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Abstract. My proof that P 6= NP ⇔ NP = EXPTIME.

I denote s(X) the size of data X (in bits). I denote execution time of an
algorithm A as t(A,X).

I denote f ∼ g if two functions are both smaller than a polynomial of the
other.

Theorem 1. P 6= NP⇔ NP = EXPTIME.

Proof. First prove P 6= NP⇒ NP = EXPTIME:
Assume P 6= NP.
We will need that there is a polynomial-time hashing algorithm h without

hash collisions (in P 6= NP assumption), because we use a Merkle tree.
Article [1] proves that there are some polynomial-time algorithms (we can
choose either SB and FSB) that are collision resistant (by reducing to an
NP-complete algorithm).

Using a Merkle tree technology similar to one of the Cartesi [2] crypto
(but with an infinite stack instead of a finite addressable memory and the
size of hashes associated with nodes growing polynomially (we can take
linear) regarding the input size; because memory is infinite, we adjust size
of Merkle trees during execution; we also need to change the command
system to accomodate the infinite memory).

Here is a model similar to Cartesi, but simplified (using this model, we
prove the above paragraph):

• We have some deterministic stack machine with tree infinite stacks
(input, output, and memory) of finite words addressed by addresses
(natural numbers).
• We have also stack storing history of execution (see below).
• We can join memory, stack, and the history into one N-addressable

address space by interleaving them (for example, by putting n-th
element into 4n, 4n + 1, 4n + 2, 4n + 3 addresses of the address
space). The address space is considered to be a stack immersed into
zero-initialized memory.
• We assume that CPU commands are one-word (if you like, you can

consider an architecture with multi-word commands considered as
several concatenated one-word commands) and the CPU has no com-
mand cache, to ensure a CPU command is always read from memory
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before executing it, to have a complete “trace” of algorithm execu-
tion in the Merkle tree (see below).
• We require that one command executed grows the stacks no more

than by const words. (This is necessary for the data described by
the Merkle tree to have no more than const · t(A, x) elements. (Re-
mark: It would be enough to allow instead the stacks to grow as
any polynomial function of execution time.) Remark: We may allow
the program to read/write any element of the stacks, not necessarily
only its top.
• We have a provably (when P 6= NP) collision-free hash function h.

We will change our hash function value at h(0, . . . , 0) to be 0 (that
essentially doesn’t break being collision-free for purposes of a Merkle
tree, because a Merkle tree implementation does not need to compare
hashes of different levels; if it happens to have a collision with 0, it is
easily fixable adding one to the values of hashes h(x) when x 6= 0).
It allows to optimize away “zero” Merkle tree nodes, so needing to
create only one node when creating a Merkle tree.
• Hashes size will grow polynomially to the input data size (we consider

below at-most exponential-time algorithms, so hashes grow at-most
as s(X) ∼ log t(A,X), what by the definition of provably collision-
free hashes is enough for asymptotically zero probability of collision
of the root hash used below for verification).
• We put program into the memory stack and input into the input

stack.
• We create a Merkle tree of the address space stack (extended with

zeros to be a degree of 2, what does not change algorithm’s complex-
ities, because the size is to be changed maximum 2 times). (Remark:
For greater efficiency, we could instead create an initially one-node
Merkle-like tree having two child trees “the input-output tree” (in
turn having two child trees of one node with the value 0 as its hash
value: “input” and “output”) and “execution history” tree: with the
value 0 as its hash value.)
• Every time a CPU command w is read (by the CPU) from an ad-

dress a from memory, push to the execution history the value a
together with metadata not to confuse different tuples of addresses
(s(a) grows at-most logarithmically with execution time) and up-
date the Merkle tree (possibly replacing it with a new Merkle tree of
more nodes as necessary, this is a constant time operation, because
we don’t bother to hash zeros).
• Every time a word is stored (by the CPU) into an address of output,

update the Merkle tree (possibly replacing it with a new Merkle tree
of more nodes as necessary, this is a constant time operation, because
we don’t bother to hash zeros).
• Start execution from the zeroth command in memory.
• The output is the output stack.
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Remark: A practical implementation would have a different memory
model to be more efficient.

Remark: Storing into Merkle tree is a logarithmic (to algorithm execution
time) (even if multiplied by hash size) operation of t(A,X) that is polynomial
of s(X) (we below consider only at-most exponential algorithms), so it does
not change our algorithm complexity class.

So, our tree at the end of execution (non-deterministically) verifies both
the input data, output data, and the entire sequence of execution steps
(which includes every command executed) of our algorithm, so it verifies that
it produces output data from input data by a certain sequence of commands.
So, having the final tree, we can (non-deterministically) verify whether the
output data is produced by a given input data by the given algorithm.

The size of the data and time to be used to verify the result of a de-
cision algorithm A on input data X non-deterministically is proportional
log t(A,X) · log t(A,X) · log t(A,X) = log(3t(A,X)). (The second multiplier
is because the hash-size grows proportionally to the tree size (for at-most
exponential algorithms) and the third one because addreses a pushed into
execution history stack grow logarithmically to the execution time. We
didn’t take into account the time needed to push the input data, that does
not matter for the complexity classes such as P, NP, or EXPTIME.

Take some exponential-time algorithm. It’s execution time t(A,X) ≤
2p(s(X)) (X is input data, p is a polynomial).

Therefore it can be non-deterministically verified (using Merkle trees) in

time proportional to log(3 · 2p(s(X))) ∼ s(X).
We have proved that every at-most exponential decision problem can be

non-deterministically verified in at-most polynomial time.
In other words, a decision problem f for input X can be verified by

an algorithm v that solves an NP problem using the formula v(X, a) = 1
where a is a data such that s(a) ∼ s(X).

The verification (because it’s an NP-problem) in turn can be verified by
a polynomial-time algorithm u using the formula

u(X, a, b) = 1

where b is a data such that s(b) ∼ s(X) + s(a) ∼ s(X).
So, f(X) = 1 can be verified by u using the data (a, b) in polynomial

time. Thus f is in NP.
We have proved P 6= NP⇒ EXPTIME = NP. The reverse implication is

a common knowledge. �
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