NT P

for each k (3<k <m). Thus,if forsome k 3<k<m) GPNTP=J, then G PzJ .
Lemma 3 implies that if for a prime p e G, [P there exists a twin prime (p+2)€eP,

then ( p+ 2) € G, P. This shows some connection between the Twin Prime Conjecture

and the Strong Goldbach Conjecture (SGC), and, moreover, between the ¢-Prime Conjecture

(de Polignac Conjecture (1849)) and SGC, as we observe below. This also shows how nonempty
Goldbach sets G, [P can propagate further with increasing values of k.

Definition.



Denote, in general, by TP (re N) aset of ¢-primes for some ¢ €N, that is
Tt]P’:{p |peP and(p+2-t)eIP’}. Notice that UTIIP’z P=P,
t=0

where [Pstands for the set of all odd prime numbers. Consider examples below:
{3511,17,29,41} c TP, {3,7,13,19,37,43} c T,P, {5,7,11,17,23,31,37,41} < T,P, and so on.
Propagation of nonempty G, IP forall k>3 is based on the following observations.

Lemma 4.

Let peGP#Q and p<k.Thereexist geP (¢>p)and reN (1<t<k-1)

such that g=p+2-reP,and peTP. This implies that there exists reN (1<t <k—1)

suchthat pe G PNTP#Q and g=(p+2:1)e G, P+JD.

Proof.

Let pe G, P, p<k.Thanks to the Bertrand’s postulate [4], there exists a prime g between
integers k and 2-k (k >3). This implies that there exists ¢ € N such that this prime ¢

can be expressed in the form g=(p+2-t)eP, where 1<¢t<k—1.

Indeed, we can take ¢ =

q_p,sothat =p+2-teP. Then, peG,P implies
> q=p PEU;

that p+6 (p)=2-k and (p+2-1)+0,(p)=2-k+2-t=2-(k+1).

Since g=p+2-treP and 0 (p)eGP, wehave pe GPNTP =

and g=(p+2-1)eG P+0.
Q.E.D.

This shows how nonempty Goldbach sets G.P,G,P,G.P,... G_P, ... have been generated:
GP={3}.6P={33+2},GP={355+2}.GP={55+2},
GP={377+4}, GP={351111+2},GP={571111+2},

G,P={37.1313+4},G,P={311,17,17+2},G, P={57,11,13,17+ 2}...

Let G,P =, so that there exist pe G,IP and p’=0, (p)e G, P, where p' =0 (p)=2-k-p.



Assume that ¢ is prime and ¢ > p such that g=p+2-¢, where ¢ = %

This implies that ¢+6,(p)=(p+2-¢)+6,(p)=(p+8,(p))+2-t=2-(k+1).
Since both g and 6, (p)are primes and g+6 (p)=2-(k+t), we have g and 6 (p)

belong to G, [P# . For instance, if for some k (3<k <m)wehave G_ PNT P+,
then, due to Lemma 4, G, P#. Consider p=3andg=5, thatis we start from G JP= {3}

Then, t=¥:1 and 6,(3)=3. Thus, we have ¢+6,(p)=5+3=2-(3+1)=8,

where 3 and 5 both belong to G, P=G, = {3,5}.

Then, due to Lemma 4, for each G,IP #J there exists ¢ e Nsuch that G, PNTP =,
which implies G, P # . This means that the occurrence of a ¢-prime in a non-empty
set G PP implies that G, [P is necessarily non-empty. This provides proliferation

of non-empty sets G,IP ¢ steps forward, so that G, P is not empty for any k.
Starting from k=3 and ¢ =1 the ‘wave’ of G, -primes propagates forward
recursively as k — oo without gaps, supported by the existence of such 7-primes.

Observe that each pair of primes (p,q) suchthat pe G P, g>pand ge§ =1 NP,

generates a nonempty set G, P, where ¢= q;p and pis a t-primein G,P.

Notice that each prime number in G P for m >3 is a ¢-prime for an appropriate value
of 7. Our goal is to demonstrate that we can build a nonempty Goldbach set G P

for every m >3, given a sequence of nonempty Goldbach sets {GkIP } K by using

3<k<m

assumption of mathematical induction. We need the following simple Lemmas.

Lemma S.
Let S =1 NP, where I =[3,2-m-3].

For every prime p e S thereis k<m suchthat pe G P.



Proof.

Indeed, we can take k= p. Then, pe G Psince p+p=2-p<2-m.

Another possibility for any prime p €S isto consider k= 3+Tp,
since 3+ p=2-k<2-mimplies peG,P.
Q.E.D.
Lemma 6.
For all m>3 we have
s, =G P=G6"P. @®)

k=3

Proof.

Forany peS ., duetoLemma 4, there exists k <m such that p e G,P, so that pe G"'P.

And vice versa, if pe G"P,then pe G, P for some k<m,sothat peS§ .

The following statement concerns a recurrent formula that generates an infinite sequence
of nonempty Goldbach sets G P for all m >3.

Q.E.D.

Theorem 1.

Let Gk]P’;«t@ forall k:3<k<m-1. If 2-m—-3eP, then 2-m—3eGmIP’¢®.
Otherwise, if 2-m—3 #G P, we have AEI due to Lemma 2.

Then, for any m >3 the following equality holds true:

m_l[(GkIP’+2-(m—k))mSm]:GmIP’:Q 9)

k=3

Proof.
Denote 4, = (GkIP’ +2-(m- k)).

—1

3

Then, G[(GkP+2-(m—k))mSm] = U[Ak’m mSsz[

k=3 k=3

Ak’meSm .

=~
1l

3

Consider 6 (4, ,)=2-m-4, =2-m-GP-2-(m-k)=2-k-GP=0,(GP)=GP.



Indeed, due to Lemma 1 about @ - shift invariance of G,P, we have 6 (G P)=G,P.

Equality 6 (4, )=G,[P implies that
m—1 m—1 m—1
k=3 k=3 k=3

According to equality S = | JG,P = G"™P (see formula (8) in Lemma 6) we find

k=3

1

m—1
S .= (U ka] =G P. Then, 2-m-3#G P impliesS =S . Hence
k=3

m—1 m—1
Qm [( Ak,m j M Sm) = [UGkPJ M Hm(Sm) = Sm M em(Sm) = Gm]P) '
k=3

k=3

m—1

We have (U 4, j NS _ =G""PnNS

k=3

= G VP # &, due to the assumption of mathematical

m—1

induction. Then, from [U A, m] NS  #O it follows 0, ([

k=3

Ak’mijmJ:Gm]P’;tQ.

k=3

Q.E.D.
The recursive formula (9) in Theorem 1 proves the Strong Goldbach Conjecture.

Lemma 4 and Theorem 1 show a definite connecion between the number of solutions to the

Goldbach equation p+ p”=2-min the intervals [ =[3,2-m—3] and the number of ¢-primes

in sets GPfor k:3<k<m. We discuss this in what follows.

3. Diophantine variety of Goldbach sets.

A seqience of Goldbach sets {GkIP’ |35k < m} represents solutions to the system

of Goldbach equations {x +y=2-k|3<k< m} in the intervals [, =[3,2-k-3].
This system is an algebraic variety given by linear equations x+y=2-k (3 <k< m) ,
which solutions (if exist) are pairs of prime numbers ( D, p') eP? .

Geometrically, each Goldbach set G P is a sequence of points with coordinates

10



(p,p') € P’ on the segment of a straight line givenby x+y=2-k , (x,y)€[0,2-k],
symmetrically located on the line with respect to a point (k,k), due to invariance

0, (GkIP) =G, P, where 6 (x)=2k—x=y. See below Fig. 1 and 2 representing
Diophantine geometry of Goldbach sets, where dots are points with coordinates

( D, p’) e P? on the corresponding lines. These dots are solutions to the Goldbach equations

x+y=2-k (3 <k< m). The theorem below answers the question how many solutions are

in each Golbach set.

Theorem 2.
The number of solutions to the Goldbach equation p+ p’=2-m in primes (p,p’) € P?,

where p <m and m is not prime, in each inerval [ =[3,2-m—3] is equal to the number

of t-primes in the set G P such that 7= % We have then, p=m—t¢, p’=m+t.

Proof.

Consider a quadratic polynomial P (x)= xX*+2-m-x+cfor m,c and xeZ.

Let a pair of primes (p, p”) be a solution to the Goldbach equation p+ p’=2-m in the
interval [ =[3,2-m—3]. Obviously, for ¢=p-p’, the pair of prime numbers

(p,p’) e IP*are roots of the polynomial P (x)=x*—=2-m-x+p-p’= (x - p) : (x— p').
Discriminant of P (x) is D=4-(m’ - p-p’)=4-1*, where ¢ is a nonnegative integer.
Observe that (m2 -p- p’) =¢* implies (m—t)-(m+t)=p-p’.

Since p and p’are not equal prime numbers, the equation (m—1)-(m+t)=p-p’

for an integer ¢ and p < p” implies: m—¢=p and m+¢= p’, so that

=P "L and p'=p+2-t. Thismeans that pe G P isa t-primeinG, [P, where (=P P

Therefore, we have as many solutions (p, p’) € P* to the equation P(x)=x>+2-m-x+p-p’ as

’

-pP

there are ¢-primes, = P ,inthe set G P. Assume now that 2-m=p+gq, c=p-q,

11



where peP and ¢=2-m— p is an unknown integer.

Q.E.D.

For peG P the polynomial P (x)takesa form: P (x)=x’+2-m-x+ p-(2-m— p).
2

Its discrimimant is D =4'(m2—p'(2-m—p))=4-(m2—2-m-p+p2)=4-(m—p)

The solutions to the equation P (x)=0 are x,, =m*(m- p), where x, =p,x, =2-m—p.

12
For instance, let m=9, ¢=45. Then, P,(x)=x’—18x+45 has 2 roots:
x,=3€lP,x,=2-9-3=15¢P, but they do not belong to G,P. Meanwhile, for m=9

and ¢=65wehave P (x)=x"—18x+65 withroots x, =5€P,x,=2-9-5=13€P,

sothat 5€ G,P and 13e G, P. Notice that 3,6,(3)=15and 2-9 = 18are not coprime numbers,
while 5, ,(5)=13and 2-9=18 are all coprime.

Denote [x], =mod(x,p). Then, [P, (x)] = [x]i —[2-m] -[x],- The equation.
— TP - -
[P, (0], =[xP = [2-m] -[x], =[x],([x], ~[2m], ) =0
has the following different sets of solutions: [x] =0and [x] =[2-m] .
Since we are solving equation P (x)=0 in primes within interval | =[3,2-m-3],
the solutions are restricted to the set S =1 NP. Therefore, in interval / equations

[x],=0and [x] =[2-m], have solutions:x =p<m,and x,=2-m-p>m.

Example 1.
G, P={7,13,17,23,29,37,43, 53,59, 67, 73,79, 83, 89}, m=48

p=m—t 7 13 17 23 29 37 43
P =m+t 89 83 79 73 67 59 53
¢ 41 35 31 25 19 11 5

12



,50) (Fig.1)

3,4,..

Diophantine Geometry of Goldbach Sets (Fig.2)
GP (k

13

ox
.,40) (Fig.3)

G P (k=34,.



Geometry of Goldbach sets on lines x + y = 2k, 3<=k<=m

Prime p'

N
N
10 20 30
Prime p

Every dot in the above figure denotes a point with coordinates ( D, p’) such that

p+p =2-k ontheline x+y=2-k, where 3<k <m.

3. Recursive Algorithm generating the infinite sequence

of nonempty Goldbach sets G P# for all natural ;> 3.

We apply now one of the most fundamental and simple proof techniques in mathematics

known as mathematical induction [3]. Let Prop(m) denote a statement about a natural
number m, and let m be a fixed number. A proof that Prop(m)is true for all m >m_ by

induction requires two steps:

Basis step: Verify that Prop(m,)is true.

Induction step: Assuming that Prop(k)is true for all ksuch that k:m <k<m,

verify that Prop(m+1)is true.

Theorem 3.

Prop(m): For all integer m >3, the set G, [P of solutions to the equation n+n’"=2m,

(n,n') e P?, in prime numbers is not empty: GPz0.

14



The Prop(m)can be equivalently stated as: G P=6 (S )N S # @ forall integers m > 3.

Proof.
(1) Basic step.
As we know [2], Prop(m)is true for all m upto M =4-10".

Let mO:3.Then 2:3=6=3+3.

(2) Induction step.

Assume that G P=6 (S,)NS, # forall integer k:m, <k <m-1.
Let k=m. Wedenote: /| =[3,2-m-3]and § =1 NP.

S, u{2m-3}if 2m-3)eP
In Lemma 2 we proved (3) that § =3 " .
TS, if 2m-3)eP
In the case (2-m—3)e P, the formula (5) implies G P=6 (S, _)NS A #D.
We can also confirm in this case directly that G P # &, because 3+(2-m—3)=2-m

Consider now a general situation, which includes the case (2-m—3)¢P.

This part of the proof consists of two steps.

m—1

On the first step we prove that G P = U[(GkIP +2-(m— k)) N Sm} by applying
k=3

shift transformation 6 to both sides of the above equation and by using the property of
6, - invariance of Goldbach sets G P forall m >3.

Next, we observe that S =S | if (2-m—3)#P. Then, due to Lemma 6, we obtain

m—1
GPcS, =S  =JGP=G""P.

k=3

m—1
On the second step we show that the set U[Gk]P’ +2-(m—k)m Sm] is not empty.
k=3

This follows from the induction assumption G P#(J forall k 3<k <m).

Finally, Theorem 1 states the recursive formula for nonempty Goldbach sets:

15



m—1

UL(GP+2:(m=k)nS, |=G P#B (m=345..). (10)

k=3
This formula allows to write a computer program to generate recursively potentially

infinite sequence of Goldbach sets G, Pfor all m > 3.

Q.E.D.

See in APPENDIX the text of R-script GenGS . R and data lists of the calculated G P

for k :3<k < m.An example below illustrates the above statement with some computer
calculations. In this example we consider sets G P=6 (S, )NS form from 105 to 110.
Notice that many of those sets can be calculated based on the rule that if a prime p e G P

has a twin prime (p+2)eP,thatis t=1and p e TIP, then (p+2) G, P.

For example, terms in G, P are calculated with this rule by using terms in G, .

Meanwhile, terms in G, P are calculated by using terms in G, [P for ¢=2 based on the general
rule:if p<k and pe GPNTP, then peP andp+2-teP implies (p+2-1)eG, P

(Lemma 4): 23+197=(19+2-2)+197=220=2-110, since 19+197=216=2-108.

The calculations below illustrate the conclusion of the Theorem 1 (see the data referred in
Example 2). We would like to verify that G| P # O, by using that G,IP # & for all k£ <110.

Consider G,, P (m=110,2-m=220). If we choose ¢ =1 it would not work with G, /P,

109

because G, PNTS ,=Q. Wetry then G, P and ¢=2.

109

We have G PNTS

108

z@and p=19€G PNT,S

108"

Then, p+2-1=19+2-2=23
should belong (due to Lemma 3) to G,, P. Therefore, 2-110-23=197€G, P .

Thus, we have 23+197=2-110 , which means that G P # . Notice that in this instance
k=109, k+1-t=109+1-2=108 and (k+1—¢)+¢=108+2=110, which allows us to

establish that G =G, P #J, by using the fact that G, PNT,S, = D.

(k+1—t)+ 108

Example 2.

16



Sets G, P=6 (S )NS for m from 105to 110

11 13 17 19 29 31 37 43 47 53 59 61 71 73
G,P=179 83 97101103107 109 113 127 131 137 139149
151 157 163 167 173 179 181 191 193 197 199

G P={13 19 31 61 73103109 139 151 181 193 199}
G, P={3 17 23 41 47 83101 107 113 131 167 173 191 197 211}

)5 1719 23 37 43 53 59 67 79 89103 107 109
113 127 137 149 157 163 173 179 193 197 199 211

G109P={7 19 37 61 67 79109 139 151 157 181 199 211}
{23 29 41 47 53 71 83 89107 113}

108

110

131137149 167 173 179 191 197

Thus, we can predict that G, [P #Jwithout explicit calculation of this set, just by using the

previously calculated sets G, P,G, P,G _P,... By using the algorithm described in Lemma 5, we

109 108 107

find that G PNTP= &, but G PNTP# @, since, for instance, 19 € G PNTP,

and 19+2-2:23EGHOIP’.

Conclusion

I tried to follow the ‘natural logic’ of the problem, by being more exploratory rather than
artificially creative and used a computer as my permanent companion and advisor.

As to simplicity of the used methods, I recall to the point the well-known Poincaré
Recurrence Theorem [7], which proof takes only a few lines of the text and uses mainly
elementary set-theoretical operations. Meanwhile the significance of the Poincaré
Recurrence Theorem can be hardly overestimated. Notice, by the way, that the proof of the
famous Poincaré recurrence theorem is not constructive, since it does not provide

anumber » of iterations, after which the recurrence occurs. The Poincaré theorem states
only that such number 7 exists. Meanwhile the statement of Theorem 1 is quite constructive

since it leads to the recurrent formula (10) given above (see the calculated examples of Goldbach
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set sequences and the text of R script in Appendix), which allows potentially unlimited computer

calculations of consecutive nonempty Goldbach sets {GkIP’ |3<k < m} for any m>3.

This means

I would like to express here my acknowledgement to the peer-reviewer Dr. Dmitry Kleinbock

that Strong Goldbach Conjecture holds true.

for reading of this paper and especially for his critical and thoughtful reading of my paper [9] with

the probabilistic proof of Strong Goldbach Conjecture. The spirit of friendly interaction in our

numerous discussions was very crucial for me.

APPENDIX

The text of R-script for computer realization of Recursive Algorithm

generating sequences of Goldbach sets G, Pfor t=3,4,5,....m

3
#

G

Function GenGS(M1,M2) recursively generates a sequence of Goldbach sets
G(m) where M1 <= m <= M2, for an natural M1, M2 such that 5 < M1 < M2.
Here each G(m) is calculated by using the function

GenG(m) and the function supply: GenGS(M1,M2) = sapply(M1:M2,GenG)
Function GenG(m) generates sets G(m) of Goldbach primes such that
p+p'=2m (3 <=m <= 2m-3) for each natural m (3 <= m <= 2m-3).

This function is based on formula (9) from Theorem 1:

G(m) includes each p + 2t if p is a t-prime in the Goldbach set G(k)
(3 <= k <= m-1) for t = m-k.

Thus, G(m) is a inion of subsets tG(k) of t-primes in G(K) such that
tG(k) = {p + 2tl p is in G(k), p + 2t is prime for each t = m - k}.
Notice that G(m) is recursively generated from the Goldbach sets G(k),
where 3 < k <= m-1,starting from G(3) = {3} (3+3=06).

This is confirms non-emptiness of Goldbach sets G(m) for all natural
m = 3,4,5,... (the Goldbach Conjucture)

by the principle of mathematical induction.

Needed packages: 'numbers' and 'sets'.

Created by GMS

Date: 06.30.21.

enGS <- function (M1,M2) {
Gen_GS <- sapply(M1:M2, GenG)
return(Gen_GS)

source('~/Documents/R/Number Theory/GenGS.R')

enG <- function(m) {
if (isPrime(2*m-3)){Gm <- 3 }
else { Gm <- NULL

18



Data lists of calculated G, P for k=3,4,5,...,m

m Goldbach sets G, P (m=3,4,5,...,43)
3 3

4 35

5 357

6 57

7 3711

8 351113

9 571113
10 371317
11 35111719
12 5711131719
13 37131923
14 5111723
15 71113171923
16 3131929

17

351117232931
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18 571319232931

19 71931

20 31117232937

21 51113192329 3137

22 3713313741

23 351723294143

24 S571117192931374143

25 37131931374347

26 51123294147

27 7111317233137414347

28 31319374353

29 5111729414753

30 71317192329 313741434753
31 319314359

32 351117234147535961

33 5713192329374347535961
34 7313761

35 3111723294147535967

36 511131929 314143535961 67
37 3713313743616771

38 351723294753597173

39 571117193137414759617173
40 713193743 616773

41 31123294153597179

42 5111317233137414347536167717379
43 37131943677379 83

m Goldbach sets G, P (m =100,101,...,128)
100 37193743617397103 127 139 157 163 181 193 197

101

35112329537187101 113 149 173 179 191 197 199
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102

571113233137414753677397101 103107 131137 151157163 167 173 191
193 197 199

103 71343 677997103 109 127 139 163 193 199

104 1117294159 71101107 137 149 167 179 191 197

105 11 13 17 19 29 31 37 43 47 53 59 61 71 73 79 83 97101 103 107 109 113

127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

106 1319316173103 109 139 151 181 193 199

107 31723414783 101107 113 131167 173 191 197 211

108 5171923374353596779103107109 113 127 137 149 157 163 173 179 193
197 199 211

109 71937616779 109 139 151 157 181 199 211

110 23294153718389107 113131137149 167 173 179 191 197

111 11 23 29 31 41 43 59 71 73 83109 113 139 149 151 163 179 181 191
193 199 211

112 13 31 43 61 67 73 97127151 157 163 181 193 211

113 329 47 53 59 89113 137167 173 179 197 223

114 517 29 31 37 47 61 71 79 89 97101 127 131 139 149 157 167 181 191 197
199 211 223

115 3 719 31 37 67 73 79103 127 151 157 163 193 199 211 223 227

116 3 541 53 59 83101 131149173179 191 227 229

117 | 5 7 11 23 37 41 43 53 61 67 71 83 97103 107 127 131 137 151 163 167 173

181 191193 197 211 223 227 229

118 3 7 13 37 43 73 79 97109 127 139 157 163 193 199 223 229 233

119 5 11 41 47 59 71 89101 107 131 137 149 167 179 191 197 227 233

120 | 7 11 13 17 29 41 43 47 59 61 67 73 83 89101 103 109 113 127 131 137 139

151 157 167 173 179 181 193 197 199 211 223 227 229 233

121 3 13 19 31 43 61 79103 139 163 181 199 211 223 229 239

122 3 511 17 47 53 71107 113 131 137 173 191 197 227 233 239 241

123 5 713 17 19 23 47 53 67 73 79 83 89 97 107 109 137 139 149 157 163 167

173 179193 199 223 227 229 233 239 241
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124 7 19 37 67 97109 139 151 181 211 229 241

125 11 17 23 53 59 71 83101 113 137 149 167 179 191 197 227 233 239

126 | 11 13 19 23 29 41 53 59 61 71 73 79 89101 103 113 139 149 151 163 173 179
181 191193 199 211 223 229 233 239 241

127 3 13 31 43 61 73 97103 127 151 157 181 193 211 223 241 251

128 5 17 23 29 59 83 89107 149 167 173 197 227 233 239 251
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